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Abstract—There is an increasing demand for stateful edge
computing for both complex Virtual Network Functions (VNFs)
and application services in emerging 5G networks. Managing a
mutable persistent state in the edge does however bring new
architectural, performance, and dependability challenges. Not
only it has to be integrated with existing cloud-based systems,
but also cope with both operational and analytical workloads
and be compatible with a variety of SQL and NoSQL database
management systems.

We address these challenges with AIDA-DB, a polyglot data
management architecture for the edge and cloud continuum. It
leverages recent development in distributed transaction process-
ing for a reliable mutable state in operational workloads, with a
flexible synchronization mechanism for efficient data collection
in cloud-based analytical workloads.

Index Terms—Stateful edge; data management; polyglot pro-
cessing; hybrid transactional analytical processing.

I. INTRODUCTION

The advent of 5G networks and growing adoption of Inter-
net of Things (IoT) devices lead to more opportunities for data
collection and processing with hybrid edge-cloud systems. In
this architecture, edge devices – placed near where the data
is being collected/accessed – execute some of the processing
while offloading other more complex work to the cloud, which
is scalable on demand. However, edge-cloud architectures
present several challenges when it comes to data management.
Most of the difficulties are due to their inherently large-
scale, distributed, and heterogeneous deployments, namely:
(i) Replicating stateful (edge or otherwise) components for
scalability requires synchronization, which can be expensive
and makes fault tolerance more complex; (ii) large-scale data
replication between the edge and the cloud raises issues in
terms of network latency and storage capacity; and (iii) the
heterogeneity of edge devices, namely in the context of IoT,
encounters a very diverse set of data models, which requires
data processing frameworks to handle each one on a case-by-
case approach.

For example, in the network of edge-cloud services, such
as firewalls and load balancers, there has been a shift to virtu-
alizing functions to cut operation and management costs and
increase elasticity [1]. However, Virtual Network Functions
(VNFs) that store data [2] often rely on two techniques: use
the operating system level memory sharing techniques for
scalability [3] or delegate data management to a standalone
centralized database [4]. The former helps to reduce the
latency but fault-tolerance is harder to achieve and it limits all

VNFs replicas to the same virtual machine. The latter improves
scalability and fault-tolerance but increases latency. Although
some solutions rely on eventual consistency to improve both
scalability and latency [5], it is not enough for functions
that require strong consistency or present non-deterministic
behavior. However, this can be circumvented with expensive
distributed locking [5].

On the other hand, the system must answer analytical
queries on data collected in the edge. For example, it must be
capable of efficiently answering ad-hoc queries for exploratory
data analysis. One of the main challenges of this workload
is that fetched data are unpredictable. Therefore, the system
must be able to adapt to different workloads, by achieving
an optimal tradeoff between the network and the computing
power of the edge. In an environment with a substantial
number of IoT devices, sending all collected data to the cloud
consumes network and CPU resources on the edge, which is
often limited due to cost and energy factors. Additionally,
it introduces delays to the data that is actually needed at
the moment. Finally, the heterogeneity of the devices and
the collected data makes it difficult for the cloud to have a
consistent and holistic view of data, increasing the complexity
of analytical workloads.

The edge computing paradigm aims at leveraging the
computational and storage capabilities of edge devices while
resorting to cloud computing services for more demanding
processing tasks that cannot be done at the edge. Edge devices
generate large volumes of data that may need to be transferred
to the cloud and that come from several types of data sources.
Therefore, we propose the AIDA-DB unified data management
architecture for an edge and cloud continuum, summarized in
Figure 1, that is able to tackle both analytical and transactional
workloads, both relying on a polyglot middleware.

In detail, the polyglot middleware processes data from
different sources, which have different formats and encodings.
This component is capable of efficiently performing queries
over an integrated view of the data, by exploiting the under-
lying edge’s query engines. The synchronization middleware
is in charge of efficiently transferring data from the edge to
the cloud. It does so by considering the data that is currently
required by the cloud and the data that is already cached. Then,
it synchronizes the missing data based on a balance between
the network delay and the impact on the edge resources.
Finally, the transactional middleware guarantees consistent



Fig. 1. Overview of the AIDA-DB data management architecture for edge and cloud continuum.

reads and isolated and atomic updates across the edge and
cloud continuum.

