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1. Introduction

HPC Shelf is a cloud computing platform aimed at addressing domain-specific, computationally intensive problems
typically emerging from computational science and engineering domains. For this purpose, it provides a range of High
Performance Computing (HPC) services based on parallel computing systems. They are built from the orchestration of par-
allel components representing both software and hardware elements of HPC systems. The hardware elements represent
distributed memory parallel computing platforms such as clusters and MPPs.! Software components, representing parallel
computations, attempt to extract the best performance of them.

Parallel computing systems are managed by SAFe (Shelf Application Framework) [1]. By means of SAFe, application
providers build applications, through which domain specialists access the services of HPC Shelf. Applications are domain-
specific problem-solving environments, such as web portals [2]. They provide a high-level interface through which specialists
specify problems. Computational solutions to these problems are automatically generated according to rules programmed
by application providers, in the form of parallel computing systems.

Application providers must have technical background to create computational solutions to problems in their application
domains. In HPC Shelf, they must be able to identify and combine components to form parallel computing systems. Thus,
background on parallel computing platforms and programming for such platforms is not required for application providers.
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This is a requirement for component developers. Combined with the inherent complexity of parallel system design, this fact
implies the need for effective mechanisms to ensure that, in parallel computing systems, components and interactions be-
tween them behave as expected by application providers and predicted by component developers. In software engineering,
this is a problem known as certification of software components [3-7]. In the context of HPC Shelf, the certification problem
can be seen from two perspectives. In the component perspective, each component implementation is verified against the
functional, non-functional, and behavioral requirements declared in its published interface. In the system perspective, typical
safety and liveness properties of the component orchestration workflow should be ensured.

The need for rigorous validation, leading to some form of system certification, brings formal methods into the picture
in order to identify, and possibly rule out, faulty behaviors in applications. Such methods are, however, not so common in
the domain of HPC systems, due to their inherent complexity and the difficulty of their concrete implementation. Indeed,
HPC systems are defined by heterogeneous computing platforms composed concurrently. In fact, in spite of more than three
decades of active research in formal methods for software development and verification, we are still far from what should
be the practice of a true engineering discipline, supported by a stable and sound mathematical basis. In most cases, testing
and a posteriori empirical error detection are still dominant, even in scenarios where formal verification is a requirement
(e.g. safety-critical systems).

The work reported in this article presents the proposal for a cloud-based general-purpose certification framework for
HPC Shelf. Through the proposed framework, components called certifiers may use a set of different certification tools
to certify that the components of parallel computing systems meet a certain set of requirements. The case studies used
to demonstrate the proposed certification framework are particularly focused on functional and behavioral requirements
that can be verified through automated verification methods and tools, such as theorem provers and model checkers. The
certification process becomes integrated with the parallel computing systems in a highly modular way, so that new certifier
components may be inserted according to the verification tasks required in the certification process.

The certification process may be carried on in parallel. For this, certifier components are defined as parallel certification
systems, analogous to parallel computing systems. Parallel certification systems contain a certification-workflow component
and a set of tactical components, each one providing the access to an existing certification tool or infrastructure running
in a parallel computing platform. Thus, within tactical components, parallel computing may help exploit the maximum
performance of the underlying verification infrastructures to accelerate the certification process.

Summing up, the main artifacts produced by the work whose results are reported in this article are the following ones:

e A general-purpose certification framework for HPC Shelf;

o A class of certifier components, named C4, for the certification of computation components of HPC Shelf;

e Another class of certifier components, named SWC2, for the certification of workflow components;

e A set of tactical components to make the bridge between the above certifier components and existing formal verification
tools.

C4 and SWC2 have the purpose of helping proof-of-concept validation of the certification framework of HPC Shelf.
It has also been evaluated in the context of other cloud-based software certification initiatives, with emphasis on works
related to VaaS, HPC, and automatic software-verification tools. From this assessment, the following outstanding features
and contributions have been identified in favor of the certification framework of HPC Shelf:

e It is general purpose, in the sense that it is not intended to certify a particular requirement, although the case studies
presented in this article focus on the verification of functional and behavioral properties through deductive program
verification and model checking tools.

o It does not certify only software components, but any kind of component, including components representing hardware
elements, such as parallel computing platforms in HPC Shelf.

e It is fully component-oriented, with seamless integration with the environment, in the sense that certification is intro-
duced by certifier and tactical components that may encapsulate certification tools.

e It is the first certification framework in the context of component-based high performance computing (CBHPC), where
certification may avoid the wasting of time and financial resources due to delays, crashes, and wrong outputs in the
execution of long-running computations.

e It is the first VaaS framework applied in the context of HPC.

e It introduces new ideas for VaaS framework design, such as:

- the use of component-orientation to support a higher level of abstraction with respect to underlying formal verifica-
tion tools;

- the clear role separation among certification authorities, component developers, and system builders (application
providers);

e It presents a general method for exploring parallel processing to speedup certification tasks at several levels, by explor-
ing the parallel computing infrastructure where parallel components subject to certification runs.

Article structure. After a description of HPC Shelf in Section 2, its certification framework is introduced in Section 3. Sec-
tions 4 and 5 detail, respectively, the architecture of C4 and SWC2 certifiers. Next, Section 6 presents some case studies to
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demonstrate the use of C4 and SWC2 certifiers in parallel computing systems. A discussion about related works obtained
through a systematic search in scientific databases is presented in Section 7, with emphasis in certification of component-
based software systems and VaaS. Finally, Section 8 presents concluding remarks, pointing to further works.

2. HPC Shelf

HPC Shelf is a cloud computing platform that provides HPC services for providers of domain-specific applications. An ap-
plication is a problem-solving environment through which specialist users, the end users of HPC Shelf, specify problems and
obtain computational solutions for them. It is assumed that these solutions are computationally intensive, thus demanding
the use of large-scale parallel computing infrastructure, i.e. comprising multiple parallel computing platforms engaged in a
single computational task.

Applications generate computational solutions as component-oriented parallel computing systems. They are built by com-
position and orchestration of a set of parallel components that represent hardware and software elements, addressing
functional and non-functional concerns. To do so, these components comply to Hash [8], a parallel component model whose
components may exploit parallel processing in distributed-memory parallel computing platforms. For that, they are formed
by a set of units, each one placed on one of their processing nodes, so that parallelism concerns may be confined to a
single component. Parallel components that are compatible with Hash may be combined hierarchically through overlapping
composition [9].

2.1. Component kinds of parallel computing systems

Component platforms that comply to the Hash component model distinguish components according to a set of com-
ponent kinds. A component kind represents a set of components with similar deployment and interaction models, possibly
representing building-block abstractions of an application domain. HPC Shelf supports the following component kinds:

o virtual platforms, representing distributed-memory parallel computing platforms (e.g. clusters and MPPs);

e computations, representing parallel algorithm implementations that may accelerate performance by exploiting the ar-
chitectural characteristics and features of a class of virtual platforms;

o data sources, representing repositories of data required by computations, possibly BigData ones;

o connectors, formed by a set of facets, co-located with computations and data sources located at different virtual plat-
forms, aimed at orchestrating them and/or supporting choreographs involving them;

e service bindings, aimed at binding user and provider ports exported by components for communication with the envi-
ronment and among them, as well as supporting non-functional services;

e action bindings, aimed at binding action ports of computations and connectors for orchestration of computational,
communication and synchronization tasks supported by them.

Through a service binding, a component may consume a service offered by another component. This is only possible if
the former component has a user port and the later one has a provider port, whose types must be compatible with the type
of the service binding. Therefore, the service binding may act either as a simple service dispatcher or as a service adapter.

Action bindings connect a set of action ports belonging to computation and connector components. These ports are typed
by a set of action names, which label computational, communication or synchronization tasks. A component may export one
or more action ports. The orchestration of action names defines the workflow of a parallel computing system.

An action port offers, to computation and connectors, an interface to control the activation of action names (Listing 1).
The activation of an action name n completes in an action binding if there is a pending activation of n in each action port.
Otherwise, it remains blocked.

The components of HPC Shelf have a default lifecycle action port, referred with the own component instance identifier
in a parallel computing system. It has the following reflexive action names:

e resolve, which attempts to select a component implementation that best fits the requirements of its contextual contract
(Section 2.5);

e deploy, which deploys the selected component implementation in the virtual platform where it will be instantiated for
starting execution;

e instantiate, which makes a component ready for computation and interaction with other components through its service
and action ports;

e run, which starts the internal orchestration logic of the component, i.e. the orchestration of action names of their action
ports;

o release, which releases the resources allocated for the component instance, after its computation has finished.

In the workflow of a parallel computing system, the activation of the lifecycle action names must respect the following
protocol (regular expression):
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public interface ITaskBinding : IActivateKind, GoPort

//synchronous, simple, no reaction code

void invoke(object action);

//synchronous, multiple, no reaction code

object invoke(object[] action);

//asynchronous, simple, no reaction code

void invoke(object action, out IActionFuture f);

//asynchronous, multiple, no reaction code

void invoke(object[] action, out IActionFuture f);
//asynchronous, simple, reaction code

void invoke(object action, Action reaction, out [ActionFuture f);
//asynchronous, multiple, reaction code

void invoke(object[] action, Action[] reaction, out IActionFuture f);

}
public interface [ActionFuture
void wait(); // waits for completion of the action
bool test(); // tests the completion of an action
IActionFutureSet createSet(); // creates a set of pending actions
object Action { get; } // retrieves the reaction code to be executed

void registerWaitingSet (AutoResetEvent waiting_set);
void unregisterWaitingSet (AutoResetEvent waiting_set);

}

public interface [ActionFutureSet: IEnumerable<IActionFuture>

void addAction(IActionFuture f); // add a new activation action

void waitAll(); // waits for completion of all pending actions
IActionFuture waitAny(); // waits for completion of any pending action
bool testAll(); // tests the completion of all pending actions
IActionFuture testAny(); // tests the completion of any pending action

IActionFuture[] Pending { get; } // get the list of pending actions

Listing 1: ITaskBinding interface (C#).

*
resolve - deploy - instantiate - run - release - ((resolve . deploy)? - instantiate - run - release)

The protocol specifies that the workflow must resolve the contextual contract of each component before its instantiation.
However, it may invoke contract resolution multiple times. After each resolution, the component must be deployed again,
before instantiation. It is worth remembering that a distinct component implementation may be selected in each invocation
to the contract resolution service. Finally, all instantiated components must be released before workflow termination, freeing
resources.

Parallel computing systems. A parallel computing system consists of two special components, respectively called application
and workflow, and a set of solution components of the previously described kinds. The workflow component represents an or-
chestration engine that will drive the overall computation. It may be programmed by using a general-purpose programming
language (currently, C#) or SAFeSWL (SAFe Scientific Workflow Language), an XML-based orchestration language designed
for activating the computational tasks of the solution components in a prescribed order [1]. Indeed, an application may
generate SAFeSWL code by dynamically building computational solutions to problems specified by specialist users. Through
a provenance mechanism recently developed, automatically generated parallel computing systems may be saved in the
component catalog by treating them as components. The XSD grammar of SAFeSWL is presented in the Appendix A. The
application component makes communication between the application frontend and solution components possible through
service bindings.

2.2. Parallel computing systems through an example: MapReduce

MapReduce is the parallel processing model of a number of large-scale parallel processing frameworks [10]. A user must
specify: a map function, which is applied by a set of parallel mapper processes to each element of an input list of key/value
pairs (KV-pair?) and returns a set of elements in an intermediary list of KV-pairs; and a reduce function, which is applied by
a set of parallel reducer processes to each element of an intermediate list of key/multi-value pairs (KMV-pair’), and yield a
list of output KV-pairs.

Fig. 1 illustrates a MapReduce computation for counting the frequencies of words green, yellow, blue and pink in a text.
At the end of the computation, the expected output is the number of occurrences of each color in the text.

A framework of components for MapReduce computations has been designed for HPC Shelf [11]. It comprises a pair of
component types of kind computation, named MAPPER and REDUCER, which represent mapping and reducing agents, and
another pair of component types of kind connector, named SPLITTER and SHUFFLER, which intermediate communication of
KV/KMV-pairs among mappers, reducers and data sources.

2 A KV-pair is a pair (k, v), where k is a key and v is a value.
3 A KMV-pair is a pair (k,[vq v ... vy]), where k is a key, mapped to values v;, for i € {1,2,...,n}.
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Fig. 1. A classic example of counting word frequencies with MapReduce. (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)
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Fig. 2. The building blocks of MapReduce parallel computing systems.
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Fig. 3. Multiple facets of SPLITTER and SHUFFLER.

Fig. 2 depicts the service ports of MAPPER, REDUCER, SPLITTER and SHUFFLER. Their action ports will be introduced later.
They have a pair of service ports named collect_pairs and feed_pairs. In the connectors, these ports are placed at different
facets. Since they are multiple facets, instead of single facets, connectors may have a set of collect_pairs and another set of
feed_pairs ports, as illustrated in Fig. 3. Thus, mappers, reducers, splitters and shufflers receive a list of either KV-pairs
(type [(K, V)], highlighted in blue) or KMV-pairs (type [(K,[V])], highlighted in red) through each collect_pairs binding,
and send a list of either KV-pairs or KMV-pairs through each feed_pairs binding. In particular:

e mappers receive a list of input KV-pairs of type (IK, V), apply a map function to each input pair in order to yield a list
of output KV-pairs of type (TK, TV), and return the list of yielded output KV-pairs;

e reducers receive a list of input KMV-pairs of type (TK,[TV]), apply a reduce function to each input pair in order to
yield an output KV-pair of type [(OK, OV)], and return the list of yielded output KV-pairs;

e splitters receive a set of lists of input KV-pairs of type (IK, V), each one associated to a collector facet, redistribute the
input KV-pairs across a set of output KV-pairs lists, each one associated to a feeder facet, and send them through the
corresponding feed_pairs port;

o shufflers receive a set of lists of input KV-pairs of type (TK, TV), each one associated to a collector facet, group the pairs
with the same key in a single KMV-pair of type [(TK, [TV])], distribute the KMV-pairs across a set of output KMV-pair
lists, each one associated to a feeder facet, and send them through the corresponding feed_pairs port.

