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Lima2,3, Raul Morais2,4, and Pedro Costa1,3

1 Faculty of Engineering of University of Porto
{ee12155, pedrogc}@fe.up.pt,

2 INESC TEC - INESC Technology and Science
{fbsantos, jorge.m.mendes, nuno.a.ferraz}@inesctec.pt,

3 Polytechnic Institute of Bragança
jllima@ipb.pt,

4 Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
rmorais@utad.pt

Abstract. Develop cost-effective ground robots for crop monitoring in
steep slope vineyards is a complex challenge. The terrain presents harsh
conditions for mobile robots and most of the time there is no one available
to give support to the robots. So, a fully autonomous steep-slope robot
requires a robust automatic recharging system. This work proposes a
multilevel system that monitors a vineyard robot autonomy, to plan off-
line the trajectory to the nearest recharging point and dock the robot
on that recharging point considering visual tags. The proposed system
called VineRecharge was developed to be deployed into a cost-effective
robot with low computational power. Besides, this paper benchmarks
several visual tags and detectors and integrates the best one into the
VineRecharge system.

1 Introduction

The strategic European research agenda for robotics [1] states that robots can
improve agriculture efficiency and competitiveness. However, few commercial
robots for agricultural applications are available [2]. In Europe space few Euro-
pean funded projects are developing monitoring robots for flat vineyards: the
VineRobot [3] and Vinbot [4]. However, vineyards built on steep slope hills
presents an higher complex environment for the machinery and automation de-
velopment. These called steep slope vineyards exist in Portugal in the Douro
region - an UNESCO heritage place - Fig. 1, and in other regions of five Euro-
pean countries. The context of a vineyard built in a steep hill presents several
robotics challenges for the localization, path-planning, safety, perception sys-
tems, and automatic energy management [5].

This paper benchmarks different visual tags and detectors, in terms of accu-
racy and performance, and presents a system called VineRecharge to be deployed
into cost-effective robots with low computational power for automatic energy
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Fig. 1. AgrobV16 working in steep slope terraced vineyard in the Douro region of
Portugal.

management. In this paper, section 2 presents the related work to the auto-
matic recharging systems problem and relative localization. Section 3 presents
the VineRecharge architecture and its main components. Section 4 presents the
benchmarking of six visual tags detector and results obtained by the VineRecharge
system. Section 5 presents the paper conclusions.

2 Related work

A fully autonomous robot requires a docking capability for self energy charging.
However, for the docking capability is required to develop navigation algorithms
to drive the robot towards the docking station, precise relative positioning sys-
tems for system coupling and mechanical interface for energy transference and
data communication. Several works related to the robotic docking systems can
be found. [6] presents an autonomous docking system with integrated algorithms
for mobile self-reconfigurable robots equipped with inexpensive sensors, such as
infrared emitter-receiver pairs (IR) and encoders.

For a successful docking, GPS, Vision, and RFID based techniques can be
used as well to guide the robot to a near docking station, but at the moment there
has not been great success using this kind of technology because the rate error
and is susceptibility to interferences. But [7] proposes a system based of RFID,
using a bi-directional antenna that will communicate with and RF transpon-
der, enabling the robot to identify the transponder and decide which is the best
path to follow by comparing the signal strength. Although this approach has
been successful in indoor environments without major obstacles and proved that
the system can find the target without real time scanning, in real environment
their effectiveness may be affected, because the existence of interferences can
corrupt the signal used to guide the robot. In contrast, to the previous works
in [8] is proposed a magnetic alignment-based approach to solve underwater
docking system. Considering magnetic alignment-based, [9] proposes a multi-
sensory docking strategy, which includes visual-sensor guided rough positioning,
Hall-sensor-guided fine positioning, and the locking between moving and target
modules, guarantees robust docking without sacrificing reconfigurability. [10]
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presents a model that exceeds the systems adaptability of the problem and the
low error tolerance, the model incorporates magnets in both the docking station
and the robot module and by using the magnetic force generated between them
ensures a robust docking without any error.