The AIDA-DB proposal is thus a multi-faceted data man-
agement architecture for edge-cloud systems that: (i) exploits
the edge in order to reduce processing and unnecessary data
transfer to the cloud, and (ii) exploits the cloud in order to
increase the scalability on the edge. In a nutshell, AIDA-DB
combines the following contributions:

• A SQL data layer in the cloud that automatically trans-
lates and optimizes queries to be executed on the edge,
taking advantage of distributed processing and reducing
unnecessary data transfer (Section II-A).

• An edge-cloud synchronization algorithm that optimizes
the response time by balancing the edge processing and
the network transfer costs (Section II-B).

• An efficient transactional architecture that improves the
scalability of shared-state edge-cloud components while
reducing latency (Section III-A).

• A data management design that provides transactional
guarantees to the edge without requiring it to be modi-
fied, maintaining compatibility with existing clients (Sec-
tion III-B).

II. ANALYTICAL WORKLOADS

Analytical workloads are at the core of edge-cloud systems.
For example, processing data collected from IoT devices [6] or
managing and orchestrating a Network Function Virtualization
(NFV) [1] infrastructure by continuously collecting metrics
[7]. Thus, an efficient data management layer is a key factor
in building these type of systems. However, both the hetero-
geneity of edge devices and the large amounts of data collected
are challenges that hinder the efficiency of this layer [8]. To
address this, AIDA-DB architecture includes two concepts that
(i) ease querying data in diverse data sources and (ii) optimize
the data synchronization between edge and cloud.

A. Querying diverse sources

In order to access data from diverse data sources, the
architecture includes a layer that maps underlying stores into
a common interface, based on CloudMdsQL [9]. To offer
the maximum compatibility with existing analytical tools and

developer know-how, we propose an implementation with
a relational schema and SQL as the common interface, as
implemented by [10], using PostgreSQL as the common query
engine and Foreign Data Wrappers (FDWs) to manage the
mapping.

While data is queried using a common language, this layer
is still able to exploit the query engines of the underlying
data stores on a case-by-case basis. This means, for example,
pushing down filters, projections, aggregations, and/or even
joins, to reduce the data transfer through the network and
use indexes when available. Of course, these optimizations
are dependent on the data store’s capabilities and must be
implemented manually for each one. Luckily, there is already
much work pertaining to this area that can be reused [11].

B. Efficient edge-cloud synchronization
Usually, edge-cloud systems are restricted by the edge

computing power, memory, and the network. In the cloud,
however, these limitations are almost non-existing. Therefore,
analytical queries are preferably executed in the cloud, where
computing power and memory are abundant. Nonetheless, the
query’s execution time is usually dependent on the locality of
the data and the processing power. Therefore, it is essential
to keep a copy of the data in the cloud to improve query
performance.

Consequently, to efficiently support edge-cloud systems,
where the rate of data generated at any given time keeps
increasing, we employ a data synchronization technique. Syn-
chronization is justified because it takes advantage of cached
data in the cloud to avoid re-transfers. Hence, the reduction
of data transferred from the edge to the cloud reduces the
execution time.

To achieve an efficient data synchronization, we employ an
algorithm that executes when the current workload demands
data that is missing from the cloud. With analytical workloads,
where data requirements are often unpredictable, this avoids
unnecessary network and computing costs. The algorithm
executing is comprised of two steps: First, it generates query
predicates, meant to be executed in the edge, that encompass
data that is currently needed but exclude data that is already
cached in the cloud. And second, it simplifies the generated



predicates to diminish their impact on the edge if their
execution outweighs the reductions in network costs.

Experimental results of this algorithm show that it can adapt
to simple and complex workloads alike, choosing to send
the entire predicate in the former and simplifying it in the
latter. Furthermore, it is shown to be a better solution than the
common incremental replication – where all new data is sent –
by significantly reducing the impact on the network, and than
data differential algorithms such as [12], [13] – which rely on
computational heavy tasks – by reducing the impact on the
edge.