In a MapReduce parallel computing system, mappers, reducers, splitters, and shufflers may be connected through bind-
ings between their compatible collect_pairs and feed_pairs ports. For instance, Fig. 4 depicts the architecture of a simple
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(12) task_map (17) task_reduce_2 (20) task_split_collector_read_chunk

Fig. 4. The architecture of a MapReduce parallel computing system.

iterative MapReduce parallel computing system, comprising single map and reduce stages, where the reduce stage is per-
formed by two parallel reducing agents. The input is read from a data source component (source) and transformed into a
set of input pairs by the input_data binding. In turn, the output pairs are transformed, by the output_data, into an output
format expected by the application component, which receives the computation result. Such an architecture could be used,
for example, to implement the word frequencies computation illustrated in Fig. 1.

In the MapReduce system of Fig. 4, notice the presence of action ports in each component. For example, the mapper and
the reducer agents have action ports connected to the workflow component through the action bindings task_map, task_re-
duce_1 and task_reduce_2, respectively. They have four action names: a pair of alternative action names, read_chunk and
finish_chunk, for signaling that, from the collect_pairs port, either a chunk of KV/KMV-pair can be read or there is no
chunk to be read, respectively, making it possible to code the termination condition of a loop that reads an input list of
chunks; perform, for signaling that a chunk of KV-pairs is ready to be processed (i.e. to apply map/reduce functions); and
chunk_ready, for signaling that a new chunk of KV-pairs is available in the feed_pairs port. In turn, the connectors have only
the read_chunk/finish_chunk and chunk_ready action names, distributed in their facets. For instance, shuffler has a single
action port in its collector facet, carrying only the read_chunk/finish_chunk alternative action names. It is named task_shuf-
fler_collector_read_chunk. Also, it has a couple of action ports in its feeder facet, task_shuffler_feeder_read_chunk and
task_shuffler_feeder_chunk_ready, carrying, respectively, action names read_chunk/finish_chunk and chunk_ready.

The MapReduce framework is also used to exemplify contextual contracts (Section 2.5) and as case study on verification
of workflows (Section 6.2).

2.3. Stakeholders
The following stakeholders work around HPC Shelf:

e The specialists (end users) use applications for specifying problems using a domain-specific interface. They wait for
the execution of computational solutions built by the application for these problems, in the form of parallel computing
systems. They do not handle directly with components, which are hidden behind the domain-specific abstractions of
the application interface.

e The providers create and deploy applications, by designing their high-level interfaces and by programming the genera-
tion of parallel computing systems. They have skills in building computational solutions for problems in the application
domain, by looking for the appropriate components and combining/orchestrating them.

e The developers write the code of component implementations, being concerned on how to tune them for better exploit-
ing the architectural features of classes of virtual platforms. For that, they are experts in parallel computer architectures
and parallel programming.

e The maintainers offer parallel computing infrastructure on top of which virtual platforms are instantiated. Through
contextual contracts, they may specify the architectural features of the virtual platforms they support. Because platforms
are treated as a kind of component, maintainers must register the contextual contracts of virtual platforms they support
(can instantiate) in the same catalog where developers register their software components.

2.4. Architecture

The multilayer cloud architecture of HPC Shelf for servicing applications comprises the three elements in Fig. 5: Frontend,
Core and Backend.
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Fig. 5. The cloud architecture of HPC Shelf.

Table 1

Contextual parameters of MRCOMPUTATION.
Name Bound Description
input_key_type DATA the type of keys in input pairs
input_value_type DATA the type of values in input pairs
Junction FUNCTION the custom function (e.g. map or reduce)
output_key_type DATA the type of keys in output pairs
output_key_value DATA the type of values in output pairs

The Frontend is SAFe (Shelf Application Framework) [1], a collection of classes and design patterns used by providers to
build applications. Its current implementation is written in C#. It supports SAFeSWL as a language for specifying parallel
computing systems. SAFeSWL is divided in two subsets. Through the architectural subset, the provider may specify which
components and bindings will form the parallel computing system. In turn, using the orchestration subset, the provider
may program its workflow, by specifying the order in which action names must be activated. Remember that a workflow
component is responsible to execute the orchestration part of SAFeSWL code.

The Core manages the lifecycle of components, from cataloging to deployment, and implements an underlying system of
contextual contracts. Developers and maintainers register components and their contracts through the Core. Applications ac-
cess the services of the Core for resolving contextual contracts and deploying the selected components on virtual platforms.

The Backend is a service offered by each maintainer to the Core for the deployment of virtual platforms. Once deployed,
virtual platforms may communicate directly with the Core for instantiating components, which become ready for direct
communication with applications through service and action bindings, without the intermediation of the Core.

2.5. Contextual contracts

HTS (Hash Type System) [12] is a type system firstly introduced by HPE (Hash Programming Environment) [8,13], the
first reference implementation of the Hash component model, for the following purposes:

e The separation between specification (interface) and implementation of components, for promoting modularity and
safety;

e The support of alternative implementations of a given component specification for different execution contexts, where
an execution context is defined by the requirements of the host application and the architectural characteristics of the
target parallel computing platform;

e The dynamic selection among a set of alternative component implementations according to the execution context.

Component specifications are so-called abstract components, whereas component implementations are so-called concrete
components. Abstract components represent a set of components with the same interface, implementing the same concern
under assumptions of distinct execution contexts.

For contextual abstraction, an abstract component declares a contextual signature comprising a set of context parameters,
each one representing a placeholder for associating a particular context assumption.

In what follows, we resort to the MapReduce framework introduced in Section 2.2 for providing examples of contextual
contracts. Indeed, Table 1 presents the contextual signature of an abstract component named MRCOMPUTATION, specifying
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Table 2

Contextual parameters of MRCONNECTOR.
Name Bound Description
key_type DATA The type of keys in pairs
value_type DATA The type of values in pairs
partition_function PARTITION The custom function for

distributing keys across
mappers or reducers

Table 3
Contextual contracts of MAPPER and REDUCER in word frequencies.
Parameter name Component Contextual bound
input_key_type MAPPER INTEGER
put_key_typ REDUCER STRING
input_value_type MAPPER STRING
put_ -P REDUCER INTEGER
. MAPPER COoUNTWORDS... ]
nction
fu REDUCER SUMVALUES]. .. ]
MAPPER
TRIN
output_key_type REDUCER S G
MAPPER
output_value_type INTEGER
tput_ -typ REDUCER

a set of context parameters, each one with a name and a bound type. For instance, function is the name of a context
parameter typed by an abstract component named FUNCTION. Since both abstract components named MAPPER and REDUCER
are derived from MRCOMPUTATION, function is used to specify the custom map and reduce functions that they will execute in
particular MapReduce computations. For that, the bound of function is narrowed to the abstract components MAPFUNCTION
and REDUCEFUNCTION, respectively. For that, MAPFUNcTION and REDUCEFUNCTION must be subtypes of FUNCTION.

In turn, Table 2 presents the contextual signature of MRCONNECTOR, from which the abstract components SPLITTER and
SHUFFLER are derived. Besides the types of keys and values in KV/KMV-pairs, it defines a context parameter named parti-
tion_function, which defines how output KV/KMV-pairs yielded after processing input KV-pairs received from collect_pairs
bindings are distributed across feed_pairs ports. By configuring this parameter, users may control load balancing among
mappers and reducers.

A contextual contract is an abstract component whose context parameters have particular execution context assumptions
associated to each one of them. These assumptions are so-called context arguments. Indeed, the type of a context parameter
is a contextual contract and a context argument is a contextual contract that is compatible with the bound type of the
context parameter to which it is associated. Since contextual contracts may be interpreted as component types, so-called
instantiation types, the compatibility relation between contextual contracts is defined as a subtype relation.

A concrete component declares the contextual contract it implements. Also, in parallel computing systems, components
are specified by contextual contracts where some context parameters may be kept free, i.e. with no context argument
associated to them. When a resolve action is activated for one of these contextual contracts, the Core triggers a resolution
procedure for selecting a concrete component whose contextual contract is a subtype of it, by taking into consideration only
non-free context parameters.

Table 3 presents the set of contextual arguments applied to the mapper and reducer agents of a MapReduce parallel
computing system that implements the word frequencies example.

For that, INTEGER and STRING must be subtypes of DATA, whereas COUNTWORDS and SUMVALUES must be subtypes of
MapPFuNcTION and REDUCEFUNCTION, respectively.

In the MapReduce framework, generic concrete components have been implemented for MAPPER and REDUCER, whose
context arguments are the bounds of the context parameters. However, they could coexist with specialized versions that take
advantage of knowing which data structures are used in keys and values, as well as particular map and reduce functions.

Alite. HTS has been recently extended to support context parameters representing QoS (Quality-of-Service) and cost as-
sumptions in context contracts, receiving the name Alite [14]. Such assumptions are particularly relevant in the context of
cloud computing. For that, a new kind of quantifier components has been introduced for dealing with numerically valued
context parameters. Also, the resolution procedure is now composed of two stages. In the selection stage, the contextual con-
tractual of a system component (a combination of the contracts of a computation component and its target virtual platform)
is resolved by filtering all pairs of candidate system components that satisfy contract restrictions. In the classification phase,
the list of candidate system components is ordered taking into account the best fulfillment of the contract requirements
and the resource allocation policies of HPC Shelf. The best classified system component is selected.
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3. The certification framework

For the purpose of leveraging component certification in HPC Shelf, a certification framework is introduced in this section.
It encompasses a set of component kinds, composition rules and design patterns. They provide an environment where
certification tools can be encapsulated into components to provide some level of assurance to application providers and
component developers that components of parallel computing systems meet a predetermined set of requirements prior
to their instantiation. Among the targeted requirements, they are included functional, non-functional and behavioral ones.
However, this work is more focused on the verification of functional and behavioral properties through theorem provers and
model checkers.

Certifier components constitute the main kind of components introduced by the certification framework. Tactical compo-
nents constitute the other kind. A certifier encapsulates a certification procedure that can be applied to a set of certifiable
components of a given kind, by orchestrating actions of a set of tactical components. Each tactical component encapsulates
an automatic verification tool that is required for checking a set of formal properties on each certifiable component. Using
this approach, a certifier can use a variety of verification tools through the set of tactical components it orchestrates.

In a parallel computing system, certifiable components are associated with one or more certifiers through certification
bindings. Also, the same certifier may be associated to one or more certifiable components. A certifiable component must be
associated with a certifier to which it is compatible through the contextual contract of the certification binding. Each certifier
associated with a certifiable component may impose its own set of obligations on compatible certifiable components, such
as the use of certain programming languages, design patterns, code conventions, annotations, etc.

Certifiable components have an additional certify action name in their lifecycle ports. When activated, each certifier
associated with the certifiable component initiates a certification procedure that verifies the certifiable component against
formal properties of the following kinds:

e default properties are predetermined for each certifier. All certifiable components associated with a certifier will be
checked against them.

e contractual properties are also predetermined for each certifier. However, they may be configured through the contextual
contracts of the certifiers, by component developers or application providers. When contextual parameters associated
to a contractual property are configured by the developer of a given certifier component, the configuration is valid for
any instance of the certifiable component. Otherwise, different configurations may be applied according to the needs of
the application developer.

e component properties are defined in abstract certifiable components, so certifiable component implementations must
address them.

e ad hoc properties are provided dynamically by the application component of the parallel computing system, through
a service binding dedicated for this purpose. The service interface determines which kind of ad hoc properties are
supported and how they are specified.

The certification framework also introduces a new class of stakeholders in HPC Shelf to deal with certifier and tactical
components: the certification authorities. They are experts in applying computational methods for the certification of compo-
nent requirements, including formal methods with strong mathematical foundations. Also, they are able to explore parallel
programming techniques to speed up certification procedures. Certification authorities of HPC Shelf may be selected by
component developers according to their reputation and transparency in the techniques and methods they use in certifica-
tion procedures. They shall make publicly available the obligations imposed by certifiers to component developers. Also, for
application providers, they must inform the format in which adhoc properties must be entered through adhoc properties
bindings, when they exist.

3.1. Parallel certification systems

Certifier components are implemented as parallel certification systems, comprising the following architectural elements, as
depicted in Fig. 6:

e A set of tactical components;
o A certification-workflow component that orchestrates the tactical ones;
o A set of bindings, connecting the tactical components to the certification-workflow component.

The certification-workflow component performs a certification procedure on the certifiable components connected to the
certifier. Parallel certification systems are analogous to parallel computing systems, but aimed at certification purposes.
In such an analogy, the certification-workflow component plays the role of the workflow component, also running in the
memory space of SAFe. In turn, tactical components play the role of solution components. However, tactical components
are, by definition, tightly coupled to the virtual platforms where they run. For this reason, they must be seen as special
kinds of virtual platforms on which the proof infrastructure is installed and ready to run verification tasks.
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3.2. Tactical components

As stated earlier, a tactical component encapsulates a certification infrastructure comprising one or more certification
tools. Through a service port, acting as a client, it fetches input data from the certification-workflow component to perform
certification subroutines required by the certification procedure. The nature and format of such data is freely determined
by each tactical component, possibly comprising code fragments of certifiable components, as well as specification code
generated by the certification-workflow component in a prescribed format. Thus, the tactical component may reject input
data received from the certification-workflow component if it does not conform to its prescription.

Because tactical components are special-purpose virtual platforms, they have the full flexibility to exploit parallel pro-
cessing to make memory/processing-intensive subroutines viable.

