
Secure Multiparty Computation from SGX?

Raad Bahmani1, Manuel Barbosa2, Ferdinand Brasser1, Bernardo Portela2, Ahmad-Reza Sadeghi1, Guillaume
Scerri3, and Bogdan Warinschi4

1 Technische Universität Darmstadt
2 HASLab – INESC TEC & DCC-FCUP

3 Université de Versailles St-Quentin – INRIA
4 University of Bristol

Abstract. Isolated Execution Environments (IEE) offered by novel commodity hardware such as Intel’s SGX
deployed in Skylake processors permit executing software in a protected environment that shields it from a
malicious operating system; it also permits a remote user to obtain strong interactive attestation guarantees
on both the code running in an IEE and its input/output behaviour. In this paper we show how IEEs provide
a new path to constructing general secure multiparty computation (MPC) protocols. Our protocol is intuitive
and elegant: it uses code within an IEE to play the role of a trusted third party (TTP), and the attestation
guarantees of SGX to bootstrap secure communications between participants and the TTP. In our protocol
the load of communications and computations on participants only depends on the size of each party’s inputs
and outputs and is thus small and independent from the intricacy of the functionality to be computed. The
remaining computational load– essentially that of computing the functionality – is moved to an untrusted
party running an IEE-enabled machine, an appealing feature for Cloud-based scenarios. However, as often
the case even with the simplest cryptographic protocols, we found that there is a large gap between this
intuitively appealing solution and a protocol with rigorous security guarantees. We bridge this gap through
a comprehensive set of results that include: i. a detailed construction of a protocol for secure computation
for arbitrary functionalities; ii. formal security definitions for the security of the overall protocol and that of
its components; and iii. a modular security analysis of our protocol that relies on a novel notion of labeled
attested computation. We implemented and extensively evaluated our solution on SGX-enabled hardware,
providing detailed measurements of our protocol as well as comparisons with software-only MPC solutions.
Furthermore, we show the cost induced by using constant-time, i.e., timing side channel resilient, code in our
implementation.

1 Introduction

Secure multiparty computation (MPC) allows a set of parties to collaboratively execute a distributed computation
using a cryptographic protocol, with the same security and privacy guarantees that would result from relying on
a Trusted Third Party (TTP) to compute the same functionality in an ideally secure setting. Functionalities can
be very simple, for example allowing one party to commit to a secret value and later on reveal it; or they can be
highly complex, for example an electronic voting system. Functionalities may also be reactive (i.e., keep a state and
respond to external stimuli) or they can be stateless, as in the case of the one-shot evaluation of a function (this
scenario is usually called secure function evaluation). In any case, participants expect that their inputs remain as
secret as in the computation of the functionality computed by the TTP.

In a seminal paper, Katz [28] shows how to bootstrap (universally composable) MPC in a setting where users
have access to tamper-proof tokens on which they can load arbitrary code. The required guarantee is that anyone in
possession of the token learns nothing beyond the input/output behaviour of the embedded code. For this setting,
Katz shows that one can implement universally composable commitments [13], and hence arbitrary multiparty
computation [14]. This result is theoretically important as it makes no additional setup assumptions, yet from a
practical perspective the solution relies on unavailable and unfeasiable to deploy hardware.

In this paper we study general MPC from novel trusted hardware that is currently shipped on commodity
PCs: Intel’s Software Guard Extensions [27]. The main security capability that such hardware offers are Isolated
Execution Environments (IEE) – a powerful tool for boosting trust in remote systems under the total or partial
control of malicious parties (hijacked boot, corrupt OS, running malicious software, or simply a disonest service
provider). Specifically, code loaded in an IEE is executed in isolation from other software present in the system,5

? This work was supported by the European Union’s 7th Framework Program (FP7/2007-2013) under grant agreement n.
609611 (PRACTICE).

5 We discuss the issue of side-channels that may disrupt the isolation barrier at the end of the paper.

and built-in cryptographic attestation mechanisms guarantee the integrity of the code and its I/O behaviour to a
remote user.

The functionality outlined above suggests a simple, natural, and effective design for general multiparty compu-
tation: load the functionality to be computed into an IEE (which plays the role of a trusted third party) and have
users provide inputs and receive outputs via secure channels to the IEE. Attestation ensures that the function and
its inputs have not been tampered with and that the users receive, untampered, the outputs of the computation.
The resulting protocol is extremely efficient when compared to existing solutions that cannot rely on such hard-
ware assumptions. Indeed, the load of communications and computations on protocol participants is very small
and independent of the intricacy of the functionality that is being computed; it depends only on the size of each
party’s inputs and outputs. The remaining computational load — essentially that of computing the functionality
expressed as a transition function in a standard programming language — is moved to an untrusted party running
an IEE-enabled machine. This makes the protocol very appealing for Cloud scenarios.

The appealing intuition obscures the significant gap between this simple idea and a cryptographic protocol with
rigorous security guarantees. There are multiple obstacles to overcome, including: i. the lack of private channels
between the users and the remote machine; ii. the need to authenticate/agree on a computation in a setting where
communication between parties is inherently asynchronous and only mediated by the IEE; iii. the need to ensure
that the “right" parties are engaged in the computation; iv. dealing with the interaction between different parts
of the code that coexist within the same IEE, sharing the same memory space, each potentially corresponding to
different users; and v. ensuring that the code running inside an IEE does not leak sensitive information to untrusted
code running outside.

In this paper we bridge this gap through a comprehensive set of results that include: i. a detailed construction
of a protocol for MPC computation for arbitrary functionality; ii. formal security definitions for the security of the
overall protocol and that of its components; iii. a modular security analysis of our protocol that relies on a novel
notion of labelled attested computation; and iv. an open-source implementation of our protocol and a detailed
experimental analyis in SGX-enabled hardware.

1.1 Our results

Generic secure multiparty computation. The main result of the paper is a highly efficient protocol for the
secure multiparty computation of an arbitrary reactive functionality F . The protocol follows the simple design
outlined earlier. We load into an IEE code that first executes (in parallel) key-exchanges with the intended users;
the code then executes whatever (reactive) functionality F one would like to implement. In this latter stage, the
input/output communication is over secure channels initialized with the keys exchanged earlier. The communication
and computational load for a user comprises a standard key exchange, a constant number of public key signature
verifications, and the secure transfer of inputs/outputs to/from the functionality using authenticated encryption.
This makes the client-side of the protocol suitable for deployment in (modest) mobile devices. Importantly, the
computational overhead on the server side is also very small. Finally, our protocol is non-interactive in the sense
that each user can perform an initial reusable set-up, and then provide its inputs and receive outputs independently
of other protocol participants, which means that it provides a solution for “secure computation on the web” [24]
with standard MPC security.

We provide a rigorous analysis of security for our protocol in a simulation-based security model where the
adversary controls an IEE-enabled remote machine. We model this machine as an incorruptible party, which can be
seen as a new hardware assumption. Our execution model allows the adversary to control all the communications
between protocol participants and this remote machine, but it does not allow the adversary to corrupt the machine
itself. The security assumptions on this type of hardware differ from those considered in [28]: the honest parties
never access trusted hardware directly. Access to hardware is always through the attacker, who can manipulate the
code submitted by an honest participant. The downside of our approach, in addition to the obvious requirement
that one trusts the hardware manufacturer, is that we still require a PKI to authenticate public parameters (namely
those of the SGX machine) and we focus on the static corruption model. Our choices also have implications in the
composability of our results and, indeed, recent independent work [36] sheds some light on this issue. We expand
on this in the related work section.
Labeled attested computation. Our protocol relies on ideal functionalities viewed as programs written as
transition functions in a programming language compatible with the IEE-enabled machine. We instrument these
programs to run inside an IEE and add bootstrapping code that permits protocol participants to establish indepen-
dent secure channels with the functionality so that they can send inputs and receive outputs from it. The crux of the
protocol is to ensure the attestation guarantees which convince the parties that they are involved in the “right" run

of the protocol (i.e. with the right parties all interacting with the same IEE). The required technical component is
inspired by the recent work of Barbosa et al.[2] who show how to use IEEs to securely outsource computation. Part
of their work develops the concept of Attested Computation (AC) as an abstraction of the basic integrity assurances
specific to IEEs. As far as our protocol is concerned, their definition has two important limitations. First, the local
user needs to know all of the input/output that occurred at the IEE interface and, secondly, attestation only works
for a (entirely known) prefix of the computation. Both of these restrictions make the AC notion of [2] inapplicable
to a setting where multiple parties are involved in the communication with the IEE and where, for efficiency, it is
critical that each party is able to asynchronously provide input and retrieve outputs from a functionality running
within.

To overcome these problems, we propose a novel notion of labelled attested computation (LAC). In LAC, at-
tested outputs provide integrity guarantees on well-defined sequences of computational steps, even when these are
interleaved with other (potentially) unknown computations. Furthermore, the integrity of these outputs is publicly
verifiable. We achieve this level of fine-grained control by appending labels to inputs, and binding together the
inputs and outputs that correspond to a particular label. To understand the power of this generalized version of
attested computation, consider the problem of n parties establishing n independent secure channels with an IEE.
Then, the IEE should be running code of the form (K1 |K2 | . . . |Kn) ; Q where each Ki is a key exchange protocol
that corresponds to a different user, and Q is some code that will use the derived keys to communicate with each
party. Using LAC, one assigns a different label to the key exchange of each user (say the identity of the user that
should be running that key exchange); LAC then guarantees, for each user, that the steps of its key exchange (and
only those) have been executed properly. Attestation only requires the user’s own communication with the IEE
and is independent of the other exchanges. Furthermore, since the attestation guarantees provided by LAC bind
an attested trace to the code running within the IEE, a local user can be sure that the other key exchanges are
being executed with specific parties: the code running inside the IEE will contain public cryptographic material
that enables the IEE to authenticate all the local parties and hence authenticating the code implicitly authenticates
all the parties participating in the protocol.

We provide syntax and a formal security model for LAC and show how this primitive can be used to deploy
arbitrary (labelled) programs to remote IEEs with flexible attestation guarantees. Our provably secure LAC protocol
relies on hardware equipped with SGX-like IEEs. Our results allow for compositional proofs and, for that, we
formalize the interplay between LAC and program composition. In particular, we formalize what it means for a key
exchange program to be composed with other arbitrary code and outsourced with desirable attestation guarantees.
Indeed, we show that by enforcing syntactic restrictions on the composition pattern and a minimal leakage security
property on the LAC scheme,6 one can use the specific flavour of key exchange for attested computation introduced
in [2] to bootstrap an arbitrary number of independent secure channels between local users and an IEE; we call this
a key exchange utility theorem. This is an extension of the utility theorem in [2], where we leverage the additional
power of LAC to tackle a (labelled) parallel/sequential program composition pattern.

Our solution combines our SGX-specific authenticated key exchange, the LAC scheme, and hardwiring partici-
pant’s keys in the isolated code. Analysing this solution requires subtle reasoning about attested traces of specific
sub-components of the isolated program, provided independently to different parties; this type of reasoning is be-
yond the results in [3], which only considers the attestation of a prefix of the full program trace. LAC is the key
stepping stone for dealing with fine-grained attestation guarantees of arbitrarily composed programs, which not
only solves this particular problem, but also paves the way for the modular analysis of other protocols relying on
IEEs.

We also expect LAC to find applications beyond the specific one that we consider in this paper. For example,
an application which should be a direct application of LACs is the implementation of a secure bulletin board.
Consider an IEE which receives inputs (which can optionally be authenticated) and appends them to an internally
maintained bulletin board. Upon request of an arbitrary party, the IEE returns the current content of the IEE.
The desired security is obtained by attesting (only) this communication step.

Implementation and experimental validation. To obtain an accurate estimate of the performance of our
protocol in the real world, we have constructed two implementations—sgx-mpc-mbed and sgx-mpc-nacl— which
are open-source and will be made publicly available. The core difference between the two implementations is the
underlying cryptography: sgx-mpc-mbed relies on the mbed TLS7 (formerly PolarSSL) library, whereas sgx-mpc-nacl

6 Minimal leakage ensures that the outsourced instrumented program P ∗ reveals no information about its internal state
beyond what the normal input/output behavior of the original program P would reveal.

7 https://tls.mbed.org/

https://tls.mbed.org/

relies on the NaCl8 cryptographic library [8]. They differ both on the underlying cryptographic technology and on
the level of protection against timing side-channel attacks:
– sgx-mpc-mbed inherits the standard trust model underlying TLS implementations such as mbed TLS, openSSL

or AWS’s S2N library, which places the adversary on the network.9 This means that the end-point machine is
assumed to be trusted, so defending against timing attacks launched from within the machine in which an imple-
mentation is running is usually seen as an overkill. The standard approach is to eliminate significant variations
in execution time that might be observable from outside the machine. Furthermore, sgx-mpc-mbed uses stan-
dard RSA technology for the key exchange stage, and an AES128-CTR and HMAC-SHA256 Encrypt-Then-Mac
construction for authenticated encryption.

– sgx-mpc-nacl inherits the more ambitious trust model underlying the NaCl library in what concerns timing attacks.
The entire implementation follows a stricter side-channel countermeasure coding policy called constant-time—this
excludes all control-flow or memory access patterns that depends on secret data. This coding policy is generally
accepted as the best software-based countermeasure against timing attacks that one can adopt, eliminating attack
vectors that may arise, not only from direct measurements of execution time, but also from indirect ones relying
for example on cache and page fault correlations. On the downside, it typically implies a performance penalty
that may be minimized by aggressive optimizations at the assembly level. sgx-mpc-nacl uses elliptic-curve based
technology for both key exchange (Diffie-Hellman) and digital signatures, and a combination of the Salsa20 and
Poly1305 encryption and authentication schemes [8] for authenticated encryption.

We conclude the paper with an experimental evaluation of our protocol based on these implementations. In partic-
ular, we include a detailed comparison of our solution to state-of-the-art multiparty computation protocols using
a series of benchmarks commonly used in the literature. The experimental results confirm the theoretical perfor-
mance advantages that we have highlighted above in comparison to non hardware-based solutions. We also include
a detailed discussion of the issue of side-channels in SGX-like systems and an assessment of the impact of adopting
stricter coding policies aiming to thwart timing attacks.
Structure of the paper. The document structure is as follows. Section 2 presents preliminary definitions.
Section 3 formalizes notions of IEEs, Programs and Machines. Sections 4 and 5 describe our primitive for IEE-
enabled machines LAC and propose a construction. Section 6 and 7 detail a model for secure computation using
LAC and propose a protocol. Section 8 is dedicated to implementation and evaluation analysis of the protocol.
Section 9 concludes the document and suggests future research directions.

1.2 Related work

The closest works to ours are that of Katz [28] who considers the use of specific trusted hardware to bootstrap
multiparty computation and that by Barbosa et al. [2] who are specifically concerned with employing SGX-like
capabilities for securely outsourcing arbitrary computation. We next review other related literature.
Attestation. In recent independent work Pass, Shi and Tramer [36] formalize attestation guarantees offered by
trusted hardware in the Universal Composability setting, and consider the feasibility of achieving UC-secure MPC
starting from a hardware assumption formalized in very much the same style as we model SGX. Interestingly, they
show that in the setting that they consider (Universal Composability with a Global Setup (GUC) [12]) multiparty
computation is impossible to achieve without additional assumptions, unless all parties have access to trusted
hardware. They also provide UC secure protocols that solve the problem by both providing access to SGX to all
parties or introducing additional set-up assumptions. The resulting protocols are more intricate and less efficient
than the one we propose here. The work in this paper can therefore be seen as providing a practice-oriented
description and security proof of the most natural MPC protocol relying on SGX, where we forsake composability
for efficiency, while still preserving strong privacy guarantees for the inputs to the computation. Furthermore, as was
mentioned in [36], composability may be achieved by introducing an independent set-up of the trusted hardware
for each protocol that is executed. This may be problematic for one-shot functionalities, but here we deal with
arbitrarily complex reactive functionalities that may execute over a long period of time.

A relevant line of research leverages trusted hardware to bootstrap entire platforms for secure software execution
(e.g. Flicker [33], Trusted Virtual Domains [15], Haven [4]). These are large systems that are currently outside the
scope of provable-security techniques. Smaller protocols which solve specific problems (secure disk encryption [34],
one-time password authentication [26] outsourced Map-Reduce computations [37], Secure Virtual Disk Images [21],

8 https://nacl.cr.yp.to
9 A good description of this model is available on the web site of the recent CacheBleed attack (https://ssrg.nicta.com.
au/projects/TS/cachebleed/).

https://nacl.cr.yp.to
https://ssrg.nicta.com.au/projects/TS/cachebleed/
https://ssrg.nicta.com.au/projects/TS/cachebleed/

two-party computation [23], secure embedded devices [35,30]) are more susceptible to rigorous analysis. Although
some protocols (e.g., those of Hoekstra et al. [26]) come only with intuition regarding their security, others—most
notably those by Schuster et. al [37] which uses SGX platforms to outsource map-reduce computation—come with
a proof of security. The use of attestation in those protocols is akin to our use of attestation in our general MPC
protocol. Provable security of realistic protocols that use trusted hardware-based protocols has considered protocols
based on the Trusted Platform Module (TPM) [11,38,10,20,19]. The weaker capabilities offered by the TPM makes
them more suitable for static attestation than for a dynamic setting like the one we consider in this paper.
Multiparty Computation. The overarching goal of our work is shared with the rich literature on software-only
multiparty secure computation. We mention here the works that are close to ours in the sense that they aim to
bring secure multiparty computation to practice.

Fairplay is a system originally developed to support two-party computation [32] and then extended to Fair-
playMP to support multiparty computation [6]: Fairplay implements a two party computation protocol in the
manner suggested by Yao; FairplayMP is based on the Beaver-Micali-Rogaway protocol. Sharemind [9] is a secure
service platform for data collection and analysis, employing a 3-party additive secret sharing scheme and provably
secure protocols in the honest-but-curious security model with no more than one passively corrupted party. TASTY
(Tool for Automating Secure Two-partY computations) is a tool suite addressing secure two-party computation in
the semi-honest model [25] whose main feature allows to compile and evaluate functions not only using garbled
circuits, but also homomorphic encryption schemes, at the same time. SPDZ [17] is a protocol for general multi
party computations considering active adversaries and tolerating the corruption of n− 1 out of the n parties, lever-
aging a pre-processing stage for exchanging randomness between participants, towards reducing communication
requirements associated with the on-line stage.

The main advantage of our solution with respect to the previous systems is its efficiency both for the parties that
provide inputs and collect outputs from the computation, and those that perform the computation. In all of the
above solutions, the computation is distributed, and the communication load for parties performing the computation
grows (with varying degrees of scalability) with the complexity of the computed functionality (often expressed as
a circuit). In our solution, a single party (the owner of the IEE-enabled machine) performs the computation which
is run essentially as fast as the program that computes it in the clear, so the overhead is reduced to establishing
secure channels with all other participants. For these parties, the overhead is a single key exchange, and then all
the inputs and outputs are transferred using standard authenticated encryption. On the downside, although our
protocol is secure in the presence of active adversaries, we only consider static corruptions and rely on a strong
trust assumption in idealizing the IEE-enabled machine.

The document structure is as follows. Section 2 presents preliminary definitions. Section 3 formalizes notions of
IEEs, Programs and Machines. Sections 4 and 5 describe our primitive for IEE-enabled machines LAC and propose
a construction. Section 6 and 7 detail a model for secure computation using LAC and propose a protocol. Section
8 is dedicated to implementation and evaluation analysis of the protocol. Section 9 concludes the document and
suggests future research directions.

2 Preliminaries

2.1 Message Authentication Codes

Syntax. A message authentication code scheme Π is a triple of PPT algorithms (Gen, Auth, Ver). On input 1λ,
where λ is the security parameter, the randomized key generation algorithm returns a fresh key. On input key
and message m, the deterministic MAC algorithm Auth returns a tag t. On input key, m and t, the deterministic
verification algorithm Ver returns T or F indicating whether t is a valid MAC for m relative to key. We require that,
for all λ ∈ N, all key ∈ [Gen(1λ)] and all m, it is the case that Ver(key,m, (Auth(key,m))) = T.
Security. We use the standard notion of existential unforgeability for MACs [5]. We say that Π is existentially
unforgeable if AdvAuth

A,Π (λ) is negligible for every ppt adversary A, where advantage is defined as the probability that
the game in Figure 1 (top) returns T.

2.2 Digital Signature Schemes

Syntax. A signature scheme Σ is a triple of PPT algorithms (Gen,Sign,Vrfy). On input 1λ, where λ is the security
parameter, the randomized key generation algorithm returns a fresh key pair (pk, sk). On input secret key sk and
message m, the possibly randomized signing algorithm Sign returns a signature σ. On input public key pk, m and σ,

Game AuthΠ,A(1λ):
List← []

key←$ Gen(1λ)

(m, t)←$ AAuth(1λ)
Return Ver(key,m, t) = T ∧m 6∈ List

Oracle Auth(m):
List← (m : List)
t← Mac(key,m)
Return t

Game UFΣ,A(1λ):
List← []

(pk, sk)←$ Gen(1λ)

(m, σ)←$ ASign(1λ, pk)
Return Vrfy(pk,m, σ) = T ∧m 6∈ List

Oracle Sign(m):
List← (m : List)
σ ← Sign(sk,m)
Return σ

Fig. 1. Games defining the security of a MAC scheme (top) and a signature scheme (bottom).

Game INDΛ,A(1λ):
List← []

key←$ Gen(1λ)

(m0,m1)←$ AEncrypt,Decrypt
1 (1λ)

b←$ {0, 1}
m′←$ Enc(key,mb)

b′←$ AEncrypt,Decrypt
2 (m0,m1,m′)

If m′ ∈ List: b′←$ {0, 1}
Return b = b′

Oracle Encrypt(m):
Return Enc(key,m)

Oracle Decrypt(m′):
List← (m′ : List)
m← Dec(key,m′)
Return m

Game UFΛ,A(1λ):
List← []

key←$ Gen(1λ)

m′←$ AEncrypt(1λ)
If Dec(key,m′) 6=⊥ ∧ m′ 6∈ List:

Return T
Return F

Oracle Encrypt(m):
m′ ← Sign(sk,m)
List← (m′ : List)
Return m′

Fig. 2. Games defining ciphertext indistinguishability (top) and existential unforgeability (bottom) of an authenticated
encryption scheme.

the deterministic verification algorithm Vrfy returns T or F indicating whether σ is a valid signature for m relative to
pk. We require that, for all λ ∈ N, all (pk, sk) ∈ [Gen(1λ)] and all m, it is the case that Vrfy(pk,m, (Sign(sk,m))) = T.
Security. We use the standard notion of existential unforgeability for signature schemes [22]. We say that Σ is
existentially unforgeable if AdvUF

A,Σ(λ) is negligible for every ppt adversary A, where advantage is defined as the
probability that the game in Figure 1 (bottom) returns T.

2.3 Authenticated Encryption Schemes

Syntax. An authenticated encryption scheme Λ is a triple of PPT algorithms (Gen, Enc, Dec). On input 1λ, where
λ is the security parameter, the randomized key generation algorithm returns a fresh key. On input key key and
message m, the randomized encryption algorithm Enc returns a ciphertext m′. On input key key and ciphertext m′,
the deterministic decryption algorithm Dec returns the decrypted message m, or ⊥ if the ciphertext is found to be
invalid. We require that, for all λ ∈ N, all key ∈ [Gen(1λ)] and all m, it is the case that m = Dec(key,Enc(key,m)).
Security. We use the standard notions of indistinguishability and existential unforgeability for authenticated
encryption schemes [29]. We say that Λ provides ciphertext indistinguishability if AdvIND

A,Λ(λ) is negligible for every
ppt adversary A, where advantage is defined as the probability that the game in Figure 2 (top) returns T over
the random guess. We say that Λ is existentially unforgeable if AdvUF

A,Λ(λ) is negligible for every ppt adversary A,
where advantage is defined as the probability that the game in Figure 2 (bottom) returns T.

2.4 Key Exchange

We recall here the notion of Key Exchange for Attested Computation (AttKE) from [2]. This notion is tailored
to establish a secure key with a remote program running inside an IEE; the remote program includes a first stage
where the key is derived using a key exchange subprogram called RemKE and an arbitrary second stage program that
uses the derived key. Active security in the key exchange protocol is achieved by running RemKE using attestation
mechanisms provided by the IEE. We will see in this paper that the exact same notion of AttKE can be used

together with Labelled Attested Computation in a much wider program composition context and, particularly, to
enable multiple parties to establish independent secure channels to the same IEE.
Syntax. An AttKE is defined as a pair of algorithms (Setup, LocKE). On input the security parameter 1λ and the
local party identity id, Setup generates the part of the key exchange intended for remote execution RemKE, and
the initial state stL of the local part of the key exchange LocKE. Setup is intended to generate a fresh instance of
the AttKE protocol between the party with identity id and a remote IEE. The dynamically generated RemKE will
be run remotely in an IEE, under the protection of a LAC scheme, following some composition pattern. On input
m and local state stL, LocKE returns the next message intended for the remote part of the key exchange and an
updated state.

We require the local and remote parts of an AttKE to keep a set of variables in their states. The execution state
of the AttKE is kept as δ ∈ {derived, accept, reject,⊥}. The derived key is stored as key. It is supposed to be ⊥ if
δ 6∈ {derived, accept}. The identity of the owner of the instance is represented as oid. This will be initialised on the
fly for the remote part. The identity of the partner of the session is stored in variable pid. This will typically be set
at generation for RemKE and constructed during execution for LocKE. Finally the session identifier sid, will typically
be constructed on the fly. An AttKE is correct if, after an honest run of a local instance and the corresponding
remote instance, both accept, derive the same key and agree on sid, pid and oid.
Security. The adversary model for AttKE security is tailored so that active security is provided when adding
attestation to the remote part. This adversary is a middle ground between a passive and an active adversary. The
security model considers an adversary which has access to oracles whose behaviour depend on a bit b and a list
of pairs of real and fake keys, one for each instance. In addition to the oracles initialising new local and remote
instances (multiple instances of the same remote instance can be created), the following oracles are provided:
– Reveal: when queried on a local or remote instance, it returns the corresponding derived key.
– Test: when queried on a local or remote instance, it returns ⊥ if δ 6= accept; otherwise, if b = 0 it returns key and

it returns fake(key) if b = 1.
– Send allows delivering messages between instances, making sure that messages from remote instances to local

instances are reliably delivered. The messages delivered to remote instances, however, are arbitrary. This oracle
updates the instances according to the message delivered and returns the response, together with the correspond-
ing pid, sid and δ.
The model keeps track of local instances LoclKE created by the local identity id and remote instances Remi,j

KE

(there can be many copies of RemKE for each locally initialized session. A local and a remote instance are partnered
if δi,j , δl ∈ {derived, accept} and they agree on sid. We further restrict the adversary, by disallowing Test queries if
Reveal was queried for this instance or a partnered instance.

We say that a protocol ensures valid partners if, for every partnered LoclKE and Remi,j
KE, pidl = oidi,j , oidl = pidi,j

and the derived key is the same for both instances. We say that a protocol ensures confirmed partners if when an
instance of the key exchange accepts, it has at least one partner. We say that a protocol ensure unique partners
if each instance is partenered with at most one other instance. A protocol ensures two sided authentication if it
ensures these three properties with overwheming probablility, in the presence of an adversary with access to the
aforementioned oracles.

Definition 1 (AttKE security). An AttKE protocol is secure if the protocol ensures two sided authentication,
and for any ppt adversary A, as described above, and for any local identity id, the probability of A guessing b is
overwhelmingly close to 1/2.

3 IEEs, Programs, and Machines

The models that we develop in this paper rely on the cryptographic model for IEEs introduced in [2]. Here we
recall the key features of that model – for more details we refer the reader to [2]. An IEE is viewed as an idealised
machine running some fixed program P and which exposes an interface through which one can pass inputs and
receive outputs to/from P . The I/O behaviour of a process running in an IEE is determined by the program it is
running, the semantics of the language in which the program is written, and the inputs it receives. The interface
essentially guarantees that the only information that is revealed about a program running within an IEE is contained
in its input-output behaviour and models the strict isolation between processes running in different IEEs (and any
other program running on the machine).
Programs. The programs are assumed to be written in some programming language L enriched with IEE system
calls. These calls give access to different cryptographic functionalities offered by security module interface. The

Program 〈P1 | . . . |Pn〉p1,...,pn [st](l, i):
If st = ε : For i ∈ [1..n] : st.finished.pi ← F; st.pi ← ε
If (∧ni=1 st.finished.pi) : Return ε
If ∃k ∈ [1..n] s.t. l = (pk, l

′) :
If ¬st.finished.pk :

o←$ Pk[st.pk](l
′, i)

st.finished.pk ← o.finished
Else: o← ε

Else: o←⊥
Return (∧ni=1 st.finished.pi, o)

Program 〈P ; Q〉φ,p,q [st](l, i):
If st = ε : st.stage← 0; st.finished← F st.st′ ← ε
If st.finished : Return ε
If st.stage = 0 ∧ l = (p, l′) :

o←$ P [st.st′](l′, i)
If o.finished : st.stage← 1; st.st′ ← φ(st.st′)

Else:
If st.stage = 1 ∧ l = (q, l′) :

o←$ Q[st.st′](l′, i)
st.finished← o.finished

Else: o←⊥
Return (st.stage, st.finished, o)

Fig. 3. Parallel (top) and sequential (bottom) program composition.

cryptography offered may differ between IEEs. The language L is assumed to be deterministic modulo the operation
of system calls; in particular we assume a system call rand which gives access to fresh random coins sampled
uniformly at random. As mentioned above, it is important for our results that system calls cannot be used by a
program to store additional implicit state that would escape our control. To this end, we impose that the results
of system calls within an IEE can depend only on: i. an initially shared state that is defined when a program is
loaded (e.g., the cryptographic parameters of the machine, and the code of the program); ii. the input explicitly
passed on that particular call; and iii. fresh random coins. As a consequence of this, we may assume that system
calls placed by different parts of a program are identically distributed, assuming that the same input is provided.
This is particularly important when we consider program composition below.

We use the same model for programs as [2] (extended to the settings where inputs/outputs are labeled):
transition functions which take a current state st and a label-input pair (l, i), and produce a new output o and an
updated state. We write o← P [st](l, i) for each such action and refer to it as an activation. Throughout the paper
we restrict our attention to programs (even if they are adversarially created) for which the transition funtion is
guaranteed to run in polynomial-time.10 Unless otherwise stated, st is assumed to be initially empty. We impose
that every output produced by a program includes a Boolean flag finished that indicates whether the transition
function will accept further input. We will denote by o.finished the value of this flag in some output o. The transition
function may return arbitrary outputs until it produces an output where finished = T, at which point it can return
no further output or change its state. Some programs may not use labels internally and, in that case, we simply
pass it the empty string at the label input.

We extend our notation to account for probabilistic programs that invoke the rand system call. We write
o ← P [st; r](l, i) for the activation of P which when invoked on labeled input (l, i) (with internal state st and
random coins r) produced output o. We write a sequence of activations as (o1, . . . , on) ← P [st; r](l1, i1, . . . , ln, in)
and denote by TraceP [st;r](l1, i1, . . . , ln, in) the corresponding input/output trace (l1, i1, o1, . . . , ln, in, on). When
dealing with a trace T , we will use filter[L](T) to denote the projection of the trace that retains only I/O pairs that
correspond to labels in L. We abuse notation and use filter[l] when L is a singleton.
Program composition. We extend the basic notion of program composition in [2] to consider the two general
label-based forms of program composition shown in Fig. 3 that can be applied recursively and interchangeably to
create arbitrarily complex programs in a modular way.

By parallel composition of programs P1, . . . Pn, denoted 〈P1 | . . . |Pn〉p1,...,pn , we mean the transition function
that takes inputs with extended labels of the form (pi, l)

11—here pi are bitstrings used to identify the target program,
where we assume pi 6= pj for i, j distinct—and dispatches incoming label-input pairs to the appropriate program.
In parallel composition we exclude the possibility of state sharing between programs, and define termination to
occur when all composed programs have terminated. By sequential composition of two programs P and Q via
10 In particular we assume that adversarially generated programs cannot blow up the execution time of an experiment beyond

poly-time in the security parameter.
11 We assume some form of non-ambiguous encoding of composed labels and output strings, but in our presentation we

simply present these encoded values as tuples.

projection function φ, denoted 〈P ;Q〉φ,p,q, we mean the transition function that has two execution stages, which
are signaled in its output via an additional stage flag. As above, we will denote by o.stage the value of this flag in
some output o. For consistency, we again assume labels of the form (p, l) and (q, l) where p 6= q are used to identify
the target program. In the first stage, every label-input pair will be checked for consistency (i.e., that it indicates
P as the target program) and dispatched to program P . This will proceed until P ’s last output indicates it has
finished (inclusively). The next activation will trigger the start of the second stage, at which point the composed
program initialises the state of Q using φ(stP) before activating it for the first time. Additionally we require that
a constant indicating the current stage is appended to any output of a composition. We do not admit other state
sharing between P and Q in addition to that fixed by φ.
Machines. As in [2] we the basis of our model for IEEs is amachineM which we view as an abstract computational
device that captures the resources offered by a real world computer or group of computers. These machines contain
hardware security functionalities which are initialised by a specific manufacturer before being deployed, possibly
for different end-users. For example, a machine may represent a single computer produced by a manufacturer,
configured with a secret signing key for a public key signature scheme, and whose public key is authenticated via
some public key infrastructure, possibly managed by the manufacturer itself. Similarly, a machine may represent
a group of computers, each configured with secret signing keys associated with a group signature scheme; again,
the public parameters for the group would then be authenticated by some appropriate infrastructure.12 Inspired
by the functionality offered by SGX, in this paper we consider the case where standard public key signatures are
used; our models extend to more complex group management schemes.

We model machines via a simple external interface, which we see as both the functionality that higher-level
cryptographic schemes can rely on when using the machine, and the adversarial interface that will be the basis
of our attack models. This interface can be thought of as an abstraction of Intel’s SGX [27]. The interface is as
follows:
– Init(1λ) is the global initialisation procedure which, on input the security parameter, outputs the global parameters

prms. This algorithm represents the machine’s hardware initialisation procedure, which is out of the user’s and the
adversary’s control. Intuitively, it initialises the internal security module, the internal state of the remote machine
and returns any public cryptographic parameters that the security module releases. The global parameters of
machines are assumed to be authenticated using external mechanisms, such as a PKI.

– Load(P) is the IEE initialisation procedure. On input a program/transition function P , the machine produces
a fresh handle hdl, creates a new IEE with handle hdl, loads P into the new IEE and returns hdl. The machine
interface does not provide direct access to either the internal state of an IEE nor to its randomness input.
This means that the only information that is leaked about internal state and randomness input is that revealed
(indirectly) via the outputs of the program.

– Run(hdl, l, i) is the process activation procedure. On input a handle hdl and a label-input pair (l, i), it will
activate process running in isolated execution environment of handle hdl with (l, i) as the next input. When the
program/transition function produces the next output o, this is returned to the caller.
We define the I/O trace TraceM(hdl) of a process hdl running in some machineM as the tuple (l1, i1, o1, . . . , ln, in, on)

that includes the entire sequence of n inputs/outputs resulting from all invocations of Run on hdl; ProgramM(hdl)
is the code (program) running inside the process with handle hdl; CoinsM(hdl) represents the coins given to the
program by the rand system call; and StateM(hdl) is the internal state of the program. Finally, we will denote by
AM the interaction of some algorithm with a machineM, i.e., having access to the Load and Run oracles defined
above.

4 Labelled Attested Computation

We now formalize a cryptographic primitive that generalizes the notion of Attested Computation proposed in [2],
called Labelled Attested Computation. The main difference to the original proposal is that, rather than fixing a
particular form of program composition for attestation, Labelled Attested Computation is agnostic of the program’s
internal structure; on the other hand, it permits controlling data flows and attestation guarantees via the label
information included in program inputs.
Syntax. A Labelled Attested Computation (LAC) scheme is defined by the following algorithms:
– Compile(prms, P, L∗) is the deterministic program compilation algorithm. On input global parameters for some

machineM, program P and an attested label set L∗, it will output program P ∗. This algorithm is run locally.
12 If the possibility of removing elements from the group is not needed, then even sharing the same signing key for a public

key encryption scheme between multiple computers could be a possibility.

P ∗ is the code to be run as an isolated process in the remote machine, whereas L∗ defines which labelled inputs
should be subject to attestation guarantees.

– Attest(prms, hdl, l, i) is the stateless attestation algorithm. On input global parameters for M, a process handle
hdl and label-input pair (l, i), it will use the interface ofM to obtain attested output o∗. This algorithm is run
remotely, but in an unprotected environment: it is responsible for interacting with the isolated process running
P ∗, providing it with inputs and recovering the attested outputs that should be returned to the local machine.

– Verify(prms, l, i, o∗, st) is the public (stateful) output verification algorithm. On input global parameters for M,
a label l, an input i, an attested output o∗ and some state st it will produce an output value o and an updated
state, or the failure symbol ⊥. This failure symbol is encoded so as to be distinguishable from a valid output
of a program, resulting from a successful verification. This algorithm is run locally on claimed outputs from the
Attest algorithm. The initial value of the verification state is set to be (prms, P, L∗), the same inputs provided to
Compile.

Correctness. Intuitively, a LAC scheme is correct if, for any given program P and attested label set L∗, assuming
an honest execution of all components in the scheme, both locally and remotely, the local user is able to accurately
reconstruct a partial view of the I/O sequence that took place in the remote environment, for an arbitrary set of
labels L (which may or may not be related to L∗). For non-attested labels, i.e., labels in L \L∗, we restrict the I/O
behaviour of the compiled program inside the IEE imposing that it is identical to that of the original program. For
this reason, the set of labels L should be seen as a parameter that can be used by higher level protocols relying
on LAC to specify the partial local view that may interest a particular party interacting with a remote machine.
Different parties may be interested in different partial views, including both attested an non-attested labels, and the
protocol should be correct for all of them. More technically, suppose the compiled program is run under handle hdl∗

in remote machineM, with random coins CoinsM(hdl∗) and on labelled input sequence (l1, i1, . . . , ln, in). Suppose
also that, running the original program on the same random coins and inputs yields

TraceR[st;CoinsM(hdl∗)](l1, i1, . . . , ln, in) =
(l1, i1, on, . . . , ln, in, on)

Then, for any set of labels L, if a local user recovers outputs (o′1, . . . , o′m) corresponding to labelled inputs (lk1 , ik1)
to (lkm , ikm), where lkj ∈ L, it must be the case that (o′1, . . . , o′m) = (ok1 , . . . , okm). Outputs for attested labels are
passed through Attest and Verify, whereas inputs and outputs for non-attested labels are processed independently of
these algorithms. The following definition formalizes the notion of a local user correctly remotely executing program
P using labelled attested computation.

Definition 2 (Correctness). A labelled attested computation scheme LAC is correct if, for all λ and all adversaries
A, the experiment in Fig. 4 (top) always returns T.

The adversary in this correctness experiment definition is choosing inputs, hoping to find a sequence that
causes the attestation protocol to behave inconsistently with respect to the semantics of P (when these are made
deterministic by hardwiring the same random coins used remotely). We use this approach to defining correctness
because it makes explicit what is an honest execution of an attested computation scheme, when compared to the
security experiment introduced next.
Structural preservation. To simplify analysis of our constructions and proofs, we extend the correctness
requirements on labelled attested computation schemes to preserve the structure of the input program when dealing
with sequential composition, and to modify only the part of the code that will be attested. Formally, we impose that,
for all global parameters, given any program R = 〈P ; Q〉φ,p,q, and an attested label set L∗ that contains only labels
of the form (p, l), then there exists a (unique) compiled program P ∗, such that, 〈P ∗ ; Q〉φ,p,q = Compile(prms, R, L) .
Note that this implies that the state of compiled program P ∗ somehow encodes the state of P in a way that is
transparent for φ, and we will loosely rely on this when referring to the execution state of P ∗ and extracting values
from it. Note also that, for composed programs compiled in this way, the unnatested I/O behaviour of the second
program will be identical to that of the original program.
Security. Security of labelled attested computation imposes that an adversary with control of the remote machine
cannot convince the local user that some arbitrary remote (partial) execution of a program P has occurred, when
it has not. It says nothing about the parts of the execution trace that are hidden from the client or are not in the
attested label set L∗. Formally, we allow the adversary to freely interact with the remote machine, whilst providing
a sequence of (potentially forged) attested outputs for a specific label l ∈ L∗. The adversary wins if the local user
reconstructs an execution trace without aborting (i.e., all attested outputs must be accepted by the verification
algorithm) and one of two conditions occur: i. there does not exist a remote process hdl∗ running a compiled version

Game CorrLAC,A(1
λ):

prms←$ M.Init(1λ)
(P,L∗, L, n, stA)←$ A1(prms)
P∗ ← Compile(prms, P, L∗)
hdl∗ ←M.Load(P∗)
stV ← (prms, P, L∗)
For k ∈ [1..n] :

(lk, ik, stA)←$ A2(o
∗
1 , . . . , o

∗
k−1, stA)

If lk ∈ L ∩ L∗ :

o∗k←$ AttestM(prms, hdl∗, lk, ik)
(ok, stV)← Verify(prms, lk, ik, o

∗
k, stV)

If ok =⊥ Then Return F
Else If lk ∈ L \ L∗ :
ok←$ M.Run(hdl∗, lk, ik)

Else Return F
T ′ ← filter[L](TraceP [st;CoinsM(hdl∗)](l1, i1, . . . , ln, in))
T ← filter[L](l1, i1, o1, . . . , ln, in, on) // get only labels in L
Return T = T ′

Game AttLAC,A(1
λ):

prms←$ M.Init(1λ)
(P,L∗, l, n, stA)←$ A1(prms)
P∗ ← Compile(prms, P, L∗)
stV ← (prms, P, L∗)
For k ∈ [1..n] :

(ik, o
∗
k, stA)←$ AM2 (stA)

(ok, stV)← Verify(prms, l, ik, o
∗
k, stV)

If ok =⊥ Return F
T ← (l, i1, o1, . . . , l, in, on)
For hdl∗ s.t. ProgramM(hdl∗) = P∗

(l′1, i
′
1, o
′
1, . . . , l

′
m, i
′
m, o

′
m)← TraceMR

(hdl∗)
T ′ ← filter[l](TraceP [st;CoinsM(hdl∗)](l

′
1, i
′
1, . . . , l

′
m, i
′
m))

If T v T ′ Return F
Return T

Fig. 4. Games defining the correctness (top) and security (bottom) of LAC.

of P where a consistent set of inputs was provided for label l; or ii. the outputs recovered by the local user for those
inputs are not consistent with the semantics of P if it were run locally.

Technically, these conditions are checked in the definition by retrieving the full sequence of label-input pairs
and random coins passed to all compiled copies of P running in the remote machine and running P on the same
inputs to obtain the expected outputs. One then checks that for at least one of these executions, when the traces
are restricted to special label l, that the expected trace matches the locally recovered trace via Verify. Since the
adversary is free to interact with the remote machine as it pleases, we cannot hope to prevent it from providing
arbitrary inputs to the remote program at arbitrary points in time, while refusing to deliver the resulting (possibly
attested) outputs to the local user. This justifies the winning condition referring to a prefix of the execution in
the remote machine, rather than imposing trace equality. Indeed, the definition’s essence is to impose that, if the
adversary delivers attested outputs for a particular label in the attested label set, then the subtrace of verified
outputs for that label will be an exact prefix of the projection of the remote trace for that label.

We note that a higher-level protocol relying on LAC will be able to fully control the semantics of labels, as
these depend on the semantics of the compiled program. In particular, adopting the specific forms of parallel and
sequential composition presented in Section 3, it is possible to use labels to get the attested execution of a sub-
program that is fully isolated from other programs that it is composed with. This provides a much higher degree
of flexibility than what was available in the original notion of Attested Computation.

Definition 3 (Security). A labelled attested computation scheme is secure if, for all ppt adversaries A, the prob-
ability that experiment in Fig. 4 (bottom) returns T is negligible.

We note that the adversary loses the game as long as there exists at least one remote process that matches
the locally reconstructed trace. This should be interpreted as the guarantee that IEE resources are indeed being
allocated in a specific remote machine to run at least one instance of the remote program (note that if the program
is deterministic, many instances could exist with exactly the same I/O behaviour, which is not seen as a legitimate
attack). Furthermore, our definition imposes that the compiled program uses essentially the same randomness
as the source program (except of course for randomness that the security module internally uses to provide its
cryptographic functionality), as otherwise it will be easy for the adversary to make the (idealized) local trace diverge
from the remote. This is a consequence of our modelling approach, but in no way does it limit the applicability
of the primitive we are proposing: it just makes it explicit that the transformation that is performed on the code

Game Leak-RealLAC,A(1
λ):

PrgList← []

prms←$ M.Init(1λ)
b←$ AO(prms)
Return b

Oracle Run(hdl, l, i):
ReturnM.Run(hdl, l, i)

Oracle Compile(P,L):
P∗ ← Compile(prms, P, L)
PrgList← P∗ : PrgList
Return P∗

Oracle Load(P):
ReturnM.Load(P)

Game Leak-IdealLAC,A,S(1
λ):

PrgList← []; List← []
hdl← 0

(prms, stS)←$ S1(1λ)
b←$ AO(prms)
Return b

Oracle Run(hdl, l, i):
(P∗, st)← List[hdl]
If (P∗, L, P) ∈ PrgList :
o←$ P [st](l, i)
(o∗, stS)←$ S2(hdl, P, L, l, i, o, stS)

Else:
(o∗, stS)←$ S3(hdl, P∗, l, i, st, stS)

List[hdl]← (P∗, st)
Return o∗

Oracle Compile(P,L):
P∗ ← Compile(prms, P, L)
PrgList← (P∗, L, P) : PrgList
Return P∗

Oracle Load(P∗):
hdl← hdl + 1
List[hdl]← (P∗, ε)
Return hdl

Fig. 5. Games defining minimum leakage of LAC.

for attestation will typically consist of an instrumentation of the code by applying cryptographic processing to the
inputs and outputs it receives.
Minimal leakage. The above discussion shows that a LAC scheme guarantees that the I/O behaviour of the
program in the remote machine includes at least the information required to reconstruct an hypothetical local
execution of the source program. Next, we require that a compiled program does not reveal any information
beyond what the original program would reveal. The following definition imposes that nothing from the internal
state of the source programs (in addition to what is public, i.e., the code and I/O sequence) is leaked in the trace
of the compiled program.

Definition 4 (Minimal leakage). A labelled attested computation scheme LAC ensures security with minimal
leakage if it is secure according to Definition 3 and there exists a ppt simulator S that, for every adversary A, the
following distributions are identical:

{ Leak-RealLAC,A(1
λ) } ≈ { Leak-IdealLAC,A,S(1

λ) }

where games Leak-RealLAC,A and Leak-IdealLAC,A,S are shown in Fig. 5.

Notice that we allow the simulator to replace the global parameters of the machine with some value prms for
which it can keep some trapdoor information. Intuitively this means that one can construct a perfect simulation of
the remote trace by simply appending cryptographic material to the local trace. This property is important when
claiming that the security of a cryptographic primitive is preserved when it is run within an attested computation
scheme (one can simply reduce the advantage of an adversary attacking the attested trace, to the security of the
original scheme using the minimum leakage simulator).

5 LAC from SGX-like systems

Our labelled attested computation protocol relies on the capabilities offered by the security module of Secure Guard
Extensions (SGX) architecture proposed by Intel [1] (i.e. MACs for authenticated communication between IEEs,
and digital signatures for inter-platform attestation of executions). Our security module formalization is the same
as the one adopted in [2].
Security module. The security module relies on a signature scheme Σ = (Gen,Sign,Vrfy) and a MAC scheme
Π = (Gen,Mac,Ver), and it operates as follows:
– When the host machine is initialised, the security module generates a key pair (pk, sk) using Σ.Gen and a symmetric

key key using Π.Gen. It also creates a special process running code S∗ (see below for a description of S∗) in an
IEE with handle 0. The security module then securely stores the key material for future use, and outputs the
public key. In this case we will have that the output ofM.Init will be prms = pk.

– The operation of IEE with handle 0 will be different from all other IEEs in the machine. Program S∗ will
permanently reside in this IEE, and it will be the only one with direct access to both sk and key.

– The code of S∗ is dedicated to transforming messages authenticated with key into messages signed with sk.
On each activation, it expects an input (m, t). It obtains key from the security module and verifies the tag using
Π.Ver(key, t,m). If the previous operation was successful, it obtains sk from the security module, signs the message
using σ←$ Σ.Sign(sk,m) and writes σ to the output. Otherwise, it writes ⊥ in the output.

– The security module exposes a single system call mac(m) to code running in all other IEEs. On such a request
from a process running program P , the security module returns a MAC tag t computed using key over both the
code of P and the input message m.

Labelled Attested Computation scheme. We now define a LAC scheme that relies on a remote machine
supporting a security module with the above functionality. Basic replay protection using a sequence number does
not suffice to bind a remote process to a subtrace, since the adversary could then run multiple copies of the same
process and mix and match outputs from various traces. This is similar to the reasoning in [2]. However, in this
paper we are interested in validating traces for specific attested labels, independently from each other, rather than
the full remote trace.

Our LAC scheme works as follows:
– Compile(prms, P, L) will generate a new program P ∗ and output it. Program P ∗ is instrumented as follows:
• in addition to the internal state st of P , it maintains a list iosl of all the I/O pairs it has previously received

and computed for each label l ∈ L.
• On input (l, i), P ∗ computes o←$ P [stP](l, i) and verifies if l ∈ L. If this is not the case, then P ∗ simply outputs

non-attested output o.
• Otherwise, it updates the list ios by appending (l, i, o), computes the subset of ios for label l : iosl ← filter[l](ios)

and requests from the security module a MAC of for that list. Due to the operation of the security module,
this will correspond to a tag t on the tuple (P ∗, iosl).

• It finally outputs (o, t, P ∗, iosl). We note that we include (P ∗, iosl) explicitly in the outputs of P ∗ for clarity of
presentation only. This value would be kept in an insecure environment by a stateful Attest program.

– Attest(prms, hdl, l, i) invokesM.Run(hdl, (l, i)) using the handle and input value it has received. When the process
produces an output o, Attest parses it into (o′, t, P ∗, iosl). It may happen that parsing fails, e.g., if the label is not
to be attested, in which case Attest simply produces o as its own output. Otherwise, it usesM.Run(0, (P ∗, iosl, t))
to convert the tag into a signature σ on the same message. If this conversion fails, then Attest produces the
original output o as its own output. Otherwise, it outputs (o′, σ).

– Verify(prms, l, i, o∗, st) is the stateful verification algorithm. The original (public) value of the state st includes
uncompiled program P and the list of attested labels L (this naturally extends to including compiled program
P ∗ since Compile is deterministic); it also includes a (initially empty) list of previously attested input-output
pairs ios. Verify returns o∗ if l 6∈ L. Otherwise, it first parses o∗ into (o, σ), appends (l, i, o) to ios and verifies the
digital signature σ using prms and (P ∗, filter[l](ios)). If parsing or verification fails, Verify outputs ⊥. If not, then
Verify terminates outputting o.

Correctness. It is easy to see that our LAC scheme is correct, provided that the underlying signature and message
authentication schemes are correct, and that it preserves the structure of compiled programs. To see that this is the
case, note that during the execution of P ∗ for lk ∈ L, unless a MAC or signature verification fails, the I/O sequence
provided by Verify will match the one reconstructed in T ′ (the inputs are the same, and the associated randomness
tapes are fixed by CoinsM(hdl∗)), and therefore T = T ′. Since these algorithms are only used for attested labels,
we only need to consider this possibility for labels l ∈ L∗ ∩ L. Now, observe that if the message authentication
code scheme is correct, then the MAC verification will never fail, and if the message signature scheme is correct,
then the signature verification will never fail. This is the case because the combined operations of P ∗, Attest, the
signing IEE running S∗ and the security module lead to tags and signatures on pairs (P ∗, iosl) that exactly match
the inputs provided to the verification algorithms in Π.Ver and Σ.Verify. This gives us that the received trace and
the reconstructed trace will be the same for all labels in L.
Security.

Theorem 1. The LAC scheme presented above provides secure attestation if the underlying MAC scheme Π and
signature scheme Σ are existentially unforgeable. Furthermore, it unconditionally ensures minimum leakage.

The proof of the following theorem can be found in Appendix A. The proof intuition is a generalization of the
argument for the attested computation scheme in [2]. All attested outputs are bound to a partial execution trace
that contains the entire I/O sequence associated with the corresponding attested label, so all messages accepted

by Verify must exist as a prefix for a remote trace of some instance of P ∗. The adversary can only cause an
inconsistency in T v T ′ if the signature verification performed by Verify accepts a message of label l ∈ L∗ that was
never authenticated by an IEE running P ∗. However, in this case the adversary is either breaking the MAC scheme
(and dishonestly executing Attest), or breaking the signature (directly forging attested outputs).

6 Secure computation from LAC

Functionalities. We want to securely execute a functionality F defined by a four-tuple (n,F, Lin, Lout), where
F is a deterministic stateful transition function that takes inputs of the form (id, i). Here, id is a party identifier,
which we assume to be an integer in the range [1..n], and n is the total number of participating parties. On each
transition, F produces an output that is intended for party id, as well as an updated state. We associate to F two
leakage functions Lin(k, i, st) and Lout(k, o, st) which define the public leakage that can be revealed by a protocol
about a given input i or output o for party k, respectively; for the sake of generality, both functions may depend
on the internal state st of the functionality, although this is not the case in the examples we consider in this
paper. Arbitrary reactive functionalities formalized in the Universal Composability framework can be easily recast
as transition function such as this. The upside of our approach is that one obtains a precise code-based definition of
what the functionality should do (this is central to our work since these descriptions give rise to concrete programs);
the downside is that the code-based definitions may be less clear to a human reader, as one cannot ignore the tedious
book-keeping parts of the functionality.
Execution model. We assume the existence of a machine M allowing for the usage of isolated execution en-
vironments, such as those defined in Section 3. In secure computation terms, this machine should not be seen as
an ideal functionality that enables some hybrid model of computation, but rather an additional party that comes
with a specific setup assumption, a fixed internal operation, and which cannot be corrupted.13 More in detail, and
following [2], this machine is first initialized via the Init algorithm, which defines public parameters that one assumes
can be independently authenticated by all parties. The machineM is assumed to be adversarially controlled, but it
does include isolated execution environments in which programs can be loaded (via the Load mechanism) and then
interactively fed with new inputs (via the Run mechanism) to obtain attested outputs. All the code that is run in
M but outside these execution environments is considered to be adversarially controlled. However, the adversary
controls the interaction with M and the goal is to guarantee that a set of parties can use the IEE capabilities of
M securely (bar the possibility that M refuses to allow the protocol to proceed, which would amount to a DoS
attack).
Syntax. A protocol π for functionality F is a seven-tuple of algorithms as follows:
– Setup – This is the party local set-up algorithm. Given the security parameter, the public parameters prms for

machine M and the party’s identifier id, it returns the party’s initial state st (incluing its secret key material)
and its public information pub.

– Compile – This is the (deterministic) code generation algorithm. Given the description of a functionality F, and
the public parameters (prms,Pub) for both the remote machine and the entire set of public parameters for the
participating parties, it generates the instrumented program that will run inside an IEE.

– Remote – This is the untrusted code that will be run inM and which ensures the correctness of the protocol by
controlling its scheduling and input collection order. It has oracle access toM, and is run on public parameters
prms, the handle to the IEE in which the compiled program is running and input message m; it returns the output
message m′, the identity id of the party for which m′ is intended, and a flag inreq that indicates whether party id
is expected to provide an input at this step of the protocol. Its initial state describes the order in which inputs
of different parties should be provided to the functionality.

– Init – This is the party local protocol initialization algorithm. Given the party’s state st produced by Setup and
the public information of all participants Pub it outputs an uptated state st. We note that a party can choose to
engage in a protocol by checking if the public parameters of all parties are correct and assigned to roles in the
protocol that match the corresponding identities.

– AddInput – This is the party local input providing algorithm. Given the party’s current state st and an input in,
it outputs an uptated state st.

– Process – This is the party local message processing algorithm. Given its internal state st, and an input message
m, it runs the next protocol stage, updates the internal state and returns output message m′. Protocol termination
will be locally signalled with an output message m′ =⊥.

13 Relating this to the Universal Composability framework, this special party M does not take inputs or outputs, and is
accessible only via its communications tape, which is assumed to be controlled by the adversary.

Game CorrF,π,r,m,A,M(1λ):
//Trusted setup of machine and parties
(n, F, Lin, Lout)← F
prms←$ M.Init(1λ)
For id ∈ [1..n]:

(stid, pubid)←$ Setup(prms, id)
Pub← (pub1, . . . , pubn)
For id ∈ [1..n]:

stid←$ Init(stid,Pub)
outidi

← ε

//Adversarially scheduled ideal execution
stF ← ε; stA ← ε
For i ∈ [1..m]:

(idi, ini, stA)←$ A(prms,Pub, stA)
outidi

← outidi
|| F[stF](idi, ini)

//Protocol execution
F∗ ← Compile(prms,F,Pub)
hdl←M.Load(F∗)
t← T; m← ε; j ← 0
stR ← (id1, . . . , idm) // input schedule
For i ∈ [1..r]:

If t: //Remote step
(id, inreq,m′, stR)←$ RemoteM(prms, hdl,m, stR)

Else: // Local step
If inreq = T:

If id 6= idj Return F
stid←$ AddInput(inj , stid)
j ← j + 1

(stid,m)←$ Process(stid,m′)
t← ¬t

For id ∈ [1..n]:
out′1 ← Output(stid)

Return (out1, . . . , outn) = (out′1, . . . , out′n)

Fig. 6. Game defining protocol correctness.

– Output – This is the party local output retrieval algorithm. Given internal state st, it returns the current output
o.

Correctness. The following definition formalizes the notion of n users correctly running a function evaluation
protocol π for F.

Definition 5. We say π is correct for functionality F on m inputs in r rounds if, for all λ, and all adversaries A,
the experiment in Figure 6 always returns T.

Discussion. Our correctness definition considers an honest execution environment, but includes a correctness
adversary that is in charge of finding problematic inputs for the protocol and potentially erroneous execution
schedules. It is parametrized by a number of inputs m and a number of rounds r.

The first stage of the experiment executes the Setup and Init algorithms that intialize both the remote machine
and the parties’ local states, and collects the public parameters for all of these participants (which we assume
to be authenticated throught the paper, e.g., using a PKI). In the second part of the experiment, the adversary
chooses a sequence of m inputs for the functionality, interleaving different parties in an arbitrary way. The sequence
(id1, . . . , idm) implicitly defines a schedule for the execution of our protocol, which should ensure that the inputs
of each party are provided to the functionality in precisely this order.

The last stage of the correctness experiment emulates the protocol execution, alternating between local steps
and remote steps. The Remote algorithm commands the scheduling of message exchanges; this algorithm is always
invoked first and its output indicates the next party to be activated, the message this party will receive, and whether
or not the party is expected to provide an input. The protocol is run for r rounds, at which point its outputs are
retrieved via Output. The adversary wins the game if it can force the game to produce a set of outputs that wouldn’t
be obtained by simply running the functionality F with the given inputs in the provided order.
Remark. The correctness experiment shows the crucial scheduling role of the Remote algorithm, which is run in
an untrusted environment in the remote machine. Here we deviate from the standard approach in the UC setting,
where the simulation-based definition of security is taken as providing sufficient detail to evaluate correctness of
the protocol. Indeed, as other simulation-based definitions, our security experiment below will impose some in-
put/output consistency conditions on the protocol. Intuitively, these must hold for any adversarially chosen Remote

Game RealF,π,A,M(1λ):
(n, F, Lin, Lout)← F
prms←$ M.Init(1λ)
(stA, k)←$ A(prms)
For id ∈ [1..k]:

(stid, pubid)←$ Setup(prms, id)
Pub← (pub1, ..., pubk)
For id ∈ [k + 1..n]:

(stA, pubid)←$ A(stA, id,Pub)
Pub← (pub1, ..., pubn)
For id ∈ [1..k]:

stid←$ Init(stid,Pub)
b←$ AO(stA)

Oracle Send(id,m):
If id 6∈ [1..k] Return ⊥
(stid,m

′)←$ Process(stid,m)
Return m′

Oracle SetInput(in, id):
If id 6∈ [1..k] Return ⊥
stid←$ AddInput(in, stid)

Oracle Load(P):
ReturnM.Load(P)

Oracle Run(hdl, l, x):
ReturnM.Run(hdl, l, x)

Oracle GetOutput(id):
If id 6∈ [1..k] Return ⊥
Return Output(stid)

Game IdealF,π,A,S(1
λ):

(n, F, Lin, Lout)← F
stF ← ε

(st, prms)←$ S(1λ)
(stA, k)←$ A(prms)
For id ∈ [1..k]:

(st, pubid)←$ S(st, id)
ListInid ← []
ListOutid ← []

Pub← (pub1, ..., pubk)
For id ∈ [k + 1..n]:

(stA, pubid)←$ A(stA, id,Pub)
Pub← (pub1, ..., pubn)
For id ∈ [1..k]:

st←$ S(st, id,Pub)
b←$ AO(stA)

Oracle Fun(id, in):
If id ∈ [1..k]:

(in1, . . . , ink)← ListInid

ListInid ← (in1, . . . , ink-1)
out← F[stF](id, ink)
ListOutid ← out : ListInid

Return Lout(out, id, stF)
Else

out← F[stF](id, in)
Return out

Oracle SetInput(in, id):
If i 6∈ [1..k] Return ⊥
`← Lin(in, id, stF)
st←$ S(st, `, id)
ListInid ← in : ListInid

Oracle Send(id,m):
(st, out)←$ SFun(st, id,m)
Return out

Oracle Load(P):
(st, out)←$ S(st, P)
Return out

Oracle Run(hdl, l, x):
(st, out)←$ SFun(st, hdl, l, x)
Return out

Oracle GetOutput(id):
If id 6∈ [1..k] Return ⊥
i←$ S(st, id)
(out1, . . . , outk)← ListOutid

Return out1 || . . . || outi

Fig. 7. Real and Ideal security games.

scheduling algorithm, as the adversary has full control of the remote machine and scheduling can be arbitrarily con-
trolled by the attacker. However, we believe that there is added value in including a separate correctness definition,
where the scheduling tasks of the non-security critical parts of the protocol can be specified as a first class feature
of the protocol syntax. This also clarifies the envisioned execution model and makes it explicit that untrusted code
running in an adversarially run machine is only relevant for correctness purposes.
Security. Our security definition is based on the experiments shown in Figure 7, where O represents access to all
oracles except Fun, i.e., the adversary has oracle access to Run, Setup, SetInput, GetOutput and Send in both games.

Definition 6. We say π is secure for F if, for any ppt adversary A, there exists a ppt simulator S such that the
following definition of advantage is a negligible function in the security parameter.

|Pr[RealF,π,A,M(1λ)⇒ b = 1]− Pr[IdealF,π,A,S(1λ)⇒ b = 1] |

Discussion. As is customary in secure computation models, we take the ideal world versus real world approach.
In the real world we have a remote machineM following the description in Section 3, which is under the control
of the adversary. We consider also n parties, the first k of which are honest, and the rest corrupt. The experiment
begins with the trusted setup of the machine, the attacker selectively choosing the number of corrupt parties, and
the trusted initialization of the initial states of all honest parties. The adversary gets the public parameters of all
honest parties (including the machine) and chooses those of the corrupt parties. All public parameters are assumed
to be authenticated and available to all (e.g., via a PKI). We note that the adversary has all the information it
needs to honestly execute the protocol and, in particular, it may properly run Compile and Remote on its own or
choose to arbitrarily deviate from it. The honest parties will, of course, run Compile correctly and will therefore

be able to take avantage of the attestation guarantees provided by the remote machine. Intuitively, this is the
underlying setup assumption that enables secure computation to be done efficiently.

The adversary then takes control of the experiment execution and it has access to a series of oracles that allow
it to fully control the remote machine (Load and Run) and interact with the honest parties: setting their inputs
via SetInput, checking the outputs via GetOutput and delivering messages via Send. In this sense, our real world
experiment is similar to the Universal Composability framework: our adversary represents the UC environment
that controls party inputs and outputs combined with a dummy adversary that conveys communications between
parties and the environment. When the adversary terminates, it outputs a bit b with its guess of whether it is
executing in the real or ideal worlds.

As in the real world experiment, the ideal experiment begins with the global set-up procedure. We give the
simulator full control of the remote machine, which is always assumed to be honest, and this includes the ability
to generate its global parameters. We also give the simulator the ability to control the honest party parameter
generation. The remaining parties are initialized in the standard way, and the adversary is run on an equivalent
set of parameters as in the real world.

The central component in the ideal experiment is the functionality oracle Fun. This oracle represents an idealized
component, very much like the ideal functionality in the UC setting. The adversary can provide inputs and read
outputs from the functionality via the SetInput and GetOutput oracles; this ability applies only to the inputs of
honest parties. The scheduling of the computation of the functionality F is controlled by the simulator, as is the
setting of the inputs corresponding to corrupt parties. As in the UC framework, this can be interpreted as an
idealization of the operation of the functionality where some of its participants are dishonest: from this perspective,
the simulator should be seen as an adversary attacking the ideal functionality and, as such, it should control the
dishonest inputs.

Succinctly, our model is inspired in the UC framework, and can be derived from it when natural restrictions are
imposed: PKI, static corruptions, and a distinguished non-corruptible party modeling an SGX-enabled machine.14
A security proof for a protocol in our model can be interpreted as translation of any attack against the protocol in
the real world, as an attack against the ideal functionality in the ideal world. The simulator performs this translation
by presenting an execution environment to the adversary that is consistent with what it is expecting in the real
world. It does this by simulating the operations of the Load, Run and Send oracles, which represent the operation
of honest parties in the protocol. While the adversary is able to provide the inputs and read the outputs for honest
parties directly from the functionality, the simulator is only able obtain partial leakage about this values via the
Lin and Lout functions, which in this paper are assumed to just reveal the lengths of their inputs. Conversely, it can
obtain the functionality outputs for corrupt parties via the Fun oracle and, furthermore, it is also able to control the
rate and order in which all inputs are provided to the functionality. Were this not the case, the adversary would be
able to distinguish the two worlds by manipulating scheduling in such a way that the simulator could not possibly
match.

Similarly to the real world, the adversary will finish the interaction by outputting a bit b containing its guess
of which world it is executing in.

7 A New MPC Protocol from SGX

We describe here a secure computation protocol based on LAC that works for any functionality. This protocol
starts by running bootstrap code in an isolated execution environment in the remote machine, which exchanges
keys with each of the participants in the protocol. These key exchange programs are composed in parallel, as seen
in Section 3. Once this bootstrap stage is concluded, the code of the functionality, which is composed sequentially
with the bootstrap stage, starts executing and it uses the secure channels established with each party to ensure
that the collection of inputs and delivery of outputs is secure. In order to define the protocol, we first present a
utility theorem very similar to that given in [2] for the use of key exchange in the context of attestation. This
theorem shows that, under the specific program composition pattern that we require for our MPC protocol, which
guarantees AttKE isolation from other programs, each party obtains a secret key that is indistinguishable from
a random string and can therefore be used to construct a secure channel that connects it to code emulating the
functionality within an IEE.
AttKE and its Utility. We define utility almost as in the AC case from [2]. The main difference is the composition
context we allow for. In [2] the composition context is restricted to a key exchange composed sequentially with

14 This particular choice in our model has implications for the composability properties of our results, as discussed in the
related work section.

another program. Here we allow for the key exchange to be composed in parallel with other arbitrary programs and
then sequentially with another program. The proof follows the same lines. The utility security experiment intuitively
states that the adversary cannot distinguish between a derived key and a random key, whenever the key exchange
has been performed between an honest party and a remote machine running RemKE within an IEE, and RemKE

is composed with other arbitrary programs as described above. The reason this parallel/sequential composition
pattern does not harm security is that the parts of the state belonging to different parallel-composed programs are
disjoint, and sequential composition only reveals controlled information to other programs. Indeed, as in [2], we
restrict sequential composition in the utility theorem to pass only specific parts of the state of the key exchange
program to the following phase: mapping function φkey passes on the derived key, the session and party identifiers,
and the state (derived or accept) of the key exchange. Contrary to [2] this is not enough to define our mapping
function, as other programs composed in parallel with the remote key exchange need to pass states to the next
phase as well. To that extent, if φ1, . . . , φn are mapping functions, we define φl11 | . . . |φlnn as φ∗ := st.li 7→ φi(st.li).
If the state comes from the program 〈P1| . . . |Pn〉(l1,...,ln), this mapping function maps the state belonging to each
Pi using φi. In our composition context, we take the φi corresponding to the key exchange to be φkey. This ensures
that only the key is transmitted to the following stage of the protocol, and not information supposed to be local to
the key exchange protocol and not intended for further use.

In the experiment in Figure 8 the adversary has to distinguish between an ideal machine and a real world
machine where an AttKE is run in parallel with other programs in the first phase of a LAC-compiled protocol. The
machine M represents the remote machine expected by the LAC protocol and the machine M′ is a modification
of machine M in which the key derived by a key-exchange session is magically replaced by a fresh key. In order
to maintain consistency between the tested keys and the keys used in M′, oracle M′.Run takes two additional
parameters: a list fake of pairs of keys and a flag tweak. If the flag is activated, the following modifications in the
behaviour ofM occur inM′:
– It expects the sub-program being activated due to input label l to be a key exchange RemKE instance. After

running its transition function, M′ checks if it has reached the derived or accept state. If so, it retrieves the
derived key and if there is no association (key,_) in fake it generates a fresh key key∗ and appends (key, key∗) to
fake.

– Furthermore, if the key exchange process has entered accept state, it performs st.l.key← fake(key), i.e., it replaces
the derived key with a fake random one. Note that this will cause the fake key to be passed to the next stage of
the sequentially composed program.
The oracles provided to the adversary provide access to the remote machine. Additionally the adversary can

create new sessions of the key exchange using the NewSession oracle, where the remote key exchange is composed
in parallel (with label l∗) with programs P1, . . . , Pn, followed with Q and compiled for LAC. Note that, given the
structure of our parallel composition, the position in which a program is listed in the composition expression is
irrelevant. The adversary makes the local part of the key exchange progress by using the Send oracle, provided that
the message passes the LAC verification step for the relevant label. Finally the adversary can challenge a session
by executing the Test oracle, which return either the real key of a fake key according to b (provided that the key
exchange has reached a derived or accept state).

Theorem 2 (Local AttKE utility). If the AttKE is correct and secure, and the LAC protocol is correct, secure
and ensures minimal leakage, then for all ppt adversaries in the labelled utility experiment: the probability that
the adversary violates the AttKE two-sided entity authentication is negligible; and the key secrecy advantage 2 ·
Pr[guess]− 1 is negligible.

Boxing using authenticated encryption. After the bootstrapping stage of our protocol, we will be running
the ideal functionality within an isolated execution environment, and using secure channels to comunicate with each
participarting party. The availability of these secure channels will follow from the utility theorem we presented above.
We now formalized the concept of boxing a functionality, which defines a program that executes the functionality
code, but receives inputs and delivers outputs using secure channels. This is done in the form of our Box construction
presented in Figure 9. This construction takes a functionality F for n parties and a secure authenticated encryption
encryption scheme Λ. We construct a labelled program Box〈F , Λ〉 whose initial state is assumed to contain n
symmetric keys compatible with scheme Λ, denoted sk1 to skn (one for each participating party) and the empty
initial state for the functionality stF. To avoid replays of encrypted messages, we keep one sequence number seqid

per communicating party id. On input (i∗, l), the program interprets the label as party identity id = l, decrypts
input i∗ with skid to obtain input i = (in, seq), and checks the corresponding sequence number. It then passes
the decrypted input to the functionality, and subsequently encrypts the output of the functionality back to the
same user, together with the updated sequence number. The updated state includes the updated sequence number

Game AttAttKE,A(1
λ, id):

prms0←$ M.Init(1λ)

prms1←$ M′.Init(1λ)
PrgList← []
fake← []
i← 0
b←$ {0, 1}
b′←$ AO(prmsb)
Return b = b′

Oracle Load(R∗):
hdl0 ←M.Load(R∗)
hdl1 ←M′.Load(R∗)
Return hdlb

Oracle Run(hdl, l, x):
o0←$ M.Run(hdl, l, x)
tweak← F
If (ProgramM′ (hdl), l) ∈ PrgList then tweak← T
(o1, fake)←$ M′.Run(hdl, l, x, tweak, fake)
Return ob

Oracle Test(i):
If stiKE.δ 6= accept: Return ⊥
If b = 0: Return stiKE.key
Else: Return fake(stiKE.key)

Oracle NewSession(P1, l1, φ1, . . . , Pn, ln, φn, l
∗, Q, L∗):

If ∃j, k such that j 6= k ∧ lj = lk: Return ⊥
If (p, (l∗, ε)) 6∈ L∗: Return ⊥
i← i+ 1
l∗i ← (p, (l∗, ε))

(stiKE,RemiKE)←$ Setup(1λ, id)
inilast ← ε

RemComp := 〈RemiKE|P1| . . . |Pn〉(l∗,l1,...,ln)

φ∗ := φl
∗

key|φ
l1
1 | . . . |φ

ln
n

Ri := 〈RemComp ; Q 〉φ,p,q
R∗i ←$ LAC.Compile(prmsb, Ri, L

∗)

stiV ← (R∗i , L
∗)

PrgList← (R∗i , l
∗
i) : PrgList

Return R∗i

Oracle Send(o∗, i):
o← LAC.Verify[stiV](prms, l∗i , inilast, o

∗)
If o =⊥: Return ⊥
m∗←$ LocKE[stiKE](o)

inilast ← m∗

If stiKE.δ ∈ {derived, accept} ∧ stiKE.key /∈ fake:
key∗←$ {0, 1}λ
fake← (key, key∗) : fake

Return m∗

Fig. 8. Utility of adversarially composed AttKE.
Program Box〈F, Λ〉[st](i∗, l):
(n, F, Lin, Lout)← F
id← l
If id /∈ [1..n] : Return ⊥
If st.seqid = ε :

st.seqid ← 0
i← Λ.Dec(st.keyid,m)
If m = (in, st.seqid) :
o← F [st.stF](id, in)
st.seqid ← st.seqid + 1
c←$ Λ.Enc(st.keyid, (seq, o))
st.seqid ← st.seqid + 1
Return c

Else: Return ⊥

Fig. 9. Boxing using Authenticated Encryption

and the updated state of the functionality. The transition function finally externalizes this updated state and the
encrypted output.
The Protocol. Building on top of a LAC scheme, an AttKE scheme and our Box construction we define in
Figure 10 a general secure multiparty computation protocol that works for any (possibly reactive) functionality F.
The core of the protocol is the execution of an AttKE for each participant in parallel, followed by the execution

of the functionality F on the remote machine, under a secure channel with each participant as specified in the Box
construct. More precisely:
– Setup derives the code for a remote key exchange program RemKE using the AttKE setup procedure. This code

(which intuitively includes cryptographic public key material) is set to be the public information for this party.
The algorithm also stores various parameters in the local state for future usage.

– Compile uses the LAC compilation algorithm on a program that results from the parallel composition of all the
remote key exchange programs for all parties, which is then sequentially composed with the boxed functionality.
Sequencial composition uses the special φ∗key function that maps the keys derived by all the key exchange RemKE

instances into the initial state of the Box construction. The set of attested labels is restricted to those of form
(p, (idi, ε)), corresponding to the AttKE subprograms.

– Init locally recomputes the program that is intended for remote execution, as this is needed for attestation
verification. The set of labels that define the locally recovered trace is set to those of the form {(p, (id, ε)), (q, id)),
which correspond to those exactly matching the parts of the remote trace that are relevant for this party, namely
its own key exchange and its own input/output relation with the functionality. Various parts of the local state
that are used by Process are also initialized.

– Process is split into two stages. In the first stage it uses LAC with attested labels of the form (p, (id, ε)) to
execute AttKE protocol and establish a secure channel with the remote program. In the second stage, it uses
non-attested labels of the form (q, id), and it provides inputs to the remote functionality (on request) and recovers
the corresponding outputs when they are delivered. The input sending process is initiated by passing an empty
message into the algorithm, which triggers the encryption of the next input using the derived secret key from the
first stage. A non-empty message input to this stage will trigger decryption and recovery of an output.

– Output reads the output in the state of the participant and returns it.
– AddInput adds an input to the end of the list of inputs that have to be transmitted by the participant.

The (untrusted) scheduling algorithm is shown in Figure 11. It is in charge of dispatching messages to/from
the remote machine IEE using the Attest algorithm provided by the LAC, and animating the protocol to generate
a correct execution for an arbitrary sequence of input-party interactions provided externally as an input schedule
which is stored in its initial state. During the bootstrap stage, the Remote procedure interacts with one party at a
time,15 moving from one party to the next when the previous party has moved to its second stage. When all parties
have completed the key exchange, the Remote procedure detects this in the output of the IEE (consistently with
the properties of our sequential composition), and moves to the functionality execution stage.

In this second stage, the algorithm simply follows the provided input schedule. Moving to the next input is
triggered by feeding the algorithm with an empty input provided by the previous party (this is syntactic book-
keeping to match our correctness requirement, and it signals the fact that the previous output was correctly
delivered to the previous party). The consequence of such an action is that Remote signals that a new input should
be requested from the next party in the schedule. When an actual input is received, this is passed into the IEE
using an unnattested label of the form (q, id). The output is sent back to the same party.

For proving security, we restrict the functionalities we consider to a particular leakage function: size of in-
puts/outputs. We say that a functionality (n,F, Lin, Lout) leaks size if it is such that Lin and Lout return the length
of the inputs/outputs (i.e. Lin(k, x, st) = Lout(k, x, st) = |x| for every k, x, st).

Theorem 3. If LAC is a correct and secure LAC scheme, AttKE is a secure AttKE scheme and Λ a secure authen-
ticated encryption scheme, then the protocol in Figure 10 and Figure 11 is correct and secure for any functionality
that leaks size.

Proof Sketch. We build the required simulator S as follows. For dishonest parties, the simulator executes the
protocol normally while for the honest parties instead of encrypting the inputs/outputs the simulator encrypts
dummy messages of the correct length (obtained through the leakage function) under freshly generated keys.

More precisely, simulator S creates the public parameters of the machine honestly, and it stores all the infor-
mation required to accurately execute all the system calls performed by all programs to the security module. It
then generates the public parameters of the honest agents following the protocol, and generates a fresh key keyid

for each honest party. Simulator S also maintains a list of undelivered input and output messages for each id, and
local state stid for every honest party. Let F ∗ be the result of Compile(prms, F,Pub). When asked to simulate oracle
queries, S behaves as follows:

15 Other options were of course possible for implementing Remote, and the core of our protocol is actually compatible with
a totally asynchronous scheduling. Dealing with such issues is out of the scope of this paper.

algorithm Setup(prms, id):
stid.id← id; stid.prms← prms

(stL,RemKE)← SetupKE(1
λ, id)

stid.stL ← stL; stid.pub← RemKE

Return (stid, stid.pub)

algorithm Compile(prms,F,Pub):
(Rem1

KE, . . . ,RemnKE)← Pub
P ← 〈 〈Rem1

KE, . . . ,RemnKE〉1,...,n ; Box〈F, Λ〉 〉φkey,p,q

L∗ ← {(p, (1, ε)), . . . , {(p, (n, ε))} // Labels for RemiKE are empty
P∗ ← LAC.Compile(prms, P, L∗)
Return P∗

algorithm Init(stid,Pub):
stid.InList← []; stid.stage← 0;
stid.seqin ← 0; stid.seqout ← 1; stid.inlast ← ε
If Pub[stid.id] 6= stid.pub : Return ⊥
(Rem1

KE, . . . ,RemnKE)← Pub
P ← 〈 〈Rem1

KE, . . . ,RemnKE〉1,...,n ; Box〈F, Λ〉 〉φkey,p,q

L← {(p, (stid.id, ε)), (q, stid.id)}
stid.stV ← (P,L)
Return stid

algorithm Process(stid,m):
//Bootstrap (attested labels)
if stid.stage = 0 :

(i, stid.stV)← LAC.Verify(stid.prms, (p, (stid.id, ε)), inlast,m, stV)
If i =⊥: Return ⊥
(o, stid.stL)←$ LocKE(stid.stL, i)
stid.inlast ← o
If (stid.stL.stKE.δ) = accept : Then stage← 1
m′ ← (stid.stage, stid.id, o)
Return (stid,m′)

//Execution (non-attested labels)
if stid.stage = 1 :

If m = ε : // Input requested (empty message signal)
in← stid.InList[0]
(in1, . . . , ink)← stid.ListInid

stid.ListInid ← (in1, . . . , ink-1)
o←$ Λ.Enc(stid.stL.key, (stid.seqin, in))
stid.inlast ← o
stid.seqin ← stid.seqin + 2
m′ ← (stid.stage, stid.id, o)
Return (stid,m′)

Else: // Process received output
m′ ← Λ.Dec(stid.stL.key,m)
If m′ = (stid.seqout, out′) :

stid.seqout ← stid.seqout + 2
stid.out← out′

m′ ← (stid.stage, stid.id, ε)
Return (stid,m′)

Else: Return ⊥

algorithm AddInput(in, stid):
stid.InList← stid.InList + [in]
Return stid

algorithm Output(stid):
Return stid.out

Fig. 10. General SMPC protocol.

– When queried Send(id,m) (with id honest), if stid.stage = 0 this party is still in the key exchange phase, and S
executes Process honestly. Otherwise, if m = ε, S looks-up the length of the next unsent input, encrypts a dummy
message of the same length using keyid; it then remembers the result as an undelivered input message and returns
it. Note that, since in the second stage we are dealing with non-attested labels, the adversary is expecting this
message to be an authenticated encryption (under the derived key) of the correct input for that party. Finally,
if m 6= ε, S checks its integrity and whether m corresponds to the next undelivered output message, if so it
increments the count of delivered outputs for id, and fails otherwise.

– When queried Run(hdl, l, x), if the queried program is not P ∗, S simply executed the program as M would. If
the queried program is P ∗ and it is still in the bootstrap phase, S computes the key exchanges honestly as M
would (recording the keys derived by corrupt agents). If the program is not in the bootstrap phase anymore,
and the message originates from a corrupt party, S decrypts the message, performs the relevant checks, queries

algorithm RemoteM(prms, hdl,m, stR):
// Initial message
If m = ε :

m← (0, 1, ε) //Force bootstrap start
stR.IdList← stR // Input schedule
stR.stage← 0

//Bootstrap (attested labels)
If stR.stage = 0 :

(stageid, id, i)← m
o← LAC.AttestM(prms, hdl, (p, (id, ε)), i)
If o.stage = 1 : // IEE just finished bootstrap

stR.stage = 1; inreq← T; m′ ← ε
(id1, . . . , idk)← stR.IdList; id = id1

stR.IdList← (id2, . . . , idk)
Return (id, inreq,m′, stR)

Else: // Just continue bootstrap
If stageid = 1 : //This id finished bootstrap

id← id + 1

o← LAC.AttestM(prms, hdl, (p, (id, ε)), ε)
inreq← F; m′ ← o
Return (id, inreq,m′, stR)

Else:
inreq← F; m′ ← o
Return (id, inreq,m′, stR)

//Execution (non-attested labels)
If stR.stage = 1 :

(stageid, id, i)← m
If i = ε : //Move to next input (empty incoming message)

(id1, . . . , idk)← stR.IdList
inreq← T; m′ ← ε
id = id1; stR.IdList← (id2, . . . , idk)
Return (id, inreq,m′, stR)

Else: // Process input and send output
o←M.Run(hdl, (q, id), i)
inreq← F; m′ ← o
If IdList = [] : Then stR.stage← 2 //No additional inputs
Return (id, inreq,m′, stR)

Fig. 11. SMPC protocol untrusted scheduler.

Fun for this id and input and returns a proper encryption of the correct output using the correct key for that
corrupt party. If the message originates from an honest party, S checks its integrity and that this was the next
undelivered input message for this id (if not it aborts the simulation) and updates the count of delivered inputs.
It then queries Fun for this id to get get the size of the output and returns the encryption of a dummy encrypted
message of the correct lenght under the fake key keyid, recording the result as an undelivered output message.
Again, note that, since in the second stage we are dealing with non-attested labels, the adversary is expecting
this message to be an authenticated encryption (under the derived key) of the correct output for that party.
We now sketch a proof of indistinguishability between the real world and the ideal world when instantiated with

the simulator described above. A detailed proof can be found in Appendix C. The proof is performed in 3 hops, the
first of which corresponds to a hybrid argument over the honest parties in the protocol. In this hybrid argument
one gradually replaces the secret key derived by each honest party by a random one. In each step, the AttKE utility
theorem can be used to show that this change cannot be noticed by the adversary. In the second hop, we replace
the encrypted inputs/outputs for honest parties by encrypted dummy payloads of the correct length. This hop is
correct by the indistinguishability of authenticated encryption ciphertexts. After this last game hop, the resulting
game is identical until bad to the ideal world, where the bad event corresponds to the simulator aborting due to an
inconsistent message being accepted as the next undelivered input or output. Due to the use of sequence numbers,
this bad event can be reduced to the authenticity of the encryption scheme and the Theorem follows.

8 Implementation and Evaluation

We experimented with two implementations of our protocol—sgx-mpc-mbed and sgx-mpc-nacl— which differ in
the underlying cryptography: sgx-mpc-mbed relies on the mbed TLS (formerly PolarSSL) library and sgx-mpc-nacl
which relies on the NaCl. Furthermore, sgx-mpc-mbed uses standard RSA technology for the key exchange stage,
and an AES128-CTR and HMAC-SHA256 Encrypt-Then-Mac construction for authenticated encryption, whereas
sgx-mpc-nacl uses elliptic-curves both for key exchange (Diffie-Hellman) and digital signatures, and a combination
of the Salsa20 and Poly1305 encryption and authentication schemes [8] for authenticated encryption.

Secure
MPC

Client-side and server-side protocol (code
running both inside and outside IEE)

Boot-
strap,
Box

Secure channel bootstrapping
and encrypted I/O stages of the
protocol (functionality agnostic)

AttKE,
secure
channel

Attested key agreement
and secure communications

LAC,
KE,

AEAD

Attestation and cryptographic
substract (key exchange and
authenticated encryption)

SGX,
crypto
library

Intel’s SDK and either mbed TLS or NaCl

Fig. 12. Bird’s eye view of our implementations.

Both implementations rely on Intel’s Software Development Kit (SDK) for dealing with the SGX low-level
operations. These include loading a piece of code into an IEE (our Load abstraction), calling a top-level function
within the IEE (our Run abstraction), and constructing an attested message (first getting a MAC’ed message
within the IEE, and then using the quoting enclave to convert it into a digital signature). Furthermore, both
implementations build on top of this cryptographic underpinning and share the structure in Figure 12. They employ
the LAC scheme proposed in this paper, and include wrappers that match our abstractions of digital signatures
and authenticated encryption. These are then used to construct the secure bootstrapping protocol (AttKE) that
enables each party to establish an independent secret key, and a secure channel that uses this key to communicate
with the Box construction running inside the enclave. Finally, both implementations of the Box are agnostic of the
functionality that should be computed by the protocol, and can be linked to arbitrary functionality implementations,
provided that these comply with a simple labelled I/O interface. The top-level interface to our protocol includes
the code that should be run inside the IEE, the code that runs outside the IEE in the remote machine to perform
the book-keeping operations and the client-side code that permits bootstrapping a secure channel and then send
inputs/receive outputs from the functionality.

Below, we present the experimental evaluation of both implementations. We first describe our methodology and
some micro-benchmarks, which are SGX-specific and not really intrinsic to our protocol. Afterwards, we discuss
the issue of side channel attacks, and assess the cost of adopting more stringent countermeasures against timing
attacks. Finally, we compare our protocol with a non hardware-based state-of-the-art secure two-party computation
framework.

8.1 Evaluation methodology and micro-benchmarks

We performed the evaluation on a SGX-enabled platform, equipped with an Intel Core i7-6700 processor (3.4MHz)
and 8GB DDR4 RAM, running 64 bit Ubuntu 14.04. Performing fine grained performance measurements for SGX is
a challenging task due to the lack of methods to directly measure the runtime of subcomponents inside an enclave,
leading to noisy results. To eliminate the noise, or at least minimize its effect, we repeated each measurement 100
times and report the average value.

Micro-Benchmarks. Our first results are protocol agnostic, and show the SGX-specific inherent overhead of
creating an enclave, invoking an enclave, generating MAC-based reports and signature generation by the quoting
enclave (QE). Table 1 lists the runtime of those components with fixed run times. The invocation of an enclave
cannot be measured on its own. We measured the time to enter an enclave and immediately returning, specified
as SGX context switch in Table 1. However, this measurement comprises both the time required for entering the
enclave, as well as the time required for leaving the enclave.

The creation time of an SGX enclave is dependent on its size. The initial enclave state must be copied into the
enclave memory area; the execution time of this operation is, as would be expected, linear in the size of the enclave.
Additionally, the initial state of the enclave is “measured” (i.e., hashed with SHA-256) during enclave creation.

Table 1. SGX Micro-Benchmarks

Component Time (ms)
SGX context switch 0.0054
MAC-based report (ERPORT) 0.2887
QE signatur 23.930

Again, this operation takes an amount of time that is linear in the size of the enclave.16 We measured the creation
time of an enclave to be 202.55µs+ S · 0.72µs with enclave size S in KB.

8.2 Side channels and software resilient against timing attacks

Recent works [39,16] have pointed out that IEE-enabled systems such as Intel’s SGX do not offer more protection
against side-channel attacks than traditional microprocessors. This is a relevant concern, since the IEE trust model
which we also adopt in this paper admits that the code outside IEEs is potentially malicious and that the machine
is under the control of an untrusted party. We believe that there are two aspects to this problem that should be
considered separately. The first aspect is related to the production of the IEE-enabled hardware/firmware itself
and the protection of the long-term secrets that are used by the attestation security module. If the computations
performed by the attestation infrastructure itself are vulnerable to side-channel attacks, then there is nothing that
can be done at the protocol design/implementation level. This aspect of trust is within the remit of the equipment
manufacturers.

An orthogonal issue is the possibility that software running inside an IEE leaks part of its state or short-term
secrets via side channels. Here one should distinguish between software observations and hardware/physical ob-
servations. In the former, software co-located in the machine observes timing channels based on memory access
patterns, control flow, branch prediction, cache-based based attacks [16], page-fault side channels [39], etc. Protec-
tion against this type of side-channel attacks has been widely studied in the practical crypto community, where
a consensus exists that writing so-called constant-time software is the most effective countermeasure [7,31]. As
mentioned above, constant-time software has the property that the entire sequence of memory addresses (in both
data and code memory) accessed by a program can be predicted in advance from public inputs, e.g., the length of
messages. When it comes to hardware/physical side-channel attacks such as those relying on temperature measure-
ments, power analysis, or electromagnetic radiation, the effectiveness of software countermeasures is very limited,
and improving harware defenses again implies obtaining additional guarantees from the equipment manufacturer.

For clarity, we recall that our two implementations differ in the way they deal with timing channels significantly:
while sgx-mpc-nacl enforces a strict constant-time policy that is consistent with the IEE trust model, sgx-mpc-mbed
relies on a standard TLS implementation that was not designed to deal with attacks by an adversary co-located in
the same machine. None of the implementations deploy countermeasures against hardware/physical side-channel
attacks.
Countermeasures against timing attacks. To assess the practical impact of assuming a stronger attack model
in which the remote party may launch timing attacks against implementations running inside enclaves, we have
compared the two implementations of our protocol. We evaluated the performance of the individual steps in the
protocol, namely the key exchange between IEE with an input party, and the Box component which decrypts all
inputs and encrypts all outputs in stage two of the protocol.17

Table 2 lists the measurements for the individual components of our two implementations, sgx-mpc-nacl and
sgx-mpc-mbed. The reported time comprises the key exchange with one input party, and so the overhead will
accumulate linearly with an increasing number of input parties. Interestingly, the Box components of our sgx-
mpc-nacl implementation is faster than in our sgx-mpc-mbed implementation, which shows that highly optimized
constant-time software (deploying cryptographic primitives designed specifically for this purpose) can be faster than
their non-constant-time counterparts, as argued for example in [8]. In the key exchange stage, the better performance
of RSA public-key operations (encryption and signature verification) gives sgx-mpc-mbed and advantage.

In the remainder of the section, when we compare our protocol with previous solutions, we will report the
evaluation results for our faster implementation sgx-mpc-mbed. The overhead of sgx-mpc-nacl over sgx-mpc-mbed
16 SGX does not require the measurement of the entire initial memory state of an enclave. However, the SDK’s default

behaviour is to measure the entire enclave (code and data) which is what is required for our protocol.
17 We note that, when such an attacker is considered, not only the cryptographic components must be implemented following

the constant-time coding policies, but also the code that implements the functionality itself (!), and so an additional penalty
may be payed in addition to the overhead we report here.

Table 2. LAC Components Benchmarks

Component sgx-mpc-mbed (ms) sgx-mpc-nacl (ms)
Key exchange (Stage 1) 35.17 127.6
Box (Stage 2) 0.036 0.012

occurs mostly in the key exchange phase, this means that from the execution times of sgx-mpc-nacl can easily be
inferred from our sgx-mpc-mbed results.

8.3 Comparative analysis with state-of-the-art MPC protocols

We compare our implementation with measurements we performed using the ABY framework [18]. We chose ABY
for comparison, as we could evaluate it on the same platform we used for assessing our protocol, therefore avoiding
differences due to performance disparities of heterogeneous evaluation platforms. Although it is specific to the two-
party secure computation setting, ABY is representative of state-of-the-art MPC implementations and we expect
results for other frameworks such as Sharemind18 and SPDZ [17] to lead to similar conclusions; indeed, the crux
of our performance gains resides in the fact that our solution does not require encoding the computation in circuit
form, which happens in one form or another for all of the aforementioned protocols.19

We evaluated the performance of four different secure two-party computation use cases: minimum, Hamming
distance, private set intersection, and AES. Like our protocol, the ABY protocol also has two phases: a preparation
phase and an online phase. The preparation phase comprises the key exchange between the input parties by means
of oblivious transfer (OT), and the generation of the garbled circuit (GC) representing the desired function. In
the online phase the GC gets evaluated and the result are send back to the output party. In our protocol, the
preparation phase is used to establish a secure channel between the IEE and the input parties. The online phase
of our protocol comprises the decryption of inputs in the Box component, the evaluation of the payload function,
and the encryption of the results, again by the Box component.

Determination of minimum Table 3 shows the performance of the two stages of ABY and sgx-mpc-mbed for
determining the minimum of two inputs, 32 bits each. For both phases the runtime of sgx-mpc-mbed is shorter than
ABY’s runtime; in both phases sgx-mpc-mbed is about 5.6 times faster than ABY.

Table 3. Minimum of two inputs

Component ABY (ms) Ours (ms)
Preparation 196.3 35.17
Online 0.404 0.071

Hamming Distance Next, we compared ABY and sgx-mpc-mbed in computing the Hamming Distance of two
inputs. We evaluated the performance for different input sizes to demonstrate the scaling behaviour for the different
solutions, detailed in Table 4.

Table 4. Hamming distance with different input sizes

Phase Preparation (ms) Online (ms) Total (ms)
Protocol ABY Ours ABY Ours ABY Ours

In
pu

t
si

ze
(b
it
s)

160 196.3 35.15 0.752 0.072 197.1 35.22
1600 196.7 35.12 1.819 0.080 198.5 35.20

16000 201.6 35.20 13.14 0.165 214.7 35.37
160000 226.2 35.12 144.4 1.037 370.6 36.16

18 https://sharemind.cyber.ee/
19 We also note that ABY assumes a semi-honest adversary, which is weaker than the one we consider; but still our perfor-

mance gains are significant.

Again, the preparation phase as well as the online phase of sgx-mpc-mbed is faster, compared to ABY. Addi-
tionally, the performance in ABY degrades faster with increasing input sizes than that of our protocol.

Private set intersection Table 5 lists our results for private set intersection. In contrast to the previous use cases, the
runtime of ABY’s preparation phase is increasing with the size of the input data, while sgx-mpc-mbed’s preparation
phase remains constant (modulo some measurement inaccuracies). Additionally, the growth in runtime of ABY’s
online phase is much stronger compared to sgx-mpc-mbed.

Table 5. Private set intersection with different set sizes

Phase Preparation Online Total
Protocol ABY Ours ABY Ours ABY Ours

Se
t
si

ze
100 224.8 35.22 1.084 0.098 225.9 35.32

1000 368.1 35.23 2.168 0.368 370.3 35.60
10,000 1442.2 35.19 12.88 3.454 1455.1 38.64

100,000 10,698.7 35.19 109.5 36.14 10,808.2 71.33
1,000,000 84,096.6 35.22 1616.0 385.4 85,712.6 420.6

AES As for the previous three use cases, we evaluated the secure multi-party computation of AES with ABY as
well as sgx-mpc-mbed; the results are in Table 6. AES has become a standard for evaluating MPC protocols, hence,
evaluation results for AES are available in a number of related works.

Table 6. AES – 128 bit key and 128 bit block size

Phase ABY Ours
Preparation (ms) 197.9 35.10
Online (ms) 3.249 0.093
Total (ms) 201.1 35.19

In comparison to ABY, the preparation phase and online phase are shorter with sgx-mpc-mbed, and consequently
the overall runtime is faster as well.

9 Conclusion

The main theoretical contribution of this paper is the concept of Labelled Attested Computation, a cryptographic
primitive that permits reasoning about the security properties of IEE-enabled systems in higher level protocols.
Building on LAC we rigorously prove the security under a strong adversarial model of a highly efficient MPC
protocol. Furthermore, we experimentally show that for two-party functionalities our protocol is considerably faster
than the state of the art protocol.

In future work, it would be interesting to expand on the current evaluation to explore the limits of SGX both
from the perspective of practical resilience to side-channel attacks, scalability in terms of the amount of code and
data that can be loaded into an enclave, scalability in terms of the number of parties that are involved, and how
to deal with the inherent limitations in a secure way. Achieving security against even stronger adversaries, e.g.,
considering adaptive corruptions in a way that avoids heavy cryptographic tools like non-commiting encryption is
also an interesting direction for future work.

References

1. I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for cpu based attestation and sealing. In HASP
2013, page 10, 2013.

2. M. Barbosa, B. Portela, G. Scerri, and B. Warinschi. Foundations of hardware-based attested computation and appli-
cation to SGX. In EuroS&P, pages 245–260. IEEE, 2016.

3. M. Barbosa, B. Portela, G. Scerri, and B. Warinschi. Foundations of hardware-based attested computation and appli-
cation to SGX. IACR Cryptology ePrint Archive, 2016:14, 2016.

4. A. Baumann, M. Peinado, and G. C. Hunt. Shielding applications from an untrusted cloud with haven. In OSDI, pages
267–283. USENIX Association, 2014.

5. M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining. In CRYPTO, volume 839 of Lecture Notes
in Computer Science, pages 341–358. Springer, 1994.

6. A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-party computation. In ACM Conference
on Computer and Communications Security, pages 257–266. ACM, 2008.

7. D. J. Bernstein. Cache-timing attacks on aes, 2005. http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.
8. D. J. Bernstein, T. Lange, and P. Schwabe. The security impact of a new cryptographic library. In LATINCRYPT,

volume 7533 of Lecture Notes in Computer Science, pages 159–176. Springer, 2012.
9. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving computations. In

ESORICS, volume 5283 of Lecture Notes in Computer Science, pages 192–206. Springer, 2008.
10. E. Brickell, L. Chen, and J. Li. A new direct anonymous attestation scheme from bilinear maps. In TRUST, volume

4968 of Lecture Notes in Computer Science, pages 166–178. Springer, 2008.
11. E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In ACM Conference on Computer and

Communications Security, pages 132–145. ACM, 2004.
12. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global setup. In TCC, volume 4392

of Lecture Notes in Computer Science, pages 61–85. Springer, 2007.
13. R. Canetti and M. Fischlin. Universally composable commitments. In CRYPTO, volume 2139 of Lecture Notes in

Computer Science, pages 19–40. Springer, 2001.
14. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure computa-

tion. In STOC, pages 494–503. ACM, 2002.
15. L. Catuogno, A. Dmitrienko, K. Eriksson, D. Kuhlmann, G. Ramunno, A. Sadeghi, S. Schulz, M. Schunter, M. Winandy,

and J. Zhan. Trusted virtual domains - design, implementation and lessons learned. In INTRUST, volume 6163 of Lecture
Notes in Computer Science, pages 156–179. Springer, 2009.

16. V. Costan and S. Devadas. Intel SGX explained, 2016.
17. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic encryption.

In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 643–662. Springer, 2012.
18. D. Demmler, T. Schneider, and M. Zohner. ABY - A framework for efficient mixed-protocol secure two-party computa-

tion. In NDSS. The Internet Society, 2015.
19. A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik. A minimalist approach to remote attestation. In DATE,

pages 1–6. European Design and Automation Association, 2014.
20. H. Ge and S. R. Tate. A direct anonymous attestation scheme for embedded devices. In Public Key Cryptography,

volume 4450 of Lecture Notes in Computer Science, pages 16–30. Springer, 2007.
21. C. Gebhardt and A. Tomlinson. Secure virtual disk images for grid computing. In APTC ’08, pages 19–29. IEEE

Computer Society, 2008.
22. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message attacks.

SIAM J. Comput., 17(2):281–308, 1988.
23. D. Gupta, B. Mood, J. Feigenbaum, K. R. B. Butler, and P. Traynor. Using intel software guard extensions for

efficient two-party secure function evaluation. In FC Workshop on Encrypted Computing and Applied Homomorphic
Cryptography, volume 9604 of Lecture Notes in Computer Science, pages 302–318. Springer, 2016.

24. S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web: Computing without simultaneous interaction. In
CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 132–150. Springer, 2011.

25. W. Henecka, S. Kögl, A. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: tool for automating secure two-party
computations. In ACM Conference on Computer and Communications Security, pages 451–462. ACM, 2010.

26. M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. del Cuvillo. Using innovative instructions to create trustworthy
software solutions. In HASP@ISCA, page 11. ACM, 2013.

27. Intel. Software Guard Extensions Programming Reference, 2014. https://software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf.

28. J. Katz. Universally composable multi-party computation using tamper-proof hardware. In EUROCRYPT, volume 4515
of Lecture Notes in Computer Science, pages 115–128. Springer, 2007.

29. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation. In FSE, volume 1978
of Lecture Notes in Computer Science, pages 284–299. Springer, 2000.

30. P. Koeberl, S. Schulz, A. Sadeghi, and V. Varadharajan. Trustlite: a security architecture for tiny embedded devices. In
EuroSys, pages 10:1–10:14. ACM, 2014.

31. A. Langley. Lucky thirteen attack on TLS CBC. Imperial Violet, Feb. 2013. https://www.imperialviolet.org/2013/
02/04/luckythirteen.html, Accessed October 25th, 2015.

32. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - secure two-party computation system. In USENIX Security
Symposium, pages 287–302. USENIX, 2004.

33. J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: an execution infrastructure for tcb minimiza-
tion. In EuroSys, pages 315–328. ACM, 2008.

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html

34. Microsoft. BitLocker Drive Encryption: Data Encryption Toolkit for Mobile PCs: Security Analysis, 2007. https:
//technet.microsoft.com/en-us/library/cc162804.aspx.

35. J. Noorman, P. Agten, W. Daniels, R. Strackx, A. V. Herrewege, C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens.
Sancus: Low-cost trustworthy extensible networked devices with a zero-software trusted computing base. In USENIX
Security Symposium, pages 479–494. USENIX Association, 2013.

36. R. Pass, E. Shi, and F. Tramer. Formal abstractions for attested execution secure processors. Cryptology ePrint Archive,
Report 2016/1027, 2016. http://eprint.iacr.org/2016/1027.

37. F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and M. Russinovich. VC3: trustworthy
data analytics in the cloud using SGX. In IEEE Symposium on Security and Privacy, pages 38–54. IEEE Computer
Society, 2015.

38. B. Smyth, M. Ryan, and L. Chen. Direct anonymous attestation (DAA): ensuring privacy with corrupt administrators.
In ESAS, volume 4572 of Lecture Notes in Computer Science, pages 218–231. Springer, 2007.

39. Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side channels for untrusted operating systems.
In IEEE Symposium on Security and Privacy, pages 640–656. IEEE Computer Society, 2015.

A Proof of Theorem 1

The proof is a sequence of three games presented in Figure 13 and Figure 14. The first game is simply the LAC
security game instantiated with our protocol.

In game G1
AC,A(1λ), the adversary loses whenever a sforge event occurs. Intuitively, this event corresponds to the

adversary producing a signature that was not computed by the signing process with handle 0, and hence constitutes
a forgery with respect to Σ. Given that the two games are identical until this event occurs, we have that

Pr[AttLAC,A(1λ)⇒ T]− Pr[G1
LAC,A(1λ)⇒ T] ≤ Pr[sforge] .

Game G0LAC,A(1
λ):

prms←$ M.Init(1λ)
(P,L∗, l, n, stA)←$ A1(prms)

P∗ ← Compile(prms, P, L∗)
For k ∈ [1..n]:

(ik, o
∗
k, stA)←$ AM2 (stV , stA)

Parse (ok, σ)← o∗k
If Σ.Vrfy(prms, σ, (P∗, filter[l]((l, ik, ok) : ios))):

ios← ((l, ik, ok) : ios)
Else: Return F

T ← (l, i1, o1, . . . , l, in, on)
For hdl∗ s.t. ProgramM(hdl∗) = P∗

(l′1, i
′
1, o
′
1, . . . , l

′
m, i
′
m, o

′
m)← TraceMR

(hdl∗)
T ′ ← filter[l](TraceP [st;CoinsM(hdl∗)](l

′
1, i
′
1, . . . , l

′
m, i
′
m))

If T v T ′ Return F
Return T

Game G1LAC,A(1
λ):

prms←$ M.Init(1λ)
(P,L∗, l, n, stA)←$ A1(prms)
sforge← F
P∗ ← Compile(prms, P, L∗)
For k ∈ [1..n]:

(ik, o
∗
k, stA)←$ AM2 (stV , stA)

Parse (ok, σ)← o∗k
If Σ.Vrfy(prms, σ, (P∗, filter[l]((l, ik, ok) : ios))):

ios← ((l, ik, ok) : ios)
Else: Return F
If ((P∗, (l, i1, o1, . . . , l, ik, ok), ?), σ′) 6∈ TraceM(0):

sforge← T; Return F
T ← (l, i1, o1, . . . , l, in, on)
For hdl∗ s.t. ProgramM(hdl∗) = P∗

(l′1, i
′
1, o
′
1, . . . , l

′
m, i
′
m, o

′
m)← TraceMR

(hdl∗)
T ′ ← filter[l](TraceP [st;CoinsM(hdl∗)](l

′
1, i
′
1, . . . , l

′
m, i
′
m))

If T v T ′ Return F
Return T

Fig. 13. First game hop for the proof of security of our AC protocol.

We upper bound the distance between these two games, by constructing an adversary B against the existential
unforgeability of signature scheme Σ in S∗ such that

Pr[sforge] ≤ AdvUF
Σ,B(λ)

Adversary B simulates the environment of G1
LAC,A as follows: the operation of machineM is simulated exactly with

the caveat that the signing operations performed within the process loaded by the security module are replaced
with calls to the Sign oracle provided in the existential unforgeability game. More precisely, whenever process 0 in
the remote machine is expected to compute a signature on message m, algorithm B calls its own oracle on (P ∗,m)
to obtain σ.

When sforge is set, according to the rules of game G1
LAC,A, algorithm B outputs message (P ∗, filter[l](ios)) and

candidate signature σ. It remains to show that this is a valid forgery. To see this, first observe that this is indeed a
valid signature, as signature verification is performed