III. TRANSACTIONAL WORKLOADS

Depending on the use case, guaranteeing consistent reads
and/or isolated and atomic updates is necessary to ensure
the correct delivery of some edge-cloud service. Common
examples are online transactional processing (OLTP) appli-
cations that must serve clients all over the globe. Here,
deploying replicas on the edge is common to ensure low
latency, but strongly consistent systems often operate un-
der expensive Serializability guarantees and rely on geo-
distributed transactions/synchronization protocols that hinder
their performance [14], [15]. Another example is the network
functions implemented through virtual means, i.e., Virtual
Network Functions (VNFs). To meet demands, VNFs can be
easily scaled, which leads to stateful functions such as Network
Address Translation (NAT), load balancing, firewalls, among
others, to require transactional guarantees to manage their
shared state, as data sharding is not always possible [16].
State management performance here is especially important,
as network functions must display considerably low delays [2].
On the other hand, providing transactional guarantees to the
edge is also a challenge if it is already used to serve existing
applications. Current solutions often disrupt the native clients’
execution and increase storage overhead – by performing
changes to the engine and schema – and/or offer coarse
concurrency control, limiting parallelism [17].

To efficiently support transactional workloads, AIDA-DB (i)
offers transactional isolation for multi-writer systems while
ensuring low overhead on computing and storage, and (ii)
provides the ability to perform transactions over diverse data
sources without changing their engine or schema.

A. Efficient multi-site transactional execution

To efficiently support transactional guarantees in multi-
site deployments, we propose a system design that avoids
some of the common performance limiters found in alternative
solutions. Briefly, it builds on the following concepts:

• Full-replication – although full-replication can make dis-
tributed concurrency control more complex (something
we address shortly), it allows indiscriminate access to all
data stored. This not only ensures low-latency reads to
every object stored but also enables easier scale-up and
scale-down of stateful services, by not requiring data to
be moved around different sites, as imposed by some
solutions [5];

• Multi-version schema and optimistic execution – we
propose storing multiple versions of each data object in
order to allow non-blocking reads, similarly to Snapshot
Isolation [18]. Additionally, we propose a transactional
execution that optimizes for the common scenario –
where commit has a higher probability than abort –
known as optimistic concurrency control [19]: Transac-
tions execute as if they are guaranteed to succeed; Thus,
we avoid the locking overhead on every write inherent
from techniques such as two-phase locking [20], at the
expense that conflicts are not preemptively detected;

• Logically centralized certification and recovery – instead
of relying on synchronization techniques such as geo-
distributed two-phase commit, consensus, or locking, our
design considers a centralized certification deployed on
the cloud which requires, at most, one wide-area network
(WAN) round trip. Additionally, this component stores
the most recent copy of all data in the system with
high-availability guarantees, removing that responsibility
from the edge, greatly easing fault-tolerance, which is
a common concern in, for example, stateful VNFs [2].
Even though this component is logically centralized in
the cloud, it can still be physically distributed for fault
tolerance and to hide failover. However, a key difference
from common solutions is that the deployment is done
with low latencies among replicas (e.g., in the same
data center), considerably reducing response times. To
avoid becoming a bottleneck, the certification maximizes
parallelism and uses efficient relational algorithms for
conflict detection;

• Heterogeneous edge – we can exploit the centralized cer-
tification to allow each edge to store data using different
data models and provide different interfaces. Our only
requirement is for the certification package sent to the
cloud certifier to be consistent across all nodes. This leads
to a higher flexibility of our design, which is especially
useful if we consider our edge to be IoT devices with
different architectures and protocols.

• Asynchronous replication – although Serializable guar-
antees are useful for some strict use cases, we can
exploit asynchronous replication and local access pat-
terns in order to greatly improve performance for the
plenitude of other cases. We thus propose the usage
of Parallel Snapshot Isolation (PSI) [21] as our main
isolation criteria, in which data is eventually replicated
to all sites after commit. Furthermore, to reduce conflict
probability, this criteria does not force different sites to
advance in the same order. Instead, transactions local to
some site are immediately applied after committing in
the certifier, meaning remote transactions have no impact
on response time. If we assume that clients follow local
data access patterns, which is common in many OLTP
applications and alike, collision probability among edge
nodes is greatly reduced. Even though data is eventually
replicated, strong consistency is still ensured by certifying
against all previously committed data. Although greatly



reducing response times, eventual replication can be
challenging in some contexts, namely networking, even if
identified to be often sufficient [22]. For instance, while
updating the load value of some server in a load balancer
can easily be asynchronous – as it can lead to, at most,
inefficient utilization of the available resources – the same
thing is not true for a NAT function, where we do not
want different sites to see different values. For those
cases, we can default to regular Snapshot Isolation;