The interface of a tactical component comprises the following ports:

e A user service port through which certification-workflow provides operations for the following purposes, among others
when it is deemed necessary:
- receiving code fragments of certifiable components, possibly translated by certification-workflow into the format that
it prescribes;
- receiving specifications of formal properties to be verified;
- monitoring the status of certification subroutines under execution;
- informing the result of certification subroutine runs.
e An action port with action names perform, conclusive and inconclusive, where the latter two are alternative;
e The default lifecycle port.

Fig. 7 describes the architecture of the service binding that connects a tactical component to certification-workflow,
whose component type is ENVIRONMENTPORTCERTIFICATION. It is an indirect binding, derived from the ENVIRONMENTBIND-
INGBASEINDIRECT, thus requiring two distinct units and inheriting the inner components channel, server_port_type and
client_port_type. While the former one is used for communication between the tactical and certifier units, the latter two
are qualifiers that define the server (certifier side) and client (tactical side) interface types (operation signatures) of the
binding, respectively. To do so, they are typed as PORTTYPESERVICECERTIFIER and PORTTYPESERVICETACTICAL, respectively de-
rived from ENVIRONMENTPORTTYPESINGLEPARTNER and ENVIRONMENTPORTTYPEMULTIPLEPARTNER. Note that the tactical unit is
parallel, because it is designed to be a slice of the tactical component, while the certifier unit is sequential, as it is a slice
of certification-workflow. In turn, tactical_type is an additional qualifier that determines the type of the tactical component.
The component types of the inner components tactical_type, server_port_type and client_port_type determine the context
signature of ENVIRONMENTPORTCERTIFICATION, i.e.
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server_port_type = S: PORTTYPESERVICECERTIFIER
client_port_type = C: PORTTYPESERVICETACTICAL [tactical_type = TT]

|:tactical _type = TT: TACTICALTYPE :|
so that the implementations of ENVIRONMENTPORTCERTIFICATION may be adjusted according to the type of a specific tactical
component and the type of interface between the tactical component and certification-workflow.

The certification-workflow component starts a certification subroutine in a tactical component by activating perform. Dur-
ing the process, the tactical component tries to obtain code fragments and formal property specifications from its user
port. Also, it may send monitoring information to certification-workflow, useful in the case of long running certification sub-
routines. When the certification subroutine terminates, either conclusive or inconclusive may be activated by the tactical
component. If the certification subroutine is conclusive for all properties, the former action is activated. If not, the latter is
activated. The set of situations that may prevent the certification subroutine from being conclusive includes: the occurrence
of a hardware failure in the virtual platform where the tactical component resides; incompatible format in which some
formal property is specified; timeouts reached; and so on.

In the current implementation, the contextual signature of TAcTICAL, the component type from which specific tactical
components are derived, is similar to that of ENVIRONMENTPORTCERTIFICATION.

3.3. Certifier components

As stated previously, a certifiable component must be associated with one or more certifiers in a parallel computing
system. In the orchestration code, an activation of the action certify will instantiate a parallel certification system for each
certifier, which will certificate the certifiable component in parallel. Each one may be reused to certify all certifiable com-
ponents associated with the same certifier, when their certify actions are activated.

After the certification procedure, a certifiable component is considered certified if all default, contractual, component and
ad hoc properties have been checked by the certifier. In this case, it becomes a certified component with respect to the first
three kinds of properties (except adhoc properties) for the applied certifier contract. To do this, a certificate is registered for
the certifiable component through the Core services. Consequently, the certification process may be idempotent for a given
certifier contract applied to a certifiable component, restricted to default, contractual and component properties. Thus, in
a subsequent certification of the same certifiable component, if no ad hoc property is informed and the certifier contract
is a supertype of some certifier contract previously applied, the certification process is no longer performed. The previous
certification result is reused, making the creation of the parallel certification system no longer necessary.

As clients of certification bindings, certifiers may communicate with certifiable components even before being deployed
to their virtual platforms. Through the operations they offer, the certifiers may obtain the code of certifiable components
that they will verify. The response of certifiable components to such requests may be seen as a kind of reflection feature.
In the current implementation, the component type of certification bindings is CERTICATIONBINDING, whose architecture is
similar to ENVIRONMENTPORTCERTIFICATION, With the exception that it has an inner component called certifier_type playing
the role of tactical_type. So, the context signature of CERTICATIONBINDING is

server_port_type = S: PORTTYPESERVICECERTIFIER
client_port_type = C: PORTTYPESERVICETACTICAL [tactical_type = TT]

|:cert1ﬁer -_type = TT: TACTICALTYPE :|
In turn, for the purpose of receiving and configuring ad hoc properties, the certifiers have a user port that is commonly
used to connect to a provider port of the application component. The component type of the binding responsible for
connecting these ports is ADHOCPROPERTIESBINDING. Unlike ENVIRONMENTPORTCERTIFICATION and CERTIFICATIONBINDING, it
is derived from ENVIRONMENTBINDINGBASEDIRECT, since certification-workflow and the application component reside in SAFe.
Therefore, a channel component is not necessary, and there is a single interface type to define the operation signature.
Thus, the context signature of ADHOCPROPERTIESBINDING is

certifier_type = TT: TACTICALTYPE
port_type = S: PORTTYPESERVICECERTIFIER |’

Regarding the action ports, the certification-workflow component has ports to be connected to the action ports of its
tactical components. Through these ports, the certifier may orchestrate the tactical components through the action names
perform, conclusive and inconclusive, as already explained.

The use of multiple instances of tactical components in a certification procedure is an important feature of the certifica-
tion framework. For example, such a feature may be useful when a property cannot be proven by some proof infrastructure,
but can be proven by another, encapsulated in a different tactical component. In addition, in the case of multiple instances
of the same tactical component, two or more instances may distribute the certification workload among them, or even
overlap certification tasks, trying to reduce certification time through large-scale parallel processing techniques.

Certifiers must be derived from the abstract component CERTIFIER, with contextual signature CERTIFIER[certifier_type =
TT : CERTIFIERTYPE]. It is the top-level component among components of kind certifier.
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4. C4: certifiers for computation components

Using the certification framework introduced in Section 3, a class of certifiers for computation components, called C4, is
proposed. The name is an acronym for Certifier Components of Computation Components.

The units of a computation component may be viewed as processes running on different processing nodes of a virtual
platform. These units can be aggregated into a parallel unit that represents a team of units programmed in the SPMD (Single
Program Multiple Data) parallel programming pattern, so that the same code is executed on each unit. In this case, the units
may run on different data partitions and synchronize by exchanging messages in a discipline akin to the MPI programming
model [15]. Other variants, e.g. involving multiple parallel and singleton units running different message-passing code, are
also supported by computation components.

The verification of both functional and safety properties of parallel programs based on message passing is a challenging
task. For this reason, the next section provides an overview of formal verification tools that can be used in designing tactical
components for C4 certifiers.

4.1. Tactical components for C4

The verification of computation components may resort to two different classes of methods and tools. The first class is
based on deductive program verification, which partially automate axiomatic program verification based on some variant of
the Floyd-Hoare logic. The alternative approach explores the space of reachable states of a system through model checking.

4.1.1. Deductive tactical components

Tactical components for deductive verification require the target component programs to be annotated with assertions
in the style of the Floyd-Hoare logic or its extensions, namely, separation logic [16], for mutable data structures, Owicki-Gries
reasoning [17], for shared-memory parallel programs, and Apt’s reasoning [18], for distributed-memory components.

In such a context, a tactical component may be purely assertional or not. In the first case, all the properties submitted
for verification must take the form of specification assertions, consisting namely of pre- and post-conditions of operations.
In the second, ad hoc properties, i.e. properties created by the component developer and stored in the component to be
verified, may be considered.

For this class of tactical components, the verification time is not proportional to the number of units in the component.
However, the application of these tools to distributed-memory parallel programs, especially MPI ones, is still incipient. Actu-
ally, only ParTypes [19] can verify C/MPI programs, annotated in the syntax of VCC [20], against a high-level communication
protocol stored by the certifier as an ad hoc property. On the other hand, thread-based programmed components, written
in C or Java, can be verified against safety requirements explicitly annotated in the code (and formulated as separation
logic assertions) with VeriFast [21]. Implicit properties, e.g. to ensure that a program does not access to unallocated memory
locations, can also be considered. Finally, Frama-C [22] is a very expressive alternative for verifying sequential C programs
having functions annotated with pre- and post-conditions.

VCC, VeriFast and Frama-C are verification frontends. This means they handle annotated code written in a high-level
language, which is, at a latter stage, translated into an intermediate verification language in which the verification conditions
are rephrased and checked through some automatic or interactive prover. Intermediate verification languages, such as Boogie
[23] and Why3 [24], act as layers upon which verifiers are built for other languages.

Although there is a wide range of automatic provers, they can be organized into two main classes: SMT (satisfiability
modulo theories) and ATP (automated theorem provers). The former determine when a first-order formula is satisfiable. Exam-
ples include Alt-Ergo [25], CVC3 [26], CVC4 [27] and Z3 [28]. ATP provers, on the other hand, implement logic inference
trying to deduct a formula as a logical consequence of a set of axioms and hypotheses. Popular provers are E [29], SPASS
[30] and Vampire [31].

Some provers are interactive in the sense that human intervention is required along the development of a formal proof.
In such a case, they are equipped with reasonably complex interfaces for editing, searching and choosing suitable proof
procedures and heuristics. They are able to deal with high-order logics in a rather expressive and versatile way, although
only in a semi-automatic form. Well known examples include Coq [32] and Isabelle/HOL [33]. Tactical components to man-
age such tools require ports for communication with the application component, through the certifier. Using this approach,
the application may either automatically interact with the tactical component or require some intervention of the special-
ist user to proceed the verification subroutine. In such a scenario, the user is supposedly fluent in the logic used and its
representation in the tool.

In general, a tactical component for deductive verification is composed of a verification frontend, an intermediate veri-
fication language, and a prover. Other elements may appear. For example, plugins of verification frontends, such as Jessie
and WP, for Frama-C, and ParTypes, for VCC. Whenever there is a single possible composition, the tactical component is
named after the most specialized tool used. For example, ParTypes is composed of ParTypes, VCC, Boogie, and Z3. In other
cases a composite name is used as an acronym of the tools considered. For example, JFWA is composed of Jessie, Frama-C,
Why3, and Alt-Ergo.
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4.1.2. Model checking tactical components

Model checking provides a powerful alternative to deductive verification tools to establish properties of MPI programs.
In the context of the certification framework discussed in this article, the following tools were explored: ISP (In-situ Partial
Order) [34] and CIVL (Concurrency Intermediate Verification Language) [35]. Both verify a fixed (standard), although suf-
ficiently expressive set of safety properties. The former handles deadlock absence, assertion violations, MPI object leaks,
and communication races (i.e. unexpected communication matches) in components written in C, C++ or C#, carrying
MPI1/OpenMP directives. CIVL, on its turn, is also able to establish functional equivalence between programs and is able
to discharge verification conditions to the provers Z3, CVC3 and CVC4. In the rest of the article, CZ refers to the combina-
tion of CIVL and Z3.

4.2. Contextual contracts and architecture

It is proposed an abstract certifier so-called C4, with contextual signature
certifier_type = CType : CERTIFIERTYPE,
programming_language = PL : PLTYPE,

message_passing_library = MP : MPTYPE, |’
adhoc_properties = AH : BOOLEAN

C4

by derivation from CERTIFIER [certifier_ type = CT ype].

Thus, C4 certifiers may prescribe the host programming language on which the computation component is written, as
well as the message passing library for communication between the units of the computation component. Also, certifiers
can determine whether or not the ad hoc properties are supported. If not, the certifier does not have a port to fetch ad hoc
properties.

From C4, two certifiers are derived to meet the proof-of-concept prototype requirements of the certification framework.
They are:

e C4AMPISIMPLE, dedicated to the model checking verification of components implemented by using C and MPI, not requir-
ing annotations in programs and not supporting component and ad hoc properties;

o C4MPIComPLEX, dedicated to the verification of a richer set of formal properties (default, component and ad hoc ones)
through various tactical components encapsulating model checkers and deductive provers.

C4MPISIMPLE extends C4 by closing all context parameters, i.e. by

certifier_type = CAMPISIMPLETYPE,
programming_language = C,
message_passing_library = MP],
adhoc_properties = FALSE

C4

so that it can verify C/MPI programs and ignores ad hoc properties. It has a single tactical component, based on ISP, described
later.
In turn, C4AMPICoMPLEX extends C4 by

certifier_type = CAMPICOMPLEXTYPE,
programming_language = C,
message_passing_library = MP],
adhoc_properties = TRUE

c4

introducing ad hoc properties. However, it adds its own context parameters:

separation_logic = S : BOOLEAN,
CAMPIComPLEX | floating_point_operations = F : BOOLEAN, |.
existential_quantifier = E : BOOLEAN

Such parameters are used by developers for providing some information to the certifier that may be relevant to guide
the verification process:

e separation_logic states whether annotations with separation logic assertions must be considered;
o floating_point_operations indicates whether the certifier must verify floating point operations;
o existential_quantifier indicates whether the assertions contain existential quantifiers.*

4 Note that SMT solvers usually have difficulties at guessing witnesses for existentially quantified variables [36]. In this case, if the certifier orchestrates
a set of SMT solvers and ATP provers, it is advisable that the latter are applied in first place.
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Fig. 8. A Hash diagram for C4AMPICoMPLEX (ignoring qualifiers).

The architecture of C4AMPICOMPLEX is represented in Fig. 8, using a Hash diagram. It follows the general architecture
diagram for parallel certification systems presented in Fig. 6. Therefore, it comprises a set of tactical components, each
connected to the certification-workflow component by means of an environment binding and an action binding. In addi-
tion, a pair of environment bindings (the mandatory certification binding and the optional binding of adhoc properties) are
responsible to connect the certifier to the parallel computing systems (through the certifiable and application components,
respectively). There is a singleton unit, which runs on SAFe, hosting the single certification-workflow unit, and three parallel
units, each one running in a tactical component. Because they run on distinct virtual platforms, CAMPICOMPLEX comprises
four facets.