Visual landmarks are being widely used to increase the localization accuracy
and has high potential for docking systems [11] [12] [13] [14] [15] [16]. For exam-
ple QR-based landmarks have been used extensively because of their capability
to store large amounts of information and their resistance against distortion
and damage [13]. Many visual landmark models are designed in consideration
of detection mechanism. Some examples of these landmarks are: ARTags, April-
Tags, QRCodes, Barcodes, ArUco markers, and ARToolKit. These landmarks
are benchmarked in section 4.1. [17] describes a new localization method for
an indoor mobile robot to move autonomously to the goal position. A key idea
of this localization system consists of fusing the Radio Frequency Identification
(RFID) and the vision sensor. [18] presents a simple artificial landmark model
and a robust tracking algorithm for the navigation of indoor mobile robots. [19]
presents a landmark-based navigation technique for a mobile robot, where the
position estimation is achieved by using a camera and a landmark, which con-
sists of simple geometric patterns. [12] proposes a new system for vision-based
mobile robot navigation in an unmodeled environment. Simple, unobtrusive ar-
tificial landmarks are used as navigation and localization aids. [20] proposes a
method based on landmarks able to converge to a position estimate with greater
accuracy using less measurements than other frequently used methods, such as
Kalman filters. One of the fundamental problem is to integrate a global and local
path planning and localization for an automatic recharging system.

3 VineRecharge system

Vinecharger is an automatic recharging system for the AGROB1 robots gener-
ations. Vinecharger has three main components (Fig. 2): Vision Based docking
system, Go to the nearest docking station, and Power Monitor.

Vinecharger flows according Vinecharger State Machine, which has five states:
Idle, Go to Station, Alarm, Docking and Charging. The transition between these
states is trigged by the available energy and according a preprocessed charging
trajectory and energy map (PCTEM), Fig. 3.

3.1 Off line Path Planning

To process the charging trajectory and energy map (PCTEM) represented in
Fig. 3, we resorted to an A* algorithm developed in [21] that restricts the path
to the maximum turning rate allowed by the robot, assuring that the generated
path is feasible for the robot. This A* uses a 16 layered occupation grid map,
each layer corresponding to a different orientation, spaced by 22.5 degrees.

1 agrob.inesctec.pt

agrob.inesctec.pt
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Fig. 3. Preprocessed charging trajectory and energy map.

Each charging location is located in the center, (a, b) , of a parametric cir-
cumference (x, y) with a r radius and a t parameter represented in equation 1. In
Fig. 3, these charging locations are represented with red cells on the occupation
grid map. {

x = a+ r cos(t), 0 ≤ t ≤ 2π

y = b+ r sin(t), 0 ≤ t ≤ 2π
(1)

So, the off-line planning method is composed by these three steps:

1. The off line path planning for each cell and each layer:
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(a) Plan a path with origin in the actual cell, to a point (x, y) of the circle
that delimits the charging zone, considering r = 0. If the A* doesn’t find
a way, we increase the value of r, and try to plan a new path.

(b) Estimate the energetic cost for the paths generated to every charging
station, and save the one with minimum cost.

(c) Go trough every cell occupied by the chosen path, saving that trajectory
in each cell so that we don’t need to generate a path on every single cell
of the map.

3.2 Energetic cost

The energy consumption between the point i− 1 and i is given by the equation
2, where instead of using the absolute value of the gravitational acceleration, we
calculated it’s distribution by the three axis in the world (x, y, z), in a such way
that the consumed energy increases when the robot is going up the vineyard,
and decreases when the robot it’s going down.

Ei−i,i = m

jf∑
j=1

(µgzj + aj)vj∆t −m
jf∑
j=1

(µgxj
+ aj)vj∆t (2)

– m = robot’s mass
– µ is the friction coefficient, and g = (gx, gy, gz) is the gravitational acceler-

ation
– a is the robot’s acceleration and v it’s his speed
– ∆t is a small time variation chosen for discretization
– j ∈ N [0 jf ] , when ujf ≥ 1 (ujf defined in equation 5)

The generated path is described by parametric Bézier curves, defined in the
equations 3 and 4. The first equation (3) is a linear curve that it’s used to
describe the trajectory between two waypoints with the same orientation. The
second equation (4) is used to describe the trajectory when there’s an orientation
change.