• Low-footprint time management – finally, we integrate
efficient time management in our solution. Instead of
using PSI as implemented by Walter [21], where each
object is tagged with one timestamp for every site in the
system, we only consider the usage of two timestamps
independently of the number of sites used, as specified
by Totally-Ordered Prefix Parallel Snapshot Isolation
(TOPSI) [23]. Briefly, it considers a local timestamp,
which is used to compute snapshots for the clients, and a
global timestamp, used for transaction certification and
replication. This not only leads to a smaller storage
overhead as the scale of the system increases but also
reduces the time management complexity when we add
or remove sites.

These concepts provide the foundation of a distributed-first
transactional system that prioritizes flexibility, scalability, and
low response times while ensuring strong consistency.

B. Transactional isolation without disruption

Although the design in the previous section enables strong
transactional guarantees with low overhead, it requires storing
metadata (i.e., modifying the schema) and running custom
middleware code in each edge. This can be unfeasible for
analytical-first systems which require some transactional guar-
antees only for reliability, as it can lead to the disruption of
the normal service.

We thus propose another transactional layer that requires
no modification to the edge, by leveraging a cloud cache
and query-engine layer [24]. Briefly, write-sets of temporary
transactions are kept in the cloud; After commit, the data gets
transferred to a persistent table in the cache, still in the cloud,
tagged with the respective commit timestamp. Eventually,
every object with a timestamp ≤ δ is moved to the edge,
without the attached metadata and replacing older versions.
When reading, a transaction joins both the data cached in the
cloud and the data in the edge and filters objects that it cannot
read based on its starting timestamp. If a version only exists in
the edge, it is automatically readable by any current transaction
(which has a start timestamp ≥ δ), given its timestamp can be
inferred to be ≤ δ.

With this proposal, the native edge clients can execute
unaware of the transactional layer. Furthermore, this layer can
reuse both the centralized certifier of Section III-A, acting as
its “edge”, and the polyglot layer of Section II-A to handle data
translation. There is still the challenge of ensuring consistency
of concurrent native and transactional clients, but assuming
they update disjoint data, this solution is enough.

IV. RELATED WORK

Network Functions (NFs) explore virtualized network com-
ponents that substitute dedicated hardware devices, anywhere
in the edge-cloud continuum. This shift allows for remote
deployment and orchestration of these services, as well as to
provide them in an elastic manner. NFs form processing chains
(e.g., layer1: load-balancer; layer2: 2 firewall nodes, layer3: 3
IDS instances), which need to share state among themselves
(e.g., maintaining standby nodes synchronized with an active
node for failover). NFs present two alternatives for state
management, namely stateful and stateless NFs. In stateful
NFs, state management is done by the NF itself. This reduces
read/write latency, as the data is closer to the execution, at
the expense that it reduces scalability and elasticity, as data
must be split/replicated among NFs [3], [25]. As an alternative,
stateless NFs offload data management responsibilities to an
external data store [4], [26]. Externalizing data management
allows NFs to seamlessly failover and scale, since data syn-
chronization is handled by the data store. However, external
data stores increase access latency and can install a bottleneck
even when using an in-memory database management system
such as Redis [2]. In our architecture, we provide a hybrid
solution that considers the best of both alternatives: cache the
data in each NF (edge) to provide low latency access, and
offload the complex data management functions – such as
transactional certification and replication – to the cloud, to
ease the edge scalability and reduce its load.

Efficient data synchronization is fundamental to ensure low-
overhead data transfer between the edge-cloud continuum. One
the of most simple algorithms is to tag each object with an
ever-increasing timestamp and send all new data since the
last synchronization [27], which is computationally cheap but
requires more storage. More complex algorithms [12], [13]
use differential algorithms in order to avoid storage overheads,
but are more computationally complex, thus being less viable
to the edge. Independently of how new data is detected,
these algorithms transfer data unaware of the workload, which
can cause unnecessary delays. In contrast, our architecture
relies on an algorithm that aims to send only the new data
that is needed by the current workload, reducing superfluous
transfers.