The tactical components of C4MPIComMPLEX are ISP, JWFA and CZ, whose abstract components restrict the bounds of the
context parameters of TACTICAL to define the interface types through which they talk to the certification-workflow component.
For example, ISP has the signature

tactical_type = TT : TACTICALTYPEISP,
ISP | server_port_type = S : PORTTYPEISP, |,
client_port_type = C : PORTTYPEISP

by extending TACTICAL with
TAcTICAL[tactical_type = TT, server_port_type = S, client_port_type = C]|

There is a single concrete component for each abstract component ISP, JWFA, and CZ, closing contextual parameters
with their bounds (generic implementations). For example, the concrete component JFWAIMPL implements the contextual
contract

tactical_type = TACTICALTYPEJWFA,
JWFA | server_port_type = PORTTYPEJWFA, |.
client_port_type = PORTTYPEJWFA

In the current implementation, the concrete components ISPIMpL, LWFAIMPL, and CZIMPL have been created as images of
virtual machines hosted on the EC2 laa$ service of Amazon.’

C4MPISIMPLE is a simpler version of C4AMPICOMPLEX, having only the tactical component ISP. In fact, Table 4 delineates
the properties that both are able to verify by emphasizing which tactical components are involved in the verification. The
reader may conclude that C4MPISIMPLE is a subset of C4AMPICOMPLEX in terms of verification expressiveness.

5. SWC2: certifiers for workflow components

As described in Section 2, in the architecture of a parallel computing system, a singleton component called workflow
represents the orchestration engine. In the current implementation of HPC Shelf, it may be implemented in two ways:

e using a host programming language (currently, C#), by activating actions using the ITaskBinding interface of action
ports (Listing 1);

5 https://aws.amazon.com/ec2.
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Table 4
Properties of CAMPISIMPLE and C4MPICOMPLEX.
Certifier Tactical Properties
Default Contractual Component Ad hoc
C4MPISIMPLE ISP Deadlock No No No

Object Leaks
Communication Races
Irrelevant Barriers

ISP Deadlock
Object Leaks
Communication Races
Irrelevant Barriers

JWFA Annotations in
Frama-C
ACSL? syntax
C4MPICOMPLEX cz Out-of-bound Arrays No Annotations in CIVL External parallel
Memory Leaks style for defining a program for functional
Pointer Arithmetic sequence of refinement comparison with a
layers that will take the component program

original program to an
abstract, then verifiable,
parallel program

2 https://frama-c.com/acsl.html.

e using SAFeSWL, a specific-purpose scientific workflow language for orchestrating parallel components, driving the exe-
cution of computational and synchronization actions of solution components.

This section introduces a certifier for workflow components, designated by SWC2 (Scientific Workflow Certifier Compo-
nent). It may verify SAFeSWL orchestrations by checking a set of behavioral properties, currently using a single proofing
infrastructure based on the mCRL2 tool.

5.1. Notes about SAFeSWL workflows

SAFeSWL typically specifies workflows of coarse-grained component systems, due to the sort of algorithms it has been
designed to perform. Such algorithms demand for intensive calculations, possibly taking advantage of HPC techniques and
infrastructures. Coarse-grained components encapsulate most of the computational complexity of workflows. Thus, or-
chestration languages aimed at the creation of this kind of workflows, such as SAFeSWL, generally offer few primitive
constructors and combinators to express action activation (synchronous and asynchronous), sequencing, branching, iteration
and parallelism.

Like in most scientific workflows management systems, such as Askalon [37], BPEL Sedna [38], Kepler [39], Pegasus [40],
Taverna [41] and Triana [42], SAFeSWL workflows are usually represented by components and execution dependencies
among them, usually adopting abstract descriptions of components and abstracting away from the computing platforms
on which they run. Thus, they only specify interfaces that expose a set of available operations, without associating the
component to a specific implementation. At an appropriate time of the workflow execution, a resolution procedure may
be triggered for discovering an appropriate component implementation, making it relevant to ensure that the activation
of computational actions of components is made after their effective resolution. Also, resolution procedures may find out
which virtual platform best fits the requirements of component implementations, making it interesting to verify statically
whether the computational actions of components are always activated after resolution of their host virtual platforms.

In order to minimize the waste of computational resources, virtual platforms should be instantiated only when the
components that such platforms host are strictly necessary, as well as released when they are no longer needed. This
is the primary motivation for supporting a component lifecycle control mechanism by using the actions resolve, deploy,
instantiate, run, and release described in Section 2.1. The consistency of the order of activation of these actions may be
statically checked, so that the lifecycle follows its natural order.

The SAFeSWL orchestration code of the workflow component may be seen as a behavior expression representing a
protocol for exogenous activation of computational, communication and synchronization actions of solution components in
a parallel computing system. However, SWC2 certifiers also need to take into account the protocol of endogenous action
activations performed by these solution components, called internal workflows. Thus, the verification procedure over the
workflow of a parallel computing system is performed in a workflow generated by a composition of the main orchestration
code, specified by the workflow component, with the orchestration codes of internal workflows, for each solution component.
By taking internal workflows into account, SWC2 certifiers may refine the verification process, making possible to check a
richer set of useful properties. However, since solution components are programmed in a general-purpose programming
language (currently, C#), the code of internal workflows are specified by abstract components, using SAFeSWL, making
their obedience an obligation of component developers when implementing concrete components.
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5.2. Architecture and contextual contracts
SWC2 prescribes two default properties:

e Deadlock absence;
e Obedience to the protocol in which lifecycle actions must be activated, for each component, presented in Section 2.1.

Also, it has a contractual property that specifies whether absence of infinite loop must be verified. Therefore, the abstract
component SWC2 has the following contextual signature:

certifier_type = CType : CERTIFIERTYPE,
SWQC2 | infinite_loop_absence = | : BOOLEAN,
adhoc_properties = A : BOOLEAN

Thus, SWC2 verifiers decide whether they accept, or not, ad hoc properties. Also, they may include other default and
contractual properties, as well as component properties in some prescribed format.

By derivation from SWC2, a certifier based on the mCRL2° tool has been proposed. It supports all the default properties
prescribed for SWC2 certifiers, as well as ad hoc properties. Also, it keeps the verification of infinite loop absence as a
contractual property. Thus, its contextual signature is:

MCRLZCERTIFIER[inﬁnite_loop_absence =1: BOOLEAN],

certifier_type = MCRL2TYPE,
by extending SWC2 | infinite_loop_absence = I,
adhoc_properties = TRUE

MCRL2CERTIFIER has a single instance of the MCRL2TAcTIcS tactical component, thus requiring a single virtual platform.
The abstract component MCRL2TAcTICS has the signature

server_port_type = S : PORTTYPE_MCRL2,
MCRL2TAcTICS | client_port_type = C : PorTTYPE_MCRL2, |,
version = V : INTEGER

tactical_type = MCRL2TACTICS, |
by extending TACTICAL | server_port_type = S, ,
client_port_type = C

being implemented by the concrete component MCRL2TAcTIcsIMPL, for the following contextual contract:

client_port_type = PORTTYPE_MCRL2, ]
MCRL2TACTICS | server_port_type = PORTTYPE_MCRL2, |.
version = 201409

There are two concrete components of MCRL2CERTIFIER. They are called MCRL2CERTIFIERIMPL1 and MCRL2CERTIFIERIMPL2,
having the context parameter life_cycle_verification assigned to TRUE and FALSE, respectively. However, a single implemen-
tation could exist in an alternative design that could check the current value of life_cycle_verification through a service port
specifically devoted to this purpose. However, this feature is not yet supported in our prototype implementation of HPC
Shelf.

The mCRL2 toolkit does not support distributed-memory parallelism. Thus, it cannot distribute computations of a verifi-
cation procedure between the nodes of the tactical component. However, MCRL2CERTIFIER certifiers may be able to exploit
parallelism by initiating different verification tasks on distinct processing nodes of the tactical component. In an alternative
design, it would be also possible to have multiple instances of MCRL2TACTICS.

5.3. Translating SAFeSWL to mCRL2
The verification of a SAFeSWL workflow requires its translation to the specific notation of the tactical component which

will take care of it. As explained above, mCRL2 [43,44] was chosen here to support workflow verification. System behaviors
in mCRL2 are specified in a process algebra reminiscent of ACP [45]. Processes are built from a set of user-declared actions

6 https://www.mcrl2.org.
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Fig. 9. Formal grammar of the orchestration subset of SAFeSWL.
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(sequence)
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(repeat)
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(continue)
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acE fresh(h)

(break)
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Note: rules (parallel-right) and (stop-par-right) are omitted in this figure, since they are symmetric to (parallel-left) and
(stop-par-left), respectively.

Fig. 10. Operational semantics of the orchestration subset of SAFeSWL.

and a small number of combinators including multi-action synchronization, sequential, alternative and parallel composition,
and abstraction operators (namely, action relabeling, hiding and restriction). Actions can be parameterized by data and condi-
tional constructs, giving support to conditional, or data-dependent, systems’ behaviors. Data is defined in terms of abstract,
equational data types [46]; behaviors, on the other hand, are given operationally resorting to labeled transition systems.

mCRL2 provides a modal logic with fixed points, extending Kozen’s propositional modal p-calculus [47] with data vari-
ables and quantification over data domains. The flexibility attained by nesting least and greatest fixpoint operators with
modal combinators allows for the specification of complex properties. For simplifying formulas, mCRL2 allows the use of
regular expressions over the set of actions as possible labels of both necessity and eventuality modalities. The use of regular
expressions provides a set of macros for property specification which are enough in practical situations.

5.3.1. The translation process

The translation process follows directly the operational rules (Fig. 10) defined for an abstract grammar of a formal
specification of the orchestration subset of SAFeSWL (Fig. 9).

Let W be the workflow component of a parallel computing system. In the grammar of Fig. 9, ¢ ranges over component
identifiers, h ranges over naturals and act € Acty . For each component, it is assumed a minimal set of workflow actions,
including the life cycle ones ({resolve., deploy,, instantiatec, rune, release.} C Actw ).

The semantics of W consists of a task Ty, given by the rules in Fig. 10, and initial state (T, stop, @, @, @, @). The
symbol stop denotes task completion. Each execution state is a tuple (T, T2, E,L, S, F), where T; is the next task to be
evolved; T, is the following task to be evolved; E are the actions enabled in the components; L is a stack of pairs with
the beginning and the end of the repeat blocks scoping the current task; S is a set of pairs with actions asynchronously
activated that have not yet been finished and their handles; and F is a set of handles of finished asynchronous actions.
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For simplicity, the behavior imposed by internal workflows of components, which enable/disable their actions and di-
rectly manipulate E, is omitted.

Rule big-step denotes a big-step transition relation between execution states. Rule action states that a state con-
taining the activation of an enabled action causes the system to observe the action and go to the state in which the next
task is evaluated. Rule sequence indicates sequential evaluation of tasks. Rule parallel-left states that if a state X
with a task Tq leads to any state Y in any number of steps, the parallelization of T with a task T, starting from X, leads
to Y, however propagating the parallelism to the next task. Rule stop-par-1left denotes parallel termination (join). Rule
select-left indicates that the activated action must be enabled. Rule select-right states that a disabled action
may not be activated. Rule repeat performs a task T; and stores in L the iteration beginning and end tasks, which are
performed, respectively, through rules continue and break. Rule start says that an enabled action and a handle not
yet used can be associated and added to S, emitting an action to the system (start(A, h)). Rule £inish indicates that an
action asynchronously activated can actually occur, having its handle registered in F and emitting an action to the system
((a,h)). Rule wait states that waiting for a finished asynchronous action has no effect. Finally, rule cancel cancels an
asynchronous action.

Now, it is possible to present an informal description of the translation process. Rule action states that every SAFeSWL
action is an observable mCRL2 action. Rule sequence states that a sequence of two tasks in SAFeSWL is translated
by the sequential composition of the corresponding translations. Rules parallel-left and parallel-right mean
that the translation of a set of parallel tasks takes place by the creation of mCRL2 processes in a fork-join paradigm.
Rules select-left and select-right indicate the need for the creation of mCRL2 processes that control the state
(enabled/disabled) of actions. Rules repeat, continue and break indicate, respectively, the need for the creation of
a mCRL2 process that manages a repetition task in order to detect the need for a new iteration, the return back to the
beginning of the iteration, or the end of the iteration. Rule start states the need for the creation of an asynchronous
mCRL2 process that will eventually perform the action. Moreover, it is also needed to create a manager process that stores
the state of all actions started asynchronously (pending or finished). Finally, rules wait and cancel indicate the need for
the communication with such a manager to, depending on the state of the asynchronous action, block the calling process
or cancel the asynchronous process launched for the action.

5.4. Specifying and proving default properties in mCRL2

The first default property is deadlock absence, specified as

DA : [truex](true)true,

i.e. there is always a possible next action at every point in the workflow.