So, the velocity and acceleration of the robot can be derived from the Bézier
curves that describe the trajectory.{

x(u) = (1− u)xi−1 + uxi

y(u) = (1− u)yi−1 + uyi
(3)

{
x(u) = ((1− u)2)xi−1 + 2u(1− u)xa + u2xi

y(u) = ((1− u)2)yi−1 + 2u(1− u)ya + u2yi
(4)

– (xi−1, yi−1) and (xi, yi) represent two waypoints
– (xa, ya) is a medium point between the two waypoints, that depends on the

orientation of each one
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– u is a parameter that goes from zero to one, and we calculated it so that the
robot speed could be constant (equation 5)

uj+1 = uj +

√
k2(

dx
du

)2 |u=uj +
(

dy
du

)2 |u=uj

∆t (5)

3.3 Docking controller (Bézier Curve)

When the robot reaches near to docking station, eventually a visual tag (placed
on docking station) will be detected by the Vision Based docking system. When
the visual tag is detected the Vinecharger makes the transition fromGotothestation
to Docking state. The tag relative position and orientation is obtained and then
the robot’s trajectory is calculated for the docking approach. For that, a cubic
Bézier Curve was used in which the starting point is the position of the robot at
the moment when it saw the tag and the end point is the position of the tag at
that every moment. The points Pi, Pa, Pb and Pf of the Bézier Curve (BP ) are
given by the equation 6. These points are represented on the right side of Fig. 4.

BP =



xi = yi = ya = 0
xa = xf × 0.30
xf = ztag detector
yf = −xtag detector
mf =

(yf+sin(pitch−π)∗5)−yf
(xf+cos(pitch−π)∗5)−xf

ma = 0, if mf < 0 & yf < 0
if mf > 0 & yf > 0

ma = −1
mf
, if mf < 0 & yf > 0

if mf > 0 & yf < 0
xb = xtarget, if mtarget = inf
yb = ma × xb −ma × xa + ya, if mf = inf
xb = yb−ya

ma
+ xa, if mf = 0

xb =
yb×yf
mf

+ xf , if ma = 0

yb = ya, if ma = 0

xb =
xa×ma−ya−xf×mf+yf

ma−mf
, if ma 6= inf & mf 6= inf

& ma ×mf 6= 0
yb = mf × xb −mf × xf + yf , if mf 6= inf &ma 6= 0

(6)

Algorithm 1 presents the pseudocode with the steps of the docking process.

Algorithm 1 Docking process
1: Get cubic Bézier Curve points.
2: Transition: global position → relative position.
3: Use a local controller for docking approach.
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4 Tests and Results

In order to select the most robust and efficient visual tag and detector, in section
4.1 we make an intensive analysis of different visual tags and detector, which will
allow us to select one for integration into the vision based docking system block.

4.1 Visual Tags detector benchmarking

Six visual tags and detectors were tested in terms of accuracy, robustness, and
processing time of various solutions available for detection of artificial landmarks.

Table 1. Results obtained from tests performed using several tags at various distances.

tag

dist
(m)

arv dist (m)
dist std dev (m)

avr time (s)
visp2 ar sys

(aruco)3
ar track4 april tags

Original5
april tags
RIVeR6

april tags
Xenobot7

0.22
arv dist 0.263 0.209 0.206 0.218 0.207 0.216

dist std dev 0.0012486 0.0008511 0.0014431 0.0005408 0.0000964 0.0012097
avr time ———– ———– ———– 0.02585 0.15160 0.00407

0.40
arv dist 0.465 0.377 0.375 0.398 0.376 0.378

dist std dev 0.0003055 0.0000947 0.0001175 0.0000951 0.0000628 0.0001902
avr time ———– ———– ———– 0.02555 0.16963 0.00427

0.60
arv dist 0.707 0.566 0.558 0.603 0.558 0.570

dist std dev 0.0005070 0.0000889 0.0002518 0.0001393 0.0000776 0.0006230
avr time ———– ———– ———– 0.02483 0.16531 0.00478

1.00
arv dist 1.181 0.955 0.947 1.012 0.935 0.956

dist std dev 0.0030589 0.0003523 0.0011032 0.0003705 0.0004184 0.0005425
avr time ———– ———– ———– 0.02708 0.18139 0.00510

1.20
arv dist 1.406 1.140 1.126 1.215 1.125 1.155

dist std dev 0.0066985 0.0009085 0.0016255 0.0003829 0.0003926 0.0056493
avr time ———– ———– ———– 0.02943 0.19018 0.00532

1.50
arv dist 1.757 1.430 1.413 1.521 1.401 1.457

dist std dev 0.0066303 0.0046561 0.0010171 0.0015644 0.0004264 0.0027019
avr time ———– ———– ———– 0.03046 0.19906 0.00548

1.70
arv dist 1.999 1.630 1.610 1.705 1.594 1.623

dist std dev 0.0211482 0.0011948 0.0011958 0.0012763 0.0014883 0.0087405
avr time ———– ———– ———– 0.03278 0.19834 0.00532

2.00
arv dist 2.347 1.917 1.889 2.005 1.871 1.927

dist std dev 0.0155401 0.0005048 0.0042226 0.0020556 0.0011278 0.0050850
avr time ———– ———– ———– 0.03183 0.21361 0.00534

The table 1 summarizes the results of the tests performed using four types
of tags, however six implementations were tested: visp 2, ar sys3, ar track 4,

2 VispAutoTracker implementation: http://wiki.ros.org/visp auto tracker
3 ArSys implementation: http://wiki.ros.org/ar sys
4 ArTrackAlvar implementation: http://wiki.ros.org/ar track alvar
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april tags original 5, april tags RIVer 6, april tags Xenobot 7. This benchmarking
was performed in an indoor environment and the HD Web Camera (1280× 720
resolution) of the ASUS K750JB notebook with an Intel Quad Core i7-4700HQ
(@2.4 GHz) processor, 12 GB of RAM and Ubuntu 14.04 LTS was used.

For each one tested distance was obtained 1000 measurements (avr dist), the
standard deviation of these measurements (dist std dev) as well as the average
tag detection time (avr time). The value of the dist is given by the tested algo-
rithms and the time corresponds to the elapsed time since the detection of the tag
until its distance and position are provided. For the visp, ar sys and ar track, the
time parameter could not be measured. This procedure was repeated for eight
different distances between 22 cm and 200 cm.

Table 2. Characteristics of the detection algorithms.

visp
min dist: ∼18 cm
max dist: ∼400 cm

• Very sensitive to variations in brightness;
• To perform detection, the tag has to be viewed

closely (< 40 cm) (a tag that appears far from
the camera is not detected);

• Provides distance values that are farthest from
real values.

ar sys
(aruco)

min dist: ∼22 cm
max dist: ∼235 cm

• Sensitive to variations in brightness;
• It has a lower maximum range.

ar track
min dist: ∼17 cm
max dist: ∼350 cm

• It confuses the tags id (sometimes the algorithm
detects a new tag when in fact it is the same).

april tags
Original

min dist: ∼17 cm
max dist: ∼460 cm

• More accurate distance values;
• Low processing times.

april tags
RIVeR

min dist: ∼17 cm
max dist: ∼460 cm

• Relatively accurate distance values;
• It does not work very well at short distances

(less than 40 cm fails some detections);
• Very high detection times.

april tags
Xenobot

min dist: ∼20 cm
max dist: ∼460 cm

• Relatively accurate distance values;
• Very low detection times.

Table 2 shows some characteristics of the detection algorithms that were
identified during the tests.

As it is possible to verify through the tables 1 and 2, the best solution is
the original implementation of AprilTags, because it was the one that provided
distance values closer to the real and has a very low standard deviation of the
measurements. However, this implementation does not provide a ROS node that
publishes the information (position and orientation) of the identified tag so that
it can be used by other nodes. So two implementations have been tested that
publish this information. Of these two implementations the best was the April-

5 AprilTags original implementation: http://people.csail.mit.edu/kaess/apriltags
6 AprilTags RIVeR-Lab implementation: http://wiki.ros.org/apriltags ros
7 AprilTags Xenobot implementation: https://github.com/xenobot-dev/apriltags ros
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Tags Xenobot implementation because, compared to the AprilTags RIVeR-Lab
implementation, the distance values (although a little distant) are closer to the
real values and the average processing time is much shorter. In this way the
AprilTags Xenobot implementation was chosen for the further development of
the system, not because it stands out from the other implementations but be-
cause it does not present the problems of the same ones.

4.2 Docking and off line path planning test

In Fig. 4, on the left side an example of the detection of a tag is shown and on
the right side is shown the respective trajectory that the robot must perform
to correctly connect to the docking station. This trajectory is estimated by the
Docking Controller, section 3.3.

Fig. 4. Detected tag (left) and Bezier Curve obtained (right).

4.3 Tests and results for energy consumption

Considering the Agrob simulation framework [5] and the next parameters for
the Energetic Cost algorithm: m = 1 kg µ = 0.06 g = 9.8 ms−2 v = 1 ms−1 a =
0 ms−2 ∆t = 0.001s Cmass = (0, 0, 0.4)m. Two paths with different lengths were
tested, one going down and other going up, with the results shown in the table
3. As expected, the energy consumption increases with distance and when going
uphill.
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Graphically, Fig. 5 represents a graphic with the gravitational force imposed
by the terrain to the robot, g = (gx, gy, gz) , and the energy consumption ex-
pressed in Joules, during a downhill from altitude 12 m to 0 m and a distance
of 10 m. In Fig. 5, we can observe that in a downhill path the gravitational
force in gx takes positive values, meaning that it’s a force that helps to the robot
movement, being visible an attenuation in the energy consumption. The opposite
would happen during an uphill, where gx would take negative values, dragging
back the robot, and consequently, the energy consumption would increase.

Fig. 5. Graphical representation of gravitational acceleration and consumed energy
during downhill.

Table 3. Energetic consumption

Energy (J)
19 m 9 m

Downhill Uphill Downhill Uphill
1 8.5 12 3.7 4.7
2 8.4 11 3.6 4.9
3 8.48 10.95 3.3 4.8

Mean 8.46 11.32 3.53 4.8

4.4 Tests and results off-line PCTEM processing

To test off-line PCTEM processing, we have considered the occupation map from
AGROB simulation framework [5] and three charging stations, Fig. 6, identified
by numbers: 1, 2 or 3, and color: blue, green or red, respectively. Each station is
located in a different altitude, being the station number 1 the one with minimum
altitude, and the number 3 the station with maximum altitude.

The final results, for four possible layers of the occupation grid map, is repre-
sented in Fig. 7, where a blue cell means that the chosen station for the recharge
was the station number 1. A green cell shows that station 2 was the more ade-
quate, and a red cell represents the choice of station number 3. It’s observable,
a predominance of the blue color, meaning that the station with the minimum
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Fig. 6. Location of the charging stations

altitude is the most requested one, as their paths require less energy consump-
tion. To process the PCTEM the algorithm has taken 90 minutes (with CPU
AMD A10-8700P Radeon R6, 1.3 GHz). However the path planning can be im-
mediately obtained from the PCTEM, by using the directional vector stored in
each cell of PCTEM.

Fig. 7. Results for the off-line planning

5 Conclusion

The proposed VineRecharge system was developed considering the constrains
of a cost-effective robot to carry-out crop monitoring tasks in steep slope vine-
yards, and reduces computational power required by the robot even in situation
of obstacle avoidance, for example can be easily integrated with Virtual Force
Field (VFF) and the Vector Field Histogram (VFH) Methods. Besides, the path
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planning to the docking station can be immediately obtained from the PCTEM,
by using the directional vector stored in each cell of PCTEM. In terms of visual
tags, the AprilTags Xenobot implementation was chosen for the further develop-
ment of the system, not because it stands out from the other implementations
but because it does not present the problems of the same ones. As future work
we intend to carry out the tests in a real vineyard step slope scenario.
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