To provide transactional isolation to heterogeneous sources,
Polypheny-DB [17] uses two-phase locking with coarse gran-
ularity, which limits parallelism. In contrast, a proposal of the
CloudMdsQL project [9] aims at Snapshot Isolation with fine-
grained concurrency control but relies on the implementation,
from scratch, of custom wrappers and possibly changes to the
core of each datastore. Our architecture instead achieves low
granularity with no disruption to the underlying storage, by
leveraging a cache that stores newly committed data and SQL
code to reconstruct the snapshot.

There are several research projects that explore the qual-
itative differences between the different layers formed by
edge nodes. These differences manifest themselves as vary-
ing distances to the user, wide geographical dispersion, and



varying levels of resource capability. These allow to improve
both performance and privacy control, but also impose new
difficulties for development, and for ensuring secure operation.
DITAS [28] explores privacy enforcement in the edge, by
allowing data owners to specify how and where their data can
be processed (i.e., node filtering). They also employ Service
Level Agreements (SLAs) defined by the user, which trigger
computation and data replication/movement between nodes
when those agreements are not being met. PrEstoCloud [29]
focuses on big data streams in edge space. CHARIOT [30]
and SOFIE [31] focus on security aspects of IoT systems
that run in the Edge. In contrast, our work did not make
explicit divisions between different edge nodes nor specified
how security/privacy mechanisms should be implemented in
them. Instead, our architecture can in practice be extended
with the concepts where cited.

Comparatively to the edge, the cloud space is much more
developed and mature. Techniques can be leveraged from these
systems to empower data processing and storage at the edge
level. Within the cloud environment, geo-replicated data store
solutions share similarities with edge systems, in that nodes
can be at a significant distance from each other, as these
systems try to minimize the impact of intra-replica communi-
cation on the performance of the databases. Techniques such
as caching [32] [33], optimizing shard allocation [34] [35]
[36], enabling control over data locality [37] [14] or employing
layering of data [38] can all be adapted into our architecture
to further improve its scalability and performance.

V. DISCUSSION

Our proposal of the AIDA-DB architecture is aimed at
enabling emerging complex VNFs and edge-based application
services in emerging 5G networks to manage data across a
cloud and edge continuum. This approach has been applied
to a distributed revenue assurance system, that employs both
analytical processes for triggering events as well as workflows
to deal with them that span the cloud and edge reliably and
efficiently. The key advantages of AIDA-DB which allow this
are:

a) Global transactional reliability: Managing distributed
data across distributed system boundaries and multiple SQL
and NoSQL database systems is hard and prone to inefficien-
cies and errors. By providing a seamless transactional layer,
AIDA-DB ensures that business-critical workflows execute
across these boundaries and makes edge-based application
components and services first-class citizens in complex dis-
tributed applications.

b) Hybrid transactional-analytical processing: The edge
adds an axis of complexity to traditional extract, transform,
and load (ETL) procedures, as data needs to be copied across
the network to a centralized data warehouse. In contrast, a
key driver for the adoption of the edge is to make use of
fresher data in applications and services. Therefore, in AIDA-
DB we strive for hybrid transactional analytical processing
systems that take advantage of cloud elasticity and automatic

synchronization to run interactive analytics, such as needed
for data exploration, on live or freshly updated data.

c) Polyglot processing with a standard API: Although it
has become clear that current applications and services need a
variety of data management paradigms and tools, this pushes
additional complexity into applications and calls for polystores
to bridge between them [39], [40]. AIDA-DB innovates by
catering for polyglot workloads, across different systems, for
both transactional and analytical workloads while exposing
all functionality in a standard xDBC interface that accepts
polyglot queries.

d) Separation of concerns: Abstract management of the
cloud and edge divide and support for the SQL query lan-
guage makes it possible to separate application development
concerns – what functionality is needed – from deployment
and optimization – how it is provided. This extends to the
cloud and edge computing environment the traditional strength
of database management systems of providing separate and
declarative interfaces for both developers and database admin-
istrators (DBAs), making applications reusable and deployable
in different contexts. This is particularly suited for platforms
as a service (PaaS) as it allows the platform provider to offer
managed services.
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