A workflow that contains a repeat task may perform an infinite loop when a break is not reachable within its scope.
Infinite loop absence (ILA) may be checked by verifying if all mCRL2 break(i) actions can occur from a certain point on,
where i is the index of the related repeat task, using the formula

ILA : Vi: Nat.[truex](true x .break(i))true

The remaining properties express lifecycle restrictions in terms of precedence relations specified by formulas like

LC1: Vc: Nat.[!resolve(c) = .deploy(c)]false
&& (true * .resolve(c).!release(c) * .deploy(c))true

This formula is applied to each component c, restricted to orchestrated components in order to reduce the model check-
ing search space. The first part of the conjunction states that a deploy may not be performed before a resolve. Note that !
stands for set complement, thus the expression [!a]false states that all evolutions by an action different from a are forbid-
den. The second part states that a deploy may be performed, since a resolve has been performed before and there is not
a release between resolve and deploy. Similar restrictions may be specified for different pairs of lifecycle actions using a
similar pattern, such as:

LC2: Vc: Nat.[!deploy(c) * .instantiate(c)]false

&& (true * .deploy(c).!release(c) * .instantiate(c))true
LC3: Vc,a: Nat.[linstantiate(c) % .compute(c, a)lfalse

&& (true * .instantiate(c).'release(c) * .compute(c, a))true
LC4: Vc: Nat.[linstantiate(c) * .release(c)]false

&& (true * .instantiate(c).!release(c) * .release(c))true

Here, compute(c, a) represents the computational action a of an action port of component c, declared in the architectural
description of the workflow.
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Fig. 11. Two examples of Montage workflows.

6. Case studies

In this section, three case studies demonstrate the certification framework of HPC Shelf, as well as the use of C4 and
SWC2 certifiers.

Performance evaluation experiments have been performed to evidence that the cost of component certification may be
reasonable and will not make it impractical to run a parallel computing system with some certifiable components. In order
to isolate the pure verification times from the overheads of parallel certification system deployment, the sequential times
have been calculated outside the HPC Shelf framework, through direct sequential calls to verification engines.

The experiments have been performed by instantiating tactical components, as well as their associated proof infrastruc-
tures, in a cluster installed at the Computer Science Research Laboratory (LIA) of Federal University of Ceard, comprising 8
nodes equipped with 64 GB of memory serving a pair of Intel Xeon E5-2650 V3 processors having 10 cores each.

6.1. Montage

Montage (Mosaic Astronomic Engine) [48] is an astrophotography software toolkit for the composition of astronomical
mosaics (sets of images of a specific area in the sky). It preserves the position of the original input images. In fact, Montage
is an alternative to the inability of astronomical cameras to handle very large images. It is often used as a case study in the
evaluation of scientific workflow management systems (SWfMS).

Using Montage, one can orchestrate a set of independent, self-executing components to get a mosaic of images. Such
components receive a set of files and some arguments as input. After performing the computation, they display a set of
files (possibly images) that can be read by other components in the next steps of the workflow. In HPC Shelf, Montage
components have been encapsulated as simple computation components having only the standard lifecycle action port.
When the action run of one of these components is activated, the main component calculation, which is written in C, is
executed.

Montage components are now illustrated using an existing workflow that generates a mosaic for the Pleiades star cluster,’
depicted in Fig. 11(a). It has the following components:

e mArchiveList retrieves a list of images that overlaps a given sky coordinate from IRSA (Infrared Science Archive)® and
stores them into a file whose name is also given as input;

e mArchiveExec retrieves each image listed in a file given as input from the server and stores them into the current
directory, in the FITS format (Flexible Image Transport System)’;

e mimgtbl generates, in a table, metadata information for images contained in a directory;

e mProj reprojects images from a directory by using information contained in the metadata table generated by mimgtbl;

e mAdd joins all images previously corrected into the final image;

7 http://montage.ipac.caltech.edu/docs/pleiades_tutorial.html.
8 http://irsa.ipac.caltech.edufibe.
9 http://fits.gsfc.nasa.gov.
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Fig. 12. The Hash architecture of Pleiades workflow.
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Fig. 13. The Hash architecture of M101 workflow.

e mJpeg generates the final mosaic image, in JPEG format, by combining the images of each color band in the last step of
the workflow.

The workflow maintains three versions of each image, which overlap the center of the Pleiades cluster, each correspond-
ing to a different color band: red, infrared and blue. They are stored, respectively, in the image repositories represented by
the data source components dss2rDir, dss2irDir and dss2bDir. A separate, independent, subworkflow processes each color
band in parallel. When they are finished, the resulting three images, for each color band, are overlapped by the mJPEG
component to generate the final JPEG image.

Fig. 12 depicts the architecture of a parallel computing system for the Pleiades workflow. Fig. 12(a) presents the ar-
chitecture of a single subworkflow. In turn, Fig. 12(b) depicts the overall architecture, including the three subworkflow
instances. For simplification, the workflow component is omitted, but it must be assumed that components mImgTbl_raw,
mImgTbl_proj, mProj, and mAdd, respectively typed by contextual contracts of MIMGTBL, MPRroJ, and MADD, have action
ports connected to it. Also, notice the presence of the certifier component (for each subworkflow), aimed at certifying
mProj and mAdd in each subworkflow.

6.1.1. Certifying Montage components

The processing time of Montage workflows is dominated by its parallel components, since their associated sequential
components perform the most critical computational tasks. Montage components that have parallel versions are mProj,
mAdd, mBg, mDiff and mFit. In HPC Shelf, each has a single concrete component consisting of a single parallel unit that runs
in the SPMD style. Since Pleiades uses instances of only the two previous components, this case study will use the Montage
workflow that builds a mosaic of the galaxy m101,'0 illustrated in Fig. 11(b). Its corresponding parallel computing system
is represented in Fig. 13. It is a sequential workflow that includes instances of all Montage components that interest to this
experiment, i.e. MProJ, MADD, MBG, MDIFF and MFIT.

This case study demonstrates the certification of components mProj, mAdd, mBg, mDiff and mFit of the M101 parallel
computing system, by using C4MPISIMPLE. To do this, the application provider must configure certification bindings between
these component instances and one or more instances of C4AMPISIMPLE. For M101, as shown in Fig. 13, a single C4MPISIMPLE
instance is sufficient, named certifier, since the certifier contract is the same for all the certifiable components.

10 http://montage.ipac.caltech.edu/docs/m101tutorial.html.
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0 <sequence>

1 <parallel>

2 <sequence>

3 <invoke action="resolve" id_port="mImgTbl_raw"/>
4 <invoke action="deploy" id_port="mImgTbl_raw"/>
5 <invoke action="instantiate" id_port="mImgTbl_raw"/>
6 </sequence>

7 <sequence>

8 <invoke action="resolve" id_port="mImgTbl _proj"/>
9 <invoke action="deploy" id_port="mImgTbl_proj"/>
10 <invoke action="instantiate" id_port="mImgTbl_proj"/>
11 </sequence>

12 <sequence>

13 <invoke action="resolve" id_port="mBgModel" />
14 <invoke action="deploy" id_port="mBgModel" />
15 <invoke action="instantiate" id_port="mBgModel" />
16 </sequence>

17 <sequence>

18 <invoke action="resolve" id_port="mOverlaps" />
19 <invoke action="deploy" id_port="mOverlaps"/>
20 <invoke action="instantiate" id_port="mOverlaps"/>
21 </sequence>

22 <sequence>

23 <invoke action="resolve" id_port="mJPEG"/>

24 <invoke action="deploy" id_port="mJPEG" />

25 <invoke action="instantiate" id_port="mJPEG"/>

26 </sequence>

27 <sequence>

28 <invoke action="resolve" id_port="mAdd"/>

29 <invoke action="certify" id_port="mAdd"/>

30 <invoke action="deploy" id_port="mAdd" />

31 <invoke action="instantiate" id_port="mAdd"/>

32 </sequence>

33 <sequence>

34 <invoke action="resolve" id_port="mProj"/>

35 <invoke action="certify" id_port="mProj"/>

36 <invoke action="deploy" id_port="mProj"/>

37 <invoke action="instantiate" id_port="mProj"/>

38 </sequence>

39 <sequence>

40 <invoke action="resolve" id_port="mBg"/>

41 <invoke action="certify" id_port="mBg"/>

42 <invoke action="deploy" id_port="mBg"/>

43 <invoke action="instantiate" id_port="mBg"/>

44 </sequence>

45 <sequence>

46 <invoke action="resolve" id_port="mDiff"/>

47 <invoke action="certify" id_port="mDiff"/>

48 <invoke action="deploy" id_port="mDiff"/>

49 <invoke action="instantiate" id_port="mDiff"/>

50 </sequence>

51 <sequence>

52 <invoke action="resolve" id_port="mFit"/>

53 <invoke action="certify" id_port="mFit"/>

54 <invoke action="deploy" id_port="mFit"/>

55 <invoke action="instantiate" id_port="mFit"/>

56 </sequence>

57 </parallel>

58 <invoke action="run" id_port="mImgTbl_raw"/>

59 <invoke action="run" id_port="mProj"/>

60 <invoke action="run" id_port="mmImgTbl_proj"/>

61 <invoke action="run" id_port="mOverlaps"/>

62 <invoke action="run" id_port="mDiff"/>

63 <invoke action="run" id_port="mFit"/>

64 <invoke action="run" id_port="mBgModel"/>

65 <invoke action="run" id_port="mBg"/>

66 <invoke action="run" id_port="mAdd"/>

67 <invoke action="run" id_port="mJPEG"/>

68 </sequence>

Fig. 14. SAFeSWL code of M101 parallel computing system.

Fig. 14 presents the SAFeSWL orchestration code of the M101 workflow, where the certify action is activated in parallel
for all certifiable components. However, since there is only one instance of certifier to run the certification procedures, they
will be serialized.

In this experiment, the C4AMPISIMPLE certifier uses a single tactical component (instance of ISPImpl) with 5 units (each
placed in a processing node).

The certify action activation concludes successfully for all certifiable components in M101, except mBg. Thus, according to
the default properties of C4AMPISIMPLE, they are free of deadlocks, object leaks, communication races and irrelevant barriers.
For mBg, ISP detects a possible interleaving that can lead to receiving an empty buffer in an invocation of MPT_Allreduce.

Fig. 15 reports execution times for this certification case study, by varying the number of processing nodes and cores
per node involved in the execution of the tactical component ISP.!! For simplicity, the sequential time has been calculated
outside HPC Shelf through sequential calls to the verification tool, and collected through a shell script program. This is a

11 The maximum number of 5 nodes was chosen because ISP is able to check the properties of a single component of each a time.
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Fig. 15. Execution times in the certification of M101 components.
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Fig. 16. Architecture of a non-iterative MapReduce system with three stages.

reasonable assumption since the interest, in this performance evaluation, is to isolate the impact of parallel certification
system deployment in the overall certification time.

Parallel execution has been justified for all cases. In some cases, the time needed for a similar certification in a purely
sequential scenario has been reduced by a factor of two. This gain is likely to become even more evident if more programs
are considered for certification within a component, or when the certifier must orchestrate a greater number of tactical
components.

6.2. MapReduce workflows

This case study demonstrates the use of the MCRL2CERTIFIER certifier to prove properties about two particular workflows
of MapReduce parallel computing systems (Section 2.2), whose architectures are depicted in Figs. 16 and 17. The first one
is a non-iterative system with three reducing stages, while the latter one is an iterative system with a single reducing
stage. They do not present mapping stages. These systems have been adapted from case studies on the implementation of
graph calculations, respectively triangle enumeration and single-source shortest path (SSSP), by using Gust, a framework for
processing big graphs derived from the MapReduce framework [11].

6.2.1. The non-iterative system with three stages

In the non-iterative system with three stages (Fig. 16), each stage comprises a pair of a shuffler and a reducer, that is
(shuffler;, reducer;), for i € {0, 1, 2}. They are the intermediate stages of a pipeline. The source of the pipeline is the data
source component called source, while its sink is the application component. It is required an intermediate splitter (splitter)
for communication between reducer_2 and application, since they are placed in distinct virtual platforms.

The workflow of the non-iterative system initially performs the lifecycle action activation sequence (resolve, deploy,
instantiate, and run) for all components, because, in a pipeline pattern, they are required from the beginning of the com-
putation. The components are divided into three groups: virtual platforms; computations and connectors; and bindings. The
components in the same group are instantiated in parallel. First, all virtual platforms are instantiated. Then, computations
and connectors that will be placed on these virtual platforms. Finally, all the bindings that connect the computations and
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Fig. 17. Architecture of an iterative MapReduce system.

connectors. The SAFeSWL activation sequence that instantiates each component is described below, where component_id
represents the component identifier!?:

<sequence>

<invoke port=component_id action="resolve"/>
<invoke port=component_id action="deploy"/>
<invoke port=component_id action="instantiate"/>
</sequence>

AW =O

After all the components have been instantiated, the action run is activated for the shufflers and reducers, and the
orchestration of computational actions is started. It consists of four iterations, one for each intermediate stage and one for
the sinking stage of the pipeline. Iterations are run in parallel because the pipeline pattern assumes that all stages are
active at the same time. For example, the iteration code corresponding to the i-th intermediate stage of the pipeline, where
i=1{0,1,2}, is described below:

0 | <sequence>

1 <iterate port="task_shuffle_i_collector_read_chunk" until="FINISH_CHUNK" loop="READ_CHUNK">
2 <sequence>

3 | <invoke port="task_shuffle i feeder_read_chunk" action="READ_CHUNK" />
4 <invoke port="task_shuffle_i_feeder_chunk_ready" action="CHUNK_READY" />
5 <invoke port="task_reduce_i" action="READ_CHUNK" />

6 | <invoke port="task_reduce_i" action="PERFORM" />

7 </sequence>

8 | </iterate>

9 | <invoke port="task_shuffle i feeder_read_chunk" action="FINISH_CHUNK" />
10 | <invoke port="task_reduce_i" action="FINISH_CHUNK" />

11 | <invoke port="task_reduce_i" action="CHUNK_READY" />

12 | </sequence>

After all the iterations are terminated, the parallel activation completes and all components are released.

6.2.2. The iterative system with a single stage

In the iterative workflow (Fig. 17), the single stage consists of a shuffler and a pair of parallel reducers. Component
instantiations and releasings follow the same pattern used in the non-iterative workflow except that output_data is instan-
tiated only after the main iteration, when the output pairs are available.

In the first iteration, shuffler reads input pairs from the data source and distributes them between reducer_1 and
reducer_2. Then, in the next iterations, the shuffler receives the output pairs of the two reducers, groups and redistributes
them between the reducer units. The termination condition of the main iteration is detected by an alternate activation of
action names continue and terminate in either the reduce_function_action_port_1 or reduce_function_action_port_2 port,
since the termination condition, which depends on the computation being executed, is verified by the reduction function
performed by the reducers. In the body of the loop, there is a code similar to the code presented earlier for reading a list of

12 Remember that, by default, the name of the lifecycle action port of a component is the name of the component itself. This is a simple “syntactic sugar”.
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pairs in a pipeline stage of the non-iterative system. However, in the iterative system, it involves the two shuffler collector
facets associated with the two parallel reducers. This is:

0 | <sequence>

1 <iterate port="task_shuffle_collector_read_chunk_1" loop="READ_CHUNK" until="FINISH_CHUNK">
2 <sequence>

3 <invoke port="task shuffle_collector_read_chunk_ 2" action="READ_CHUNK" />

4 | <parallel>

5 | <sequence>

6 <invoke port="task_shuffle_ feeder_read chunk_1" action="READ_CHUNK" />

7 <invoke port="task_shuffle_feeder_chunk_ready 1" action="CHUNK_READY" />

8 | <invoke port="task_reduce_1" action="READ_CHUNK" />

9 <invoke port="task_reduce_1" action="PERFORM" />

10 | </sequence>

11 <sequence>

12 | <invoke port="task_shuffle_feeder_read_chunk_2" action="READ_CHUNK" />
13 <invoke port="task_shuffle_feeder_chunk_ready_ 2" action="CHUNK_READY" />
14 | <invoke port="task_reduce_2" action="READ_CHUNK" />
15 <invoke port="task_reduce_2" action="PERFORM" />

16 </sequence>

17 | </parallel>

18 | </sequence>

19 | </iterate>

21 <invoke port="task_shuffle_collector_read_chunk 2" action="FINISH_CHUNK" />

23 | <parallel>

24 | <invoke port="task_shuffle_feeder_read_chunk 0" action="FINISH_CHUNK" />
25 <invoke port="task_shuffle_ feeder_read chunk_1" action="FINISH_CHUNK" />
26 <invoke port="task_shuffle_feeder_read_chunk 2" action="FINISH_CHUNK" />

27 | <invoke port="task_ reduce_1" action="FINISH_CHUNK" />
28 | <invoke port="task_reduce_2" action="FINISH_CHUNK" />
29 | </parallel>

30

31 <parallel>
32 | <invoke port="task_reduce_1" action="CHUNK_READY" />
33 <invoke port="task_ reduce_2" action="CHUNK_READY" />
34 | </parallel>
35 <sequence>

The shuffler connector plays a central role in the computation. It has three collector facets, one to receive input pairs of
source in the first iteration and two to receive intermediate pairs of reducer_1 and reducer_2 in the subsequent iterations,
and three feeder facets, two to send intermediate pairs to reducer_1 and reducer_2, respectively, and a third one to send
output pairs to the application component in the last iteration. In the internal communication of pairs of the collector facets
to the feeder facets, through the channel inner component of shuffler, the feeder facets may receive pairs of any of the
collector facets in a non-deterministic manner. To determine the end of the list of pairs, the feeder facets should receive an
end marker from each collector facet. However, in the first iteration of the workflow, there is no pair to be received from
reducer_1 and reducer_2. In turn, in the next iterations, there is no pair to be received from source. So, in both cases, how
is it not possible to determine the end of the input list of pairs? The solution implemented to this issue is the inclusion of
an additional action port in each collector facets of shuffler, which are named task_shuffle_collector_active_status_i, for
i€{0,1,2}, in Fig. 17. They have a couple of independent action names change_status_begin and change_status_end, and
a couple of alternative action names inactive and active. Before the first iteration, the following code is executed to keep it
enabled only the collector facet that communicates with source, assuming that all collector facets are enabled, by default,
in the beginning of the computation:

0 | <parallel>

1 <sequence>

2 <invoke port="task_shuffle_collector_active_status_1" action="CHANGE_STATUS_BEGIN" />
3 <invoke port="task_shuffle_collector_active_status_1" action="INACTIVE" />

4 <invoke port="task_shuffle_collector_active_status_1" action="CHANGE_STATUS_END" />

5 | </sequence>

6 | <sequence>

7 <invoke port="task_shuffle_collector_active_status_2" action="CHANGE_STATUS_BEGIN" />
8 | <invoke port="task_shuffle_collector_active_status_2" action="ACTIVE" />

9 <invoke port="task_shuffle_collector_active_status_2" action="CHANGE_STATUS_END" />
10 | </sequence>

11 </parallel>

In turn, before the next iterations, the following code is executed to enable the collector facets that receive pairs of the
reducers and disable the collector facet that receive pairs of source:

<parallel>

<sequence>

<invoke port="task_ shuffle_collector_active_status_0" action="CHANGE_STATUS_BEGIN" />
<invoke port="task_shuffle_collector_active_status_0" action="INACTIVE" />

<invoke port="task_shuffle_collector_active_status_0" action="CHANGE_STATUS_END" />
</sequence>

<seqguence>

<invoke port="task shuffle_collector_active_status_1" action="CHANGE_STATUS_BEGIN" />
<invoke port="task_shuffle_collector_active_status_1" action="ACTIVE" />

<invoke port="task_shuffle_collector_active_status_1" action="CHANGE_STATUS_END" />
10 | </sequence>

11 <sequence>

12 | <invoke port="task_shuffle_collector_active_status_2" action="CHANGE_STATUS_BEGIN" />
13 <invoke port="task_shuffle_collector_active_status_2" action="ACTIVE" />

14 <invoke port="task_shuffle_collector_active_status_2" action="CHANGE_STATUS_END" />
15 </sequence>

16 | </parallel>

LooNOITUAWN=O
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6.2.3. Internal workflows of MapReduce components

As explained in the end of Section 5.1, SWC2 certifiers require that abstract components of kinds computation and con-
nector provide an orchestration code in SAFeSWL that defines a protocol of activation for the action names on their ports,
which must be followed by their implementers. These codes are called internal workflows. In the certification procedure, they
are combined, in parallel, with the main orchestration code of the workflow component. The internal workflow of REDUCER
is:

<parallel>

<iterate port="task_reduce" loop="READ_CHUNK" until="FINISH_CHUNK">
<invoke port= "task_reduce" action="PERFORM"/>

</iterate>

<iterate>

<invoke port= "task_reduce" action="CHUNK_READY"/>

</iterate>

</parallel>

NOUBAWN=O

The internal workflow of MAPPER is similar, just replacing “task_reduce” with “task_map”. Mappers and reducers
receive chunks of input pairs in the first iteration (read_chunk/finish_chunk activation) and process them (invocation to the
mapping or reduction function) when the action perform is activated. In parallel, as the output pairs are produced, they are
sent through the feed_pairs port. When a sufficient number of output pairs to form a chunk is reached, the current output
chunk of pairs is finished by sending an end of chunk marker. chunk_ready is activated whenever a new output chunk is
started.

SHUFFLER (similarly, SPLITTER) has the following internal workflow:

<parallel>

<iterate>

<sequence>

<invoke port="task_shuffle_collector_active_status" action="BEGIN_CHANGE_STATUS"/>
<invoke port="task_shuffle_collector_active_status" action="ACTIVE|INACTIVE"/>
<invoke port="task_shuffle_collector_active_status" action="END_CHANGE_STATUS"/>
</sequence>

</iterate>

<iterate>

<iterate port="task_shuffle_collector_read_chunk" loop="READ_CHUNK" until="FINISH_CHUNK">
10 <invoke port="task_shuffle_feeder_read_chunk" action="READ_CHUNK"/>

11 | </iterate>

12 <invoke port="task_shuffle_ feeder_read_chunk" action="FINISH_CHUNK"/>

13 | </iterate>

14 | <iterate>

15 <invoke port="task_shuffle_feeder_ chunk_ ready" action="CHUNK_READY"/>

16 | </iterate>

17 </parallel>

LooNOOTUAWN=O

The only difference, compared to mappers and reducers, is the activation of the action names that enable or disable
collector facets.

6.2.4. MapReduce ad hoc properties

The MapReduce ad hoc properties employed in this case study compose an illustrative, reduced set of properties, divided
into a safety and a liveness group. The former describes precedences of execution between two distinct components or
component actions. Two examples for the non-iterative workflow, among a list of six, are commented below for illustrative
purposes:

S1: [!lcompute(23, 0) * .compute(24, 0)]false
S2: [true x .compute(24, 0).!compute(24, 1) *x .compute(24, 0)]false

The numbers in the formulas map to components and action name identifiers in the SAFeSWL code. The property S1
states that the action read_chunk (0) of binding task_reduce_0 (24) must be preceded by the action chunk_ready (0) of
task_shuffle_0_feeder_chunk_ready (23). In turn, the property S2 expresses that the action perform (1) of task_reduce_0
must be activated between two executions of read_chunk in that component.

The liveness group includes a broader set of properties. Three examples of properties are:

LIV1: (true x.guard(21, 0)) true
LIV2: Vc: Nat,a: Nat.vX.uY.[compute(c,a)]Y & [!compute(c,a)]X
LIV3: [truex](Vc: Nat,a: Nat => puY.([\compute(c,a)]Y &k < true > true))

LIV1 ensures the existence of workflow traces including the activation of the action finish_chunk of binding task_shuf-
fle_0_collector_read_chunk. In turn, LIV2 expresses the fact that an action can only be executed along non-consecutive
periods. Finally, LIV3 ensures no starvation, that is, for every reachable state it is possible to execute compute(c, a), for any
possible value of ¢ and a. Note the quantification over the components and actions.

A total of 18 formal properties, among default and ad hoc ones, have been distributed among the units of the tactical
component to be proven, for both workflows. Due to the large number of components and their parallel activations in these
workflows, coupled with the explosion of states generated by the model checking technique, a high verification time was
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Fig. 18. Certification times for the non-iterative and iterative workflows.

Table 5
Speedups due to parallel certification.
Nodes Non-iterative Iterative
2 1.5 1.6
4 2.7 2.8
8 3.7 39
16 44 3.9

expected for these certifications. For example, the verification of deadlock absence and LIV3 took approximately 90 and 70
seconds each, respectively, in the non-iterative workflow.

Fig. 18 depicts the average certification times for both workflows by varying the number of units (processing nodes) of
the tactical component from 1 to 16. In turn, Table 5 presents the corresponding parallel speedups. The certification times
have been significantly reduced by increasing the number of units of the tactical component, despite the speedup has been
sub-linear. This is explained by the fact that the certification time is limited in each scenario by the sum of the verification
times of properties manipulated sequentially by the tactical component.

6.3. Parallel sorting

Parallel sorting is often used in HPC systems when dealing with huge amounts of data [49]. Thus, parallel sorting algo-
rithms are natural candidates to be provided by developers of computation components, in HPC Shelf.

Due to the potential heterogeneity of modern distributed-memory parallel computing platforms, varying in network
topologies, memory hierarchy and parallelism levels, possibly combining support for multiprocessors, multicore processors
and computational accelerators (e.g. GPUs [50], MICs [51], FPGAs [52], etc.), different parallel sorting algorithms may be
applied according to the execution context, as well as according to the characteristics of the data per se, such as local
data pre-ordering or expected interval. Thus, the importance of the contextual contract system of HPC Shelf to support this
necessary contextual abstraction becomes clear.

Consider the following contextual signature of an abstract component called SORTING, representing a family of concrete
components, each one representing a particular parallel implementation of a well-known sorting algorithm, such as Quick-
sort, Mergesort, Bitonic Sort, Heapsort, Radix Sort, and so on [49,53,54]:

rsorting_place = S : SPTYPE, .
pre_ordering = P : POTYPE,

data_interval = D : DITYPE,

sorting_strategy = C : CSTYPE [pre_ordering = P,
SORTING data_interval = D],
number_nodes = N : INTEGER,

muticore = M : MCTYPE,

accelerator_type = A : ACCELERATORTYPE [muticore = M],
Ltopology_type = T : TOPOLOGYTYPE]| .

The contextual signature of SORTING declares a set of context parameters that may guide the choice of a sorting compo-
nent that implement the supposedly better algorithm according to the contextual contract. They are described below:
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e sorting_place states whether internal or external sorting must be employed. In internal sorting, the items to be sorted
are placed and sorted entirely in the main memory. In turn, in external sorting, they are stored outside the main memory
(e.g. hard disk) and loaded in small chunks;

e pre_ordering indicates the kind of local pre-ordering (e.g. a bitonic sequence) in which the items are partially sorted, if
one exists;

e data_interval indicates the range of item keys (e.g. an interval of integers);

e sorting_strategy indicates which sorting strategy is employed by the component. It can be based on comparisons, where
it sorts a list by repeatedly comparing pairs of keys. Contrariwise, it may employ a noncomparison-based algorithm. In
such a case, for example, it may use some special a-priori known properties of the keys (e.g. the keys are integers from
a fixed interval). This parameter is associated with parameters pre_ordering and data_interval, respectively through the
context variables P and D, such that the chosen sorting strategy must take into account the assumed pre-ordering and
interval;

e number_nodes contains the number of processing nodes (processors) that the component expects to use during com-
putation;

e muticore says whether the component has multi-threaded units that may employ the multiple cores of each processing
node, if it is equipped with a multi-core processor or multiprocessor;

e accelerator_type represents the family of computational accelerators (GPUs, MICs, FPGAs, etc.) for which the compo-
nent may extract computational power. It is associated with the parameter muticore, by the context variable M, so
that if the processing nodes support multicore executions, the accelerators should also support the launch of multiple
kernels (employing GPU terminology). The contrary is also true;

o topology_type determines the interconnection topology of the parallel computing platform hosting the component.

In the terminology of the contextual contract system, the context parameters sorting_strategy, pre_ordering, data_in-
terval, and sorting_strategy are application parameters, since they describe requirements of the system with respect to the
component implementation. In turn, number_nodes, muticore, and accelerator_type are so-called platform parameters, since
they describe properties of the underlying parallel computing platform that must be taken into account in the component
implementation.

6.3.1. Certifying parallel sorting components

Let QuickSortimpl and MergeSortimpl be two concrete components of SORTING that implement parallel versions of the
well-known Quicksort and Mergesort algorithms, respectively. They have similar contextual contracts. Indeed, the contextual
contract of QuickSortimpl is:

[sorting_place = INTERNALDISTRIBUTEDMEMORY,

pre_ordering = NOPREORDERING,

data_interval = NODATAINTERVAL,

sortting_strategy =

SORTING COMPARISONBASED [pre_ordering = NOPREORDERING,
data_interval = NODATAINTERVAL],

number_nodes = 4, muticore = NOMULTIPLECORES,

accelerator_type = NOACCELERATOR [muticore = SINGLECORE],

| topology_type = NOTOPOLOGY

As one can see in the contract of QuickSortimpl (and MergeSortimpl), it performs internal sorting through distributed-
memory, does not require any pre-ordering, does not make interval assumptions, employs a comparison-based sorting
strategy, requires at least 4 processing nodes where it will launch its units, does not take advantage of multiple cores,
does not use computational accelerators and does not assume particularities of any specific interconnection topology.

Both components employ the MPI library for enabling parallelism. Also, they employ a pure divide-and-conquer strat-
egy, in which unit 0 has initially the vector to be sorted and then distributes the vector elements among the other units
(through the MPI_Scatter operation). They sort locally their respective slices (through sequential Quicksort or Merge-
sort algorithms, respectively). At the end of this process, unit 0 receives back the sorted parts from all units (through the
MPI_Gather operation) and performs the intercalation of the values, obtaining the final sorted vector.

For the certification of QuickSortlmpl and MergeSortlmpl, a parallel computing system has been created exclusively to
certify them by means of the C4MPICoMPLEX certifier. Fig. 19 shows its certification architecture. Virtual platforms con-
taining 20 processing nodes have been chosen for both components during our experiments (relevant here only to reduce
search space in model checking). Also, virtual platforms containing 2 processing nodes have been chosen for all tactical
components.

At the end of the certification process, the certifier has accounted for the result of the certification of the parallel
sorting components. For both QuickSortimpl and MergeSortimpl, all default properties of C4MPICoMPLEX have been proved
successfully. Indeed, it has been proved that they do not present deadlocks, object leaks, communication races, irrelevant
barriers, out-of-bound arrays, and memory leaks and improper pointer dereference of arithmetic. Also, three component
properties, annotated in the programs, have been proved:
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Fig. 20. Execution times for the certification of sorting components (in minutes).

e assert forall (int i : 0..array_size-2) final_arrayl[il<=final_arrayl[i+1];
e sorted(A,le,ri+l);
e permut {01d,Here} (A, le,ri).

Fig. 20 denotes the experimental times obtained for the certification task described in this section. The individual
verification times of each verification tool (direct call) and the total sequential time are shown in yellow. Parallel times,
corresponding to one node (unit) per tactical component, one node per tactical component using two cores (threads) and
two nodes per tactical component, are represented in blue. As it can be seen, the deductive verification performed by
Frama-C for MergeSort was very costly in relation to the others. Because each verification call is indivisible in principle,
the parallel times have been limited by that time. Anyway, the parallel certification was very close to that time. Finally, a
greater degree of parallelism could be achieved if a verification tool could prove verification conditions in parallel. As far as
we know, this is possible only through the Z3 prover, although this project has been discontinued a few years ago.
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The parallel times calculated for this case study makes it possible to conclude that, in general, the smallest times happen
for tactical components with a single unit running in a processing node with many cores. This is due to the fact that, in
most tactical components, the verification tasks were lightweight and could be performed faster in cores with high clock
frequencies.

6.4. Discussion

The case studies with Montage, MapReduce and Integer Sorting are primarily aimed at demonstrating the feasibility of
certifying components of distinct kinds using the certification framework of HPC Shelf. This is the reason why we have
proposed C4 and SWC2 as proof-of-concept certifiers, targeting components kinds of very different natures, i.e. computa-
tions and workflows. Once all the certification processes involved in the case studies have been completed, the experiment
has been successful to demonstrate this. Therefore, it is important to emphasize that the experiments whose results are
evaluated in this article do not have the ambition to constitute a definitive validation study of the certification framework
of HPC Shelf.

The case studies have also shown how the inherent parallelism supported by the certification framework, using the
parallel computing infrastructure of HPC Shelf itself, may be used to accelerate certification tasks, even if the underlying
certification tools have not been developed with parallelism in mind, which is the case of the theorem provers and model
checkers used in the experiments. Indeed, parallelism may be even more valuable in real scenarios, where more source-
code and more complex orchestrations of certification tools can lead to much higher certification times. To reinforce this
expectation, it is worth noting that, despite the current implementation of the certification framework is not optimal in
relation to performance, the certification times achieved in the experiments, varying between 20 seconds and 12 minutes,
are not influenced by possible implementation overheads. In fact, most of the certification time is spent by the underlying
verification tools encapsulated in the tactical components.

7. Related work

The certification framework of HPC Shelf has not been designed as an incremental evolution of some pre-existing certifi-
cation framework that could have been taken as a basis. It has been developed from scratch, under its own assumptions, to
meet the particular requirements of HPC Shelf. Thus, with regard to the comparison of the certification framework herein
proposed with other related works, our main challenge has been to study the literature to find such related works, and
then to study their characteristics in order to determine what are the new contributions and distinguishing features of the
certification framework of HPC Shelf when faced with the state-of-the-art.

7.1. Certification of software components

The certification of software components is an active research area in component-based software engineering (CBSE)
since the 1990’s [3-5,7]. However, as pointed out by Alvaro et al. [6], a consensual definition for certification does not exist
within the CBSE community. From the current literature, we define the certification of software components as the study
and application of methods and techniques intended to provide a well-defined level of confidence that the components of
a system meet a given set of requirements. Requirements may be related to different aspects of software design, such as
performance, correctness, safety, security, and so on.

The proof of concept of the HPC Shelf certification framework proposed in this paper, presented in Section 6, is carried
out within the context of the formal verification of software correctness. However, it is worth noting that it can be applied
to the certification of a wider range of requirements that can be certified by static means, that is, by analyzing the arti-
facts involved in coding, compiling and deploying components. Therefore, it is not intended to certify requirements whose
certification depends on the analysis of the (dynamic) execution behavior of components. For this purpose, the certification
framework supports the main elements of automated certification processes described in the literature, such as: support for
a notion of certification authority as a stakeholder in HPC Shelf; the possibility of integrating preexisting certification tools
that can look at the source code of the components, including configuration and instrumentation codes possibly required by
the certification authority selected by the component developer; the flexibility offered to application providers (component
users) to control the level of certification and the choice of certification authorities they trust.

The literature does not mention other proposals of general-purpose certification artifacts in the context of CBHPC!® re-
search, which could be directly compared to the certification framework of HPC Shelf. However, it is clear the relevance
of certification in the context of long-running computations managed by SWfMSs, in computational sciences and engineer-
ing applications [55], where CBHPC platforms find their applicability. In such applications, incorrect results and execution
failures may cause unsustainable increases in project costs and schedules. So, costs due to bad choices in the selection of
components cannot be neglected. The impact of such costs increases as more resources of cloud computing platforms are
necessary, as in scenarios where laaS providers are used, typical for HPC Shelf applications.

13 Component-Based High Performance Computing.
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Table 6
Search results in each database.
IEEE Scopus ACM Science Total 1 Total 2
Direct
1st search 9 14 5 1 19 4
2nd search 64 79 51 10 151 15

7.2. Verification-as-a-service (VaasS)

As pointed out earlier, the kind of certification focused on this paper is the verification of functional and behavioral
properties of components of parallel computing systems in a cloud environment through formal methods, automated by
deductive and model-checking tools. Therefore, the certification framework can be evaluated in the context of VaaS [56]. In
fact, it is the first proposal of VaaS framework geared to HPC requirements.

The concept of VaaS has been firstly introduced by Schaefer and Sauer to deal with scale issues of software formal
verification in large-scale computational systems [56]. It is based on the notion of verification workflows, which can be
executed on service-oriented computing environments, aiming at reducing the complexity of verification services. Starting
from a system and properties to be verified, a verification workflow can be executed through the call of verification tasks
in an appropriate order. In such a context, cloud computing is viewed as the most viable alternative to implement VaaS
architectures, since it provides a service-oriented environment and a very powerful shared processing infrastructure through
an abstract interface. Testing as a Service (TaaS), proposed by Candea, Bucur and Zamfir [57], follows similar principles, but
in a wider, more general sense.

We have systematically searched for related work on VaaS in the most comprehensive databases of scientific literature
in computer science: IEEE,'* Scopus,’> ACM'® and Science Direct,!” applying the search string “(platform OR framework) AND
service AND formal AND verification AND component AND cloud” to title, abstract and keywords fields. The first search returned
a total of 29 papers, whose abstracts and introductions were read to filter only works directly related to the certification
framework of HPC Shelf. Most of the discarded papers do not propose platforms or frameworks for the intended purpose.
Other discarded papers refer to conference proceedings rather than papers themselves. Finally, some papers describe work
in the initial stage. In the end, we have found only 4 related papers, among which one of our previous publications [58].

In order to expand our base of comparison, and considering that the innovative essence of our work is related to VaaS,
conceptually proposed for clouds, we have repeated the search after removing the term “component” from the search string.
After that, 151 distinct papers were returned. After reading their abstracts and introductions, applying the same filter crite-
ria, we have selected 15 related papers.

Table 6 summarizes the results found in each scientific database considered in the search. The column Total 1 represents
the number of distinct papers found, i.e. after removing redundancies. In turn, Total 2 represents the number of papers after
applying the filtering criteria. The 15 related papers found in the second search have been divided into two groups:

o frameworks or platforms for the verification of cloud administration aspects (non-functional requirements), such as
elasticity, self-provisioning of resources, migration of virtual machines, etc.;

o frameworks or platforms for verification of functional requirements, which deserve special attention because they are
closer to the kind of certified properties in the case studies presented in this article.

The following sections (7.2.1 and 7.2.2) describe the papers classified in these two groups, respectively. They include also
some known related papers that have not been reached by the systematic search.

7.2.1. Verification of cloud administration concerns

Evangelidis et al. propose a probabilistic verification scheme aimed at dynamically evaluating auto-scaling policies of laaS
and PaaS virtual machines in Amazon EC2 and Microsoft Azure [59]. For that, it applies a Markov model implemented in
the PRISM model checker [60].

Zhou et al. propose a formal framework for resource provisioning as a service (RPaaS) [61]. The RPaaS framework in-
cludes three modules: client, service manager and resource service. Their actions are consistent with respect to properties
describing each service scenario. The UPPAAL model checker is used for verification.

Al-Haj and Al-Shaer propose a formal framework so-called VMM-Planner, for planning migrations of virtual machines
(VM) [62]. Basically, it encodes a migration planning problem as a Constraint Satisfaction Problem (CSP). The initial VM
placement, the target placement and a set of migration safety conditions are modeled as boolean constraints, submitted to
SMT solvers.
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Di Cosmo et al. propose the Aeolus component model [63]. It is specifically designed to capture realistic scenarios de-
rived from configuration and deployment of applications in cloud environments. Its formal component model may describe
and inspect component characteristics such as dependencies and conflicts, as well as non-functional requirements, such as
reconfiguration, replication requests and load limits.

Brogi, Canciani and Soldani propose fault-aware management protocols for modeling the management of the behavior of
application components. It attempts to analyze and automate the overall management of a multi-component application
[64]. Barrel is a proof-of-concept application for integrating fault-aware management protocols in TOSCA'® (Topology and
Orchestration Specification for Cloud Applications), a OASIS standard [65].

Kumar et al. describe their experience of enabling the Microsoft Static Driver Verifier (SDV)'® to use the Microsoft Azure
cloud computing platform [66]. The architecture and methodology for enabling SDV to operate in Azure, as well as the
results of SDV on single drivers and driver suites using various configurations of the cloud relative to a local machine are
reported.

Finally, Sahli et al. propose a semantic framework based on bigraphical reactive systems (BRS) [67] and Maude language
[68] for modeling both structural and behavioral aspects of cloud-based systems, aimed at verifying elasticity properties
inherent to these systems through model checking [69].

7.2.2. Verification of functional requirements

Nezhad et al. propose COOL, a framework for provider-side design of cloud solutions based on formal methods and
model-driven engineering [70]. The approach makes it easier the job of automating the generation of solutions, from client
requirements to a complete and correct cloud solution.

Moscato et al. propose a Model Driven Engineering (MDE) approach in the context of the MetaMORP(h)OSY framework
[71], intended to automatic generation of monitors of formal properties to be verified during the entire life-cycle of cloud
components [72].

Chen et al. propose a formal verification framework that automatically detects conflicts concerning enterprise policies
and inconsistencies in user requirements, specified through constraint programming and checked through SMT solvers [73].
A system of automatic cloud services selection chooses those ones satisfying all enterprise policies and user requirements.

Klai and Ochi address the problem of abstracting and verifying the correctness of integrating service-based business
processes (SBPs) [74]. The formal system employs a bottom-up approach in order to check the consistency of several kinds
of interactions, including composition, asynchronous communications and resource sharing. Properties are expressed in
Linear Temporal Logic (LTL) [75] and verified through model checking.

Akhunzada et al. produced a formal framework for a service broker [76], helping to compose formally described QoS
metrics by following the workflow-based nature of web services composition. Functional and non-functional requirements
derived from the composition process are specified using a variant of 7 -calculus [77].

Montesi and Sangiorgi introduce a model of components following the process calculus approach [78]. The work con-
sisted of isolating primitives that capture the relevant concepts of component-based systems, including: a hierarchical
structure of components; a prominent role to input/output interfaces; the possibility of stopping and capturing compo-
nents; a mechanism of channel interactions, orthogonal to the activity of components.

The approach proposed by Beyer et al. evaluates Google App Engine as a verification infrastructure, by means of porting
the open-source verification framework CPAchecker to it [79]. A new verification service was proposed as a web front-end
to users who wish to perform single verification tasks, and an API for integrating the service into existing verification
infrastructures.

The work of Chunling Hu et al. proposes a method for verifying cloud application responses (actions) to user requests
[80]. Applications are modeled in SoaML (Service-Oriented Architecture Modeling Language), service interfaces are translated
into PROMELA [81], and service contracts are described in terms of LTL formulas [75]. Both PROMELA programs and LTL
formulas are integrated into the SPIN [81] model checker for verification.

Skowyra et al. present Verificare, a verification platform for applications based on Software-Defined Networks (SDN) [82].
SDN components, safety and security requirements, can be specified from a variety of formal libraries and automatically
translated and verified through a variety of tools, such as PRISM [60], SPIN [81] and Alloy [83].

Ren et al. propose a formal approach for modeling and verifying distributed systems that integrates UML sequence di-
agrams, m-calculus [77] and the symbolic model checker NuSMV [84,85]. Three layers compose the framework: graphical
layer, which uses sequence diagrams for system modeling; formal specification layer, which uses m-calculus to formalize the
UML sequence diagram; and verification layer, in which m -calculus processes are verified by NuSMV.

Ciortea et al. propose Cloud9, a cloud-based testing service that promises to make high-quality testing fast, cheap, and
practical [86]. Despite being reported as a testing web service, it parallelizes symbolic execution, a popular model checking
technique, to run on large shared-nothing clusters of computers, such as Amazon EC2.

Mancine et al. propose a verification service to show system correctness in regard to uncontrollable events, through an
exhaustive hardware simulation by taking into account all relevant scenarios [87].

18 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca.
19 http://msdn.microsoft.com/en-us/library/windows/hardware/ff552808.aspx.
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Belletine et al. propose a distributed framework for verifying CTL formulas on a cloud, based on a MapReduce algorithm
[88].

Finally, the framework proposed by Kai Hu et al. propose a robust VaaS framework, focusing essentially on the dualism
with the main concerns of SaaS (Software-as-a-Service), such as the storage of verification tools and results, scalability
problems and fault tolerance [89]. It is the closest framework to the certification framework of HPC Shelf. However, it
assumes the availability of verification tools in the cloud in a raw way, requiring, for application developers, experience
with the use of the tool, which is, in general, an unrealistic assumption.

7.3. Discussion

In comparison with the related work described above, the certification framework of HPC Shelf has the following distin-
guishing characteristics:

e It is a general-purpose framework that can be used for automatic certification of a wide range of requirements, including
both functional and non-functional, while other works address a particular requirement.

e It allows the integration of an arbitrary set of different automatic verification tools necessary for certification, through
component encapsulation. In other works, it is supported a fixed set of tools that are appropriate for the requirements
to be certified.

e It makes use of HPC techniques to accelerate certification tasks, as well as to address bigger verification problems, such
as in the case of state explosion problems in model-checking [90]. For that, it may employ the same parallel computing
infrastructure where certifiable components perform their tasks. It is possible to exploit different levels of parallelism
supported by virtual platforms (distributed-memory, shared-memory, multi/many-core, accelerators, etc.) even when
the underlying verification tools encapsulated in tactical components are sequential.

e It supports a seamless separation of concerns among stakeholders involved in the certification process, as explained in
the next paragraph.

Contrariwise to the framework of Kai Hu et al., the certification framework of HPC Shelf promotes a seamless separa-
tion of concerns among the stakeholder classes involved in certification: application providers, component developers, and
certification authorities. The expertise in formal methods and verification tools is an intrinsic characteristic of certification
authorities. The application provider has only the responsibility of setting adhoc and contractual properties for the certifier
prescribed by the developer of the component it will use, in the format prescribed by the certifier's documentation. In turn,
certifier selection is a component developer responsibility, using contextual contracts. Although such a selection does not
determine which certification authority will actually provide the implementation of the certifier used in the execution, it is
still possible to delegate responsibilities to guide the selection of certification authorities to the application provider itself,
partially or totally, through the contextual contract of the certifier. Also, when designing certifier components, certification
authorities may provide high-level interfaces to facilitate the interaction of application providers and component developers
with the underlying verification tools.

7.4. Comparison with prior proceedings papers

The work with the certification framework of HPC Shelf has been presented in two conferences, namely CLOSER'2017
[58] and FACS'2017 [91]. The papers published in their proceedings are most focused on the design of C4 and SWC2 cer-
tifiers, respectively. Finally, this paper consolidates the results achieved by this work, by refining and expanding the results
presented in these papers. In particular, it introduces the pair of C4 certifiers so-called CAMPISIMPLE and C4MPICOMPLEX to
demonstrate, using the case studies Montage and Sorting, how different C4 certifiers may be developed with distinct pur-
poses. Also, the MapReduce case study has been completely reformulated, by using to the most recent version of SAFeSWL
and a more complex workflow compared to the one presented to the FACS'2017 audience. Finally, there are some modifica-
tions in the framework architecture, such as the introduction of services ports for the communication between the certifier
and tactical components.

8. Conclusions and future work

This article has proposed a certification framework for HPC Shelf, aimed at certifying components of different kinds with
respect to given set of requirements. By using it, different sorts of certification components, with interfaces to existing formal
verification tools, can be added to a parallel computing system. Certification of isolated components, including workflows
that orchestrate parallel computing systems, is therefore provided as another service in the cloud, in a truly reflexive way.
In this sense, a parallel certification system is built according to the same architectural and operational principles governing
the design of parallel computing systems of HPC Shelf. Thus, certifier and certifiable components can be orchestrated in a
similar way, and their executions can overlap without interference.

The certification framework discussed in the article is an ongoing project whose initial, proof-of-concept prototype was
developed in C#/MPI and validated through the case studies presented in Section 6.
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By its architectural principles, the framework scales easily to bigger and more demanding examples. As a matter of fact,
one of its main characteristics is extensibility, since new certifier and tactical components can be added on-demand, in order
to deal with the certification of different component kinds and requirements. For instance, there is a plan to design certifiers
for connector components by using the Reo component model [92]. Also, there are plans to work with certification of certain
non-functional dependability requirements [93], such as quality of service (QoS) and fault tolerance. However, contrariwise
to the case studies with SWC2 and C4, whose only objectives have been to perform proof-of-concept validation on the
proposed certification framework, it is intended to develop state-of-the-art certifiers.

From a broader perspective, the inclusion, at the design time of an application, of components that in a reflexive way
are able to inspect and certify other components proved worth to explore. First the inherent complexity of cloud-based
applications, given the heterogeneity of resources and their open and poly-centric control entails the need for scaling up
formal verification tools. On the other hand, the cloud itself is an ecosystem in which components that orchestrate verifi-
cation engines may live and be invoked to certify their own computations and the ways they interact. While the former
perspective has already been the focus of a number of research initiatives (see, for example, the ABS project [94]), the
second one constitutes an open challenge to the software engineering community.

Appendix A. XSD grammar of SAFeSWL

0 | <schema>

1 <element name="workflow" type="tns:SAFeSWL_OperationAnyType"/>

2

3 | <complexType name="SAFeSWL_OperationManyType">

4 | <complexContent>

5 | <extension base="tns:SAFeSWL_OperationBaseType">

6 | <choice maxOccurs="unbounded" minOccurs="1">

7 <element name="skip" type="tns:SAFeSWL_OperationPrimitiveType" />
8 | <element name="break" type="tns:SAFeSWL_OperationPrimitiveType" />
9

<element name="continue" type="tns:SAFeSWL_OperationPrimitiveType"/>
10 | <element
11 | <element
12 | <element

type="tns:SAFeSWL_OperationPrimitiveInvokeActionAsyncType" />
type="tns:SAFeSWL_OperationPrimitiveInvokeActionAsyncType"/>
type="tns:SAFeSWL_OperationPrimitiveInvokeActionAsyncType" />
13 | <element type="tns:SAFeSWL_OperationPrimitiveInvokeActionType" />

14 | <element type="tns:SAFeSWL_OperationManyType" />

15 <element name="parallel" type="tns:SAFeSWL_OperationManyType"/>

16 | <element name="choice" type="tns:SAFeSWL_OperationChoiceType" />

17 | <element name="iterate" type="tns:SAFeSWL_IterateType"/>

18 | </choice>

19 | </extension>

20 | </complexContent>

21 </complexType>

23 | <complexType name="SAFeSWL_OperationBaseType">

24 | <attribute name="order" type="int" use="optional"/>

25 <attribute name="value" type="string" use="optional"/>

26 | <attribute name="oper_name" type="string" use="optional"/>

27 | <attribute name="level" type="int" use="optional"/>

28 | <attribute name="base_label" type="string" use="optional"/>

29 | <attribute name="tracing" type="boolean" use="optional" default="false"/>
30 | </complexType>

32 | <complexType

33 | name="SAFeSWL_OperationPrimitiveInvokeActionType">

34 | <complexContent>

35 | <extension

36 | base="tns:SAFeSWL_OperationPrimitiveType">

37 | <attribute name="port" type="string"/>

38 | <attribute name="action" type="string" use="required"/>
39 | </extension>

40 | </complexContent>

41 </complexType>

43 | <complexType

44 | name="SAFeSWL_OperationPrimitiveInvokeActionAsyncType">

45 | <complexContent>

46 | <extension

47 | base="tns:SAFeSWL_OperationPrimitiveInvokeActionType">

48 | <attribute name="handle_id" type="string" use="optional"/>
49 | </extension>

50 | </complexContent>

51 </complexType>

53 <complexType name="SAFeSWL_OperationAnyType">

54 | <complexContent>

55 | <extension base="tns:SAFeSWL_OperationBaseType">

56 | <choice maxOccurs="1" minOccurs="0" >

57 | <element name="skip" type="tns:SAFeSWL_OperationPrimitiveType"/>

58 | <element name="break" type="tns:SAFeSWL_OperationPrimitiveType"/>

59 | <element name="continue" type="tns:SAFeSWL_OperationPrimitiveType"/>

60 | <element name="start" type="tns:SAFeSWL_OperationPrimitiveInvokeActionAsyncType"/>
61 <element name="wait" type="tns:SAFeSWL_OperationPrimitiveInvokeActionAsyncType" />
62 <element cancel" type="tns:SAFeSWL_OperationPrimitiveInvokeActionAsyncType"/>
63 | <element invoke" type="tns:SAFeSWL_OperationPrimitiveInvokeActionType"/>

64 | <element sequence" type="tns:SAFeSWL_OperationManyType" />

65 | <element name="parallel" type="tns:SAFeSWL_OperationManyType"/>

66 | <element name="choice" type="tns:SAFeSWL_OperationChoiceType"/>

67 | <element name="iterate" type="tns:SAFeSWL_IterateType"/>

68 | </choice>

69 | </extension>

70 | </complexContent>

71 </complexType>
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73 | <complexType name="SAFeSWL_OperationChoiceType">

74 | <complexContent>

75 | <extension base="tns:SAFeSWL_OperationBaseType">

76 | <sequence>

77 | <element name="select" type="tns:SAFeSWL_SelectionGuardType" maxOccurs="unbounded" minOccurs="1"/>
78 | </sequence>

79 | <attribute name="port" type="string"/>

80 | </extension>

81 </complexContent>

82 | </complexType>

84 | <complexType name="SAFeSWL_SelectionGuardType">
85 | <complexContent>

86 | <extension base="tns:SAFeSWL_OperationAnyType">
87 | <attribute name="action" type="string"/>

88 | </extension>

89 | </complexContent>

90 | </complexType>

92 <complexType name="SAFeSWL_OperationPrimitiveType">
93 | <complexContent>

94 | <extension base="tns:SAFeSWL_OperationBaseType"/>
95 | </complexContent>

96 | </complexType>

98 | <complexType name="SAFeSWL_ConditionType">

99 | <sequence>

100 | <element name="condition" type="tns:SAFeSWL_OperationPrimitiveInvokeActionType" maxOccurs="unbounded"
minOccurs="1"/>

101 </sequence>

102 | </complexType>

104 | <complexType name="SAFeSWL_IterateType">

105 | <complexContent>

106 | <extension base="tns:SAFeSWL_OperationAnyType">

107 | <choice maxOccurs="1" minOccurs="0">

108 | <element name="branch" type="tns:SAFeSWL_BranchType" maxOccurs="unbounded" minOccurs="1"/>
109 | <element name="select" type="tns:SAFeSWL_SelectionGuardType" maxOccurs="unbounded" minOccurs="1"/>
110 | </choice>

111 <attribute name="port" type="string" use="optional"/>

112 | <attribute name="loop" type="string" use="optional"/>

113 | <attribute name="until" type="string" use="optional"/>

114 | </extension>

115 | </complexContent>

116 | </complexType>

118 | <complexType name="SAFeSWL_BranchType">

119 | <complexContent>

120 | <extension base="tns:SAFeSWL_OperationAnyType">

121 <sequence>

122 | <element name="select" type="tns:SAFeSWL_SelectionGuardType" maxOccurs="unbounded" minOccurs="0"/>
123 | </sequence>

124 | <attribute name="port" type="string"/>

125 <attribute name="loop" type="string" use="optional"/>
126 | <attribute name="until" type="string"/>

127 | </extension>

128 | </complexContent>

129 | </complexType>

130 | </schema>
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