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Abstract: This article describes a Kernel Principal Component Regressor (KPCR) to identify
Auto Regressive eXogenous (ARX) Linear Parmeter Varying (LPV) models. The new method
differs from the Least Squares Support Vector Machines (LS-SVM) algorithm in the regularisa-
tion of the Least Squares (LS) problem, since the KPCR only keeps the principal components
of the Gram matrix while LS-SVM performs the inversion of the same matrix after adding a
regularisation factor. Also, in this new approach, the LS problem is formulated in the primal
space but it ends up being solved in the dual space overcoming the fact that the regressors are
unknown.
The method is assessed and compared to the LS-SVM approach through 2 Monte Carlo (MC)
experiments. Every experiment consists of 100 runs of a simulated example, and a different noise
level is used in each experiment,with Signal to Noise Ratios of 20db and 10db, respectively. The
obtained results are twofold, first the performance of the new method is comparable to the LS-
SVM, for both noise levels, although the required calculations are much faster for the KPCR.
Second, this new method reduces the dimension of the primal space and may convey a way of
knowing the number of basis functions required in the Kernel. Furthermore, having a structure
very similar to LS-SVM makes it possible to use this method in other types of models, e.g. the
LPV state-space model identification.
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1. INTRODUCTION

Nonparametric approaches present a way to bypass the
difficulties associated with the selection of basis functions
in Linear Parameter Varying (LPV) system identification.
As a result, they have received a significant attention in
recent literature (Hsu et al. (2008); Tóth et al. (2011);
Laurain et al. (2012); Piga and Tóth (2013); Abbasi et al.
(2014); Lopes dos Santos et al. (2014); Rizvi et al. (2015);
Mejari et al. (2016); Romano et al. (2016b,a); Rizvi et al.
(2018); Lima et al. (2018)). Tóth et al. (2011) proposed a
nonparametric Kernel method using a Least Squares Sup-
port Vector Machine (LS-SVM) framework (Suykens et al.
(2002)) to identify Auto Regressive eXogenous (ARX)
LPV models. The LS-SVM solves a linear Least Squares
(LS) problem in a computationally efficient way and is
capable of capturing difficult nonlinear dependencies. Lau-
rain et al. (2012) came up with an iterative refined in-
strumented LPV LS-SVM to improve the method under
more general noise conditions. In Abbasi et al. (2014),
the LS-SVM estimator was modified to cope with noise
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in the scheduling signal. In Piga and Tóth (2013) and in
Mejari et al. (2016), the model order selection of the ARX
models estimated by the LS-SVM was addressed. The LS-
SVM was also used to identify LPV state-space models.
Firstly with a mixed parametric non– parametric approach
in Lopes dos Santos et al. (2014), and later with full non–
parametric approaches in Rizvi et al. (2015); Romano et al.
(2016b,a); Rizvi et al. (2018) and Lima et al. (2018).

The Kernel Principal Component Regressor (KPCR) was
proposed by (Schölkopf et al., 1998) and generalises Prin-
cipal Component Analysis to the estimation of non-linear
models. Since then, it has been studied by Rosipal et al.
(2000, 2001); Rosipal and Trejo (2001); Hoegaerts et al.
(2005); Wibowo and Yamamoto (2012), among many other
authors. Although being widely used in classification prob-
lems, to the best of the authors knowledge, it still has
not been applied to system identification problems. In
this paper, a KPCR algorithm for the identification of
LPV systems is derived. It is shown to be very similar to
the LS-SVM, differing only in the way the LS problem is
regularised. KPCR only keeps the Principal Components
of the Gram matrix while LS-SVM performs its inversion
after adding a regularisation factor. Although only the
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∗ INESC TEC - Institute for Systems and Computer Engineering,
Technology and Science and FEUP - Faculty of Engineering,

University of Porto, Rua Dr Roberto Frias, s/n 4200-464 Porto,
Portugal (e-mail: pjsantos@fe.up.pt).

∗∗ Universidade de Trás-os-Montes e Alto Douro, Vila Real, and
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ARX LPV model structure is addressed, being very similar
to the LS-SVM algorithm, the herein described algorithm
can also be used in other approaches where the LS-SVM
was successfully applied.

The paper is organised in the following form: After this
introductory Section, the ARX-LPV model structure is
presented in Section 2, where the model parameters are
described as linear combinations of unknown basis func-
tions and the output predictor is derived in a linear regres-
sion form. The KPCR is derived in Section 3. First, the
LS problem is solved in the primal space. But, since the
regressors are unknown, the Kernel function is introduced
and the problem is solved in the dual space. The equations
of the model parameters as functions of the dual-space
parameters are derived in Section 4. In Section 5 it is
shown that the KPCR and LS-SVM are closely related.
The KPCR and LS-SVM are compared in Section 6 in a
case study consisting of 2 Monte Carlo (MC) experiments
that identify an ARX-LPV system with Signal to Noise
Ratios (SNR) of 20dB and 10dB. Both produced estimates
with similar accuracy. Finally, in Section 7, some conclu-
sions are withdrawn and some directions for future work
are outlined.

2. ARX LPV SYSTEMS

A Single-Input-Single-Ouput (SISO) ARX-LPV system is
described by

yk = b1(pk)uk−1 + · · ·+ bnb(pk)uk−nb
− (1)

a1(pk)yk−1 − · · · − ana(pk)yk−na + ek.

where ek is a zero mean white noise sequence and bi(p),
i = 1, . . . , nb and ai(p), i = 1, . . . , na, are functions R

np →
R of a scheduling signal pk ∈ Rnp . An usual assumption
in LPV system identification is that both bi(p) and ai(p)
are linear combinations of a set of basis functions, i.e.,

bi(p) =

nψ∑
j=1

βi,jψj(p) = βi Tψ(p), i = 1, . . . , nb, (2)

ai(p) =

nψ∑
j=1

αi,jψj(p) = αi Tψ(p), i = 1, . . . , na, (3)

with

βi =
[
βi,1 · · · βi,nψ

]T ∈ Rnψ , (4)

αi =
[
αi,1 · · · αi,nψ

]T ∈ Rnψ , (5)

ψ(p) =
[
ψ1(p) · · · ψnψ (p)

]T ∈ Rnψ . (6)

Hence, equation (1) becomes

yk = β1 T
ψ(pk)uk−1 + · · ·+ βnb T

ψ(pk)uk−nb
− (7)

α1 T
ψ(pk)yk−1 − . . . αna Tψ(pk)yk−na

+ ek.

Defining

β =
[
β1 T · · · βnb T

]T
∈ Rnψnb , (8)

α=
[
α1 T · · · αna T

]T
∈ Rnψna , (9)

then

yk = βT



ψ(pk)uk−1

...
ψ(pk)uk−nb


−αT

[
ψ(pk)yk−1

· · ·
ψ(pk)yk−na

]
+ ek. (10)

Futhermore, collecting the past inputs and the past out-
puts up to k−nb and k−na in uk−1 and yk−1, respectively,
as

uk−1 = [uk−1 · · · uk−nb ]
T ∈ Rnb , (11)

yk−1 = [yk−1 · · · yk−na ]
T ∈ Rnb , (12)

the ARX-LPV model can be re-written in the compacted
form

yk = βTuk−1 ⊗ψ(pk)−αTyk−1 ⊗ψ(pk) + ek. (13)

Finally, defining the regressor

ϕk =
[
uT
k−1 −yT

k−1

]T ∈ Rnb+na (14)

and the parameter vector

θ =
[
βT αT

]T ∈ Rnψ(nb+na), (15)

the model can be rewritten as

yk = θT [ϕk ⊗ψ(pk)] + ek = [ϕk ⊗ψ(pk)]
T
θ + ek (16)

where
ŷk = [ϕk ⊗ψ(pk)]

T
θ (17)

is the predictor of yk.

3. KERNEL PRINCIPAL COMPONENT REGRESSOR

Let n = max(nb, na). If there are N + n observations
of the triple input-output-scheduling signals, (uk, yk, pk),
k = n+ 1, . . . , n+N , the outputs, the regressors and the
noise are gathered in

Y= [yn+1 · · · yn+N ]
T ∈ RN , (18)

Υ=



ϕT

n+1 ⊗ψ(pn+1)
T

...
ϕT

n+N ⊗ψ(pn+N )T


 ∈ RN×nψ(nb+na), (19)

E = [en+1 · · · en+N ]
T ∈ RN , (20)

to have
Y = Υθ + E , (21)

θ may be found by solving this equation in the LS
sense. However, this cannot be done if both the basis
functions, ψi(p), and its number, nψ, are unknown. Yet,
the problem can be solved if the goal is to find either the
output predictor or the functions bi(p), i = 1, . . . , nb or
ai(p), i = 1, . . . , na. Hence, consider the singular value
decomposition (svd) of Υ,

Υ = USVT , (22)

where U ∈ RN×N and V ∈ Rnψ(nb+na)×nψ(nb+na) or-
thonormal matrices whose columns are the left and right
singular vectors of Υ, respectively, and S ∈ RN×nψ(nb+na)

is a diagonal matrix whose elements are the singular val-
ues. It is easy to see that

ΥΥT = UΣ2UT ∈ RN×N , (23)

where Σ2 = SST , is the eigendecomposition of ΥΥT . The
columns of U are the eigenvectors and the entries of the
main diagonal of Σ are the eigenvalues. This is also the

svd because ΥΥT is a semi-definite matrix. From (19),
and after a few simple calculations, thus

ΥΥT =
(
ΦΦT

)
◦
(
ΨΨT

)
, (24)

where ◦ denotes the Hadamard product (element-wise
multiplication), also known as the Schur product, and

Φ= [ϕn+1 · · · ϕn+N ]
T ∈ RN×(na+nb) (25)

Ψ= [ψ(pn+1) · · · ψ(pn+N )]
T ∈ RN×nψ . (26)

The i, j entries ofΨΨT are the inner productsψ(pi)
Tψ(pj).

Hence they can be replaced by a Kernel function satisfying
Mercer theorem, i.e.,

ψ(pi)
Tψ(pj) = Kψ(pi, pj), (27)

where Kψ(·, ·) is such a Kernel function. By doing this,

ΨΨT can be replaced by the Gram matrix

Kψ
N =



Kψ(pn+1, pn+1) · · · Kψ(pn+1, pn+N )

...
...

...
Kψ(pn+N , pn+1) · · · Kψ(pn+N , pn+N )


 ∈ RN×N .

(28)

Notice that ΦΦT is also a Gram matrix because its
elements are inner products too. But here the factors
are known, so there is no need to use any other Kernel
function to denote them (the inner product is itself a
Kernel function known as the linear Kernel). Denoting

ΦΦT as Kϕ
N , then ΥΥT can be replaced by

KN = Kϕ
N ◦Kψ

N , (29)

and U and Σ2 defined in (23) can be found from the svd
decomposition

KN = UΣ2UT . (30)
As KN and Υ have the same column space, they have the
same rank. Hence, when rank (KN ) = r < N, the same
happens with Υ and (22) may be replaced by the reduced
svd

Υ = UrΣrV
T
r (31)

where Ur ∈ RN×r and Vr ∈ Rnψ×r are matrices with the
r-first columns of U and V, and Σr ∈ Rr×r contains the
nonzero singular values. The Minimal Norm LS Estimator
of θ is then given by

θ̂ = Υ†Y = VrΣ
−1
r UT

r Y. (32)

Replacing θ by θ̂ in (17), yields

ŷk = [ϕk ⊗ψ(pk)]
T
θ̂ = [ϕk ⊗ψ(pk)]

T
VrΣrU

T
r Y. (33)

Yet, ŷk cannot be calculated because both ψ(pk) and Vr

are unknown. But if ϕk ⊗ψ(pk) is in the row-space of Υ,
then it is equal to its orthogonal projection into this space,
i.e,

ϕk ⊗ψ(pk) =ΥT
(
ΥΥT

)†
Υ [ϕk ⊗ψ(pk)] = (34)

VrS
−1
r UT

r Υ [ϕk ⊗ψ(pk)] .

Using this result in (33) yields,

ŷk = [ϕk ⊗ψ(pk)]
T
θ̂ = [ϕk ⊗ψ(pk)]

T
ΥTK†

NY. (35)

As

Υ [ϕk ⊗ψ(pk)] =



ϕT

n+1ϕk
...

ϕT
n+Nϕk


 ◦



ψ(pn+1)

Tψ(pk)
...

ψ(pn+N )Tψ(pk)


 ,

(36)

then the inner products ψ(pi)
Tψ(pk), i = n, . . . , n + N

can be replaced by the Kernel function K(pi, pk) and (35)
becomes

ŷk =
(
Kϕ

k ◦Kψ
k

)T

K†
NY (37)

with

Kψ
k =

[
Kψ(pn+1, pk) · · · Kψ(pn+N , pk)

]T
, (38)

Kϕ
k =

[
ϕT

n+1ϕk · · · ϕT
n+Nϕk

]T
. (39)

Finally, defining

Λ̂ = K†
NY ∈ RN , (40)

the output predictor equation may be rewritten as

ŷk =
(
Kϕ

k ◦Kψ
k

)T

Λ̂. (41)

As seen above, it is assumed that ϕk ⊗ ψ(pk) is in the
row-space of Υ. Hence, for accurate ouput predictions,
rank(Υ) = rank(KN ) << N . But, due to noise conditions
the rank of these matrices might be to high. Therefore,
only the principal components of KN are taken and this
approximated by

K̂N = Unk
Σnk

UT
nk

(42)

where Unk
∈ RN×nk is a matrix whose columns are the nk

first singular vectors of KN and Σnk
∈ Rnk×nk a diagonal

matrix with the first nk singular values. A small nk

decreases the variance of the estimates but also increases
the bias. Thus, the use of the principal components acts
as a regularisation. Like the regularisation factor in a
Ridge regression, the number of principal components is
considered as a hyper-parameter. Notice, however, that
finding nk is similar to the model order selection in
a LS problem. Hence, methods for determining model
order such as the Aikaike information criterion (AIC), the
Akaike final prediction error (FPE), etc., can be considered
to find nk.

4. MODEL PARAMETERS

From (40), Λ̂ is the minimal norm LS estimator of Λ such
that

Y = KNΛ+ E . (43)

As KN stands for ΥΥT , this equation may be written as

Y = ΥΥTΛ+ E . (44)

Comparing with (21) it can be concluded that

θ = ΥTΛ, (45)

i.e. Λ̂ is the solution of the LS problem defined by (21) in
a dual space.

From the definitions of Υ, ϕk, uk−1, and yk−1, in (19),
(14), (11) and (12),
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svd because ΥΥT is a semi-definite matrix. From (19),
and after a few simple calculations, thus

ΥΥT =
(
ΦΦT

)
◦
(
ΨΨT

)
, (24)

where ◦ denotes the Hadamard product (element-wise
multiplication), also known as the Schur product, and

Φ= [ϕn+1 · · · ϕn+N ]
T ∈ RN×(na+nb) (25)

Ψ= [ψ(pn+1) · · · ψ(pn+N )]
T ∈ RN×nψ . (26)

The i, j entries ofΨΨT are the inner productsψ(pi)
Tψ(pj).

Hence they can be replaced by a Kernel function satisfying
Mercer theorem, i.e.,

ψ(pi)
Tψ(pj) = Kψ(pi, pj), (27)

where Kψ(·, ·) is such a Kernel function. By doing this,

ΨΨT can be replaced by the Gram matrix

Kψ
N =



Kψ(pn+1, pn+1) · · · Kψ(pn+1, pn+N )

...
...

...
Kψ(pn+N , pn+1) · · · Kψ(pn+N , pn+N )


 ∈ RN×N .

(28)

Notice that ΦΦT is also a Gram matrix because its
elements are inner products too. But here the factors
are known, so there is no need to use any other Kernel
function to denote them (the inner product is itself a
Kernel function known as the linear Kernel). Denoting

ΦΦT as Kϕ
N , then ΥΥT can be replaced by

KN = Kϕ
N ◦Kψ

N , (29)

and U and Σ2 defined in (23) can be found from the svd
decomposition

KN = UΣ2UT . (30)
As KN and Υ have the same column space, they have the
same rank. Hence, when rank (KN ) = r < N, the same
happens with Υ and (22) may be replaced by the reduced
svd

Υ = UrΣrV
T
r (31)

where Ur ∈ RN×r and Vr ∈ Rnψ×r are matrices with the
r-first columns of U and V, and Σr ∈ Rr×r contains the
nonzero singular values. The Minimal Norm LS Estimator
of θ is then given by

θ̂ = Υ†Y = VrΣ
−1
r UT

r Y. (32)

Replacing θ by θ̂ in (17), yields

ŷk = [ϕk ⊗ψ(pk)]
T
θ̂ = [ϕk ⊗ψ(pk)]

T
VrΣrU

T
r Y. (33)

Yet, ŷk cannot be calculated because both ψ(pk) and Vr

are unknown. But if ϕk ⊗ψ(pk) is in the row-space of Υ,
then it is equal to its orthogonal projection into this space,
i.e,

ϕk ⊗ψ(pk) =ΥT
(
ΥΥT

)†
Υ [ϕk ⊗ψ(pk)] = (34)

VrS
−1
r UT

r Υ [ϕk ⊗ψ(pk)] .

Using this result in (33) yields,

ŷk = [ϕk ⊗ψ(pk)]
T
θ̂ = [ϕk ⊗ψ(pk)]

T
ΥTK†

NY. (35)

As

Υ [ϕk ⊗ψ(pk)] =



ϕT

n+1ϕk
...

ϕT
n+Nϕk


 ◦



ψ(pn+1)

Tψ(pk)
...

ψ(pn+N )Tψ(pk)


 ,

(36)

then the inner products ψ(pi)
Tψ(pk), i = n, . . . , n + N

can be replaced by the Kernel function K(pi, pk) and (35)
becomes

ŷk =
(
Kϕ

k ◦Kψ
k

)T

K†
NY (37)

with

Kψ
k =

[
Kψ(pn+1, pk) · · · Kψ(pn+N , pk)

]T
, (38)

Kϕ
k =

[
ϕT

n+1ϕk · · · ϕT
n+Nϕk

]T
. (39)

Finally, defining

Λ̂ = K†
NY ∈ RN , (40)

the output predictor equation may be rewritten as

ŷk =
(
Kϕ

k ◦Kψ
k

)T

Λ̂. (41)

As seen above, it is assumed that ϕk ⊗ ψ(pk) is in the
row-space of Υ. Hence, for accurate ouput predictions,
rank(Υ) = rank(KN ) << N . But, due to noise conditions
the rank of these matrices might be to high. Therefore,
only the principal components of KN are taken and this
approximated by

K̂N = Unk
Σnk

UT
nk

(42)

where Unk
∈ RN×nk is a matrix whose columns are the nk

first singular vectors of KN and Σnk
∈ Rnk×nk a diagonal

matrix with the first nk singular values. A small nk

decreases the variance of the estimates but also increases
the bias. Thus, the use of the principal components acts
as a regularisation. Like the regularisation factor in a
Ridge regression, the number of principal components is
considered as a hyper-parameter. Notice, however, that
finding nk is similar to the model order selection in
a LS problem. Hence, methods for determining model
order such as the Aikaike information criterion (AIC), the
Akaike final prediction error (FPE), etc., can be considered
to find nk.

4. MODEL PARAMETERS

From (40), Λ̂ is the minimal norm LS estimator of Λ such
that

Y = KNΛ+ E . (43)

As KN stands for ΥΥT , this equation may be written as

Y = ΥΥTΛ+ E . (44)

Comparing with (21) it can be concluded that

θ = ΥTΛ, (45)

i.e. Λ̂ is the solution of the LS problem defined by (21) in
a dual space.

From the definitions of Υ, ϕk, uk−1, and yk−1, in (19),
(14), (11) and (12),
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θ= [ϕn+1 ⊗ψ(pn+1) · · · ϕn+N ⊗ψ(pn+N )]Λ = (46)
[
un ⊗ψ(pn+1) · · · un+N−1 ⊗ψ(pn+N )
yn ⊗ψ(pn+1) · · · yn+N−1 ⊗ψ(pn+N )

]
Λ =




unψ(pn+1) · · · un+N−1ψ(pn+N )
...

...
...

un−nb+1ψ(pn+1) · · · un+N−nb
ψ(pn+N )

−ynψ(pn+1) · · · −yn+N−1ψ(pn+N )
...

...
...

−yn−na+1ψ(pn+1) · · · −yn+N−naψ(pn+N )



Λ.

Moreover, from (15),

βi = [un−i+1ψ(pn+1) · · · un+N−nb
ψ(pn+N )]Λ =

n+N∑
j=n+1

λjuj−iψ(pj), i = 1, . . . , nb

αi =− [yn−i+1ψ(pn+1) · · · yn+N−nb
ψ(pn+N )]Λ =

−
n+N∑
j=n+1

λjyj−iψ(pj), i = 1, . . . , na.

Finally, from the definitions of bi(p) and ai(p) in (2) e (3),
and of Kψ(·, ·) in (27), hence

bi(p) = βi T ψ(p) =

n+N∑
j=n+1

λjuj−iK
ψ(pj , p), (47)

ai(p) = αi T ψ(p) = −
n+N∑
j=n+1

λjyj−iK
ψ(pj , p). (48)

5. RELATION WITH THE LS-SVM ESTIMATOR

The LS-SVM proposed by Tóth et. al., to identify ARX-
LPV models solves the following problem

min
θ,E

J (θ,E) = 1

2
θTθ +

γ

2
ETE (49)

such that E = Y −Υθ.

in a dual space, by finding the vector Λ of Lagrange
multipliers, that optimises the Lagrangian

L =
(
θ,E , Λ̂

)
= J (θ,E)− Λ̂

T
(E +Υθ −Y) . (50)

The solution is

Λ̂ =

(
KN +

1

γ
In

)−1

Y. (51)

which is similar to the Λ̂ estimate of the KPCR in (40).
Moreover, both the predictor and model parameters are
given by (41), (47) and (48). Hence, it is expectable
the KPCR and LS-SVM estimators to be almost equal.
However, the KPCR is computationally more efficient
because

(1) The regularisation consists in adding or removing
principal components to the Gram matrix without
having to invert it.

(2) The number of principal components can be found
by the AIC or FPE Akaike criteria. Hence, it is not
necessary to simulate the system to find the hyper-
parameters.

6. CASE STUDY

In this section, the KPCR and LS-SVM performance are
compared using the following simulated example

yk + a1(pk)yk−1 = b1(pk)uk−1 + b2(pk)uk−2 + ek (52)

with

b1(p) =

{−0.5, p < −0.5
p, −0.5 ≤ p ≤ 0.5

0.5, p > 0.5
(53)

b2(p) =−0.2p2 (54)

a1(p) = 0.1
sin(π2p)

π2p
. (55)

MC experiments with 100 runs and SNR=20dB and
SNR=10dB, respectively, have been carried out to com-
pare the statistical properties and reconstruction capa-
bilities of the algorithms. Two versions of the KPCR
algorithm have been implemented. Both versions use the
radius basis function (RBF) as the Kernel function, i.e.,

K(pi, pj) = exp

(
− 1

σ2
(pi − pj)

2

)
. (56)

The difference is the way in which the hyper-parameters
nk, the number principal components, and σ are tuned. In
both cases they are selected from a pre-specified grid but
using different criteria:

KPCR1 - minimises the Akaike FPE index defined as

FPE = ETEN + nk

N − nk
, (57)

where E = Y−KN Λ̂ ∈ RN are the residuals, using the
training data.

KPCR2 - minimises

Jv = ET
v Ev (58)

where Ev is the simulation error over a validation data
set. The LS-SVM algorithm also uses the RBF in (56)
as the Kernel function. Also, the hyper-parameters, γ,
the regularisation factor, and σ, are selected from a pre-
specified grid (with the same range of σ) and minimising
the KPCR2 criterion (58).
1500 input-output data points were generated in every

run of each MC experiment. The input and scheduling
signals, uk and pk, were zero mean independent white
noise sequences uniformly distributed in the interval
[−1, 1] and the equation error, ek, was a zero mean
gaussian white noise with a variance determined by the
SNR level. The first 750 data points were the training
data, and the other half was used to calculate the hyper-
parameters of the KPCR2 and LS-SVM algorithms.
Additionally, a set of 750 noiseless data points was
generated with the input and scheduling signals being
characterised as before but independently generated.
This set has been used to access the accuracy of the
estimated models.
Table 1 displays the minimum, average and maximum

values of the Best Fit Rate (BFR) Index defined as

BFR := 100%max

(
1−

‖y − ŷ‖2
‖y − ȳ‖

, 0

)
,

where y is the output of third data set, ȳ the mean of y,
and ŷ the simulated output with the estimated model.

Table 1. BFRs of the MC experiments.

BFR

SNR Min Avg Max

KPCR1
20dB 94.2550% 97.1928% 97.9748%
10dB 86.2668% 93.2127% 95.7933%

KPCR2
20dB 96.4880 % 97.4691 % 98.2624%
10dB 91.7072% 93.7132% 95.6421%

LS-SVM
20dB 96.8511% 97.5330% 98.1455%
10dB 92.2561% 94.0650% 96.0537%

This table shows that all estimated models accurately
simulated the system revealing a high performance index.
KPCR1 estimates the model much faster, although it pro-
duces slightly lower BFRs. Figures 1-3 display the real and
estimated values of the parameters b1(p), b2(p) and a1(p),
respectively, for SNR=10dB. Solid black lines are the real
values, dashed red lines the KPCR1 estimates (average,
average plus/minus standard deviation), dotted blue lines
the KPCR2 and dash-dotted yellow lines the LS-SVM.
All the algorithms show comparable accuracy in the esti-
mates of b1(p) and b2(p). In Figure 3, it can be observed
that the estimates of a1(p) exhibit more variability, but, as
shown in Table 1, the precision of the simulations has not
been affected, denoting a low sensitivity of the model to
this parameter. It can also be seen in this Figure that the
LS-SVM algorithm yielded the most biased estimates.
This larger bias was compensated by a lower variance.
KPCR1 has the lowest bias and the higher variance which
is due to a larger number of retained principal components.

p

b1(p)

0.5

0.5

−0.5

−0.5

Fig. 1. Parameter b1(p), SNR=10dB.

p
b2(p)

−1 1

−0.2

Fig. 2. Parameter b2(p), SNR=10dB.

p

a1(p)

0.1

−1 1

Fig. 3. Parameter a1(p), SNR=10dB.

7. CONCLUSIONS AND FUTURE WORK

In this paper, a KPCR algorithm for the identification
of ARX-LPV systems is proposed. The LPV parameters
are linear combinations of unknown basis functions. A
LS problem is formulated in a primal space, but it is
solved in a dual space, using a Kernel function to avoid
the lack of knowledge of the regressors. Only the prin-
cipal components of the Gram matrix are retained to
circumvent its singularity and ill conditioning. The num-
ber of principal components also defines the dimension
of the primal space and may be determined by the AIC
and FPE Akaike criteria yielding a high computationally
efficient way of determining the hyper-parameters. The
new algorithm is closely related to the LS-SVM approach,
recently introduced to solve the same problem. Its main
difference is the regularisation of the Gram matrix. In a
case study two versions of the KPCR algorithm (KPCR1
and KPCR2) were compared with the LS-SVM through
MC experiments with SNR=20dB and SNR=10dB. The
different versions are obtained by using different criteria
to select the hyper-parameters. The precision shown by
both versions is comparable to the one of the LS-SVM for
both noise levels. The KPCR1 produced the less biased
estimates although with the higher variance.

In future work, the KPCR approach will be used to iden-
tify more general LPV model structures, including state-
space LPV with the MOLI parameterisation (Romano
et al. (2016b)). It was referred above that the number of
principal components defines the dimension of the primal
space where the underlying LS problem is defined. Based
on this, it will be investigated if a solution can be found
in this primal space. Finally, the predictor in (41) assumes
that the regressor ϕk ⊗ ψ(pk) is in the row-space of the
regressors’ matrix Υ. It will be studied whether it is
possible to check this condition prior to the simulation
in a unsupervised data-driven learning framework.
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Table 1. BFRs of the MC experiments.

BFR

SNR Min Avg Max

KPCR1
20dB 94.2550% 97.1928% 97.9748%
10dB 86.2668% 93.2127% 95.7933%

KPCR2
20dB 96.4880 % 97.4691 % 98.2624%
10dB 91.7072% 93.7132% 95.6421%

LS-SVM
20dB 96.8511% 97.5330% 98.1455%
10dB 92.2561% 94.0650% 96.0537%

This table shows that all estimated models accurately
simulated the system revealing a high performance index.
KPCR1 estimates the model much faster, although it pro-
duces slightly lower BFRs. Figures 1-3 display the real and
estimated values of the parameters b1(p), b2(p) and a1(p),
respectively, for SNR=10dB. Solid black lines are the real
values, dashed red lines the KPCR1 estimates (average,
average plus/minus standard deviation), dotted blue lines
the KPCR2 and dash-dotted yellow lines the LS-SVM.
All the algorithms show comparable accuracy in the esti-
mates of b1(p) and b2(p). In Figure 3, it can be observed
that the estimates of a1(p) exhibit more variability, but, as
shown in Table 1, the precision of the simulations has not
been affected, denoting a low sensitivity of the model to
this parameter. It can also be seen in this Figure that the
LS-SVM algorithm yielded the most biased estimates.
This larger bias was compensated by a lower variance.
KPCR1 has the lowest bias and the higher variance which
is due to a larger number of retained principal components.
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0.5

0.5

−0.5

−0.5

Fig. 1. Parameter b1(p), SNR=10dB.

p
b2(p)

−1 1
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Fig. 2. Parameter b2(p), SNR=10dB.
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0.1
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Fig. 3. Parameter a1(p), SNR=10dB.

7. CONCLUSIONS AND FUTURE WORK

In this paper, a KPCR algorithm for the identification
of ARX-LPV systems is proposed. The LPV parameters
are linear combinations of unknown basis functions. A
LS problem is formulated in a primal space, but it is
solved in a dual space, using a Kernel function to avoid
the lack of knowledge of the regressors. Only the prin-
cipal components of the Gram matrix are retained to
circumvent its singularity and ill conditioning. The num-
ber of principal components also defines the dimension
of the primal space and may be determined by the AIC
and FPE Akaike criteria yielding a high computationally
efficient way of determining the hyper-parameters. The
new algorithm is closely related to the LS-SVM approach,
recently introduced to solve the same problem. Its main
difference is the regularisation of the Gram matrix. In a
case study two versions of the KPCR algorithm (KPCR1
and KPCR2) were compared with the LS-SVM through
MC experiments with SNR=20dB and SNR=10dB. The
different versions are obtained by using different criteria
to select the hyper-parameters. The precision shown by
both versions is comparable to the one of the LS-SVM for
both noise levels. The KPCR1 produced the less biased
estimates although with the higher variance.

In future work, the KPCR approach will be used to iden-
tify more general LPV model structures, including state-
space LPV with the MOLI parameterisation (Romano
et al. (2016b)). It was referred above that the number of
principal components defines the dimension of the primal
space where the underlying LS problem is defined. Based
on this, it will be investigated if a solution can be found
in this primal space. Finally, the predictor in (41) assumes
that the regressor ϕk ⊗ ψ(pk) is in the row-space of the
regressors’ matrix Υ. It will be studied whether it is
possible to check this condition prior to the simulation
in a unsupervised data-driven learning framework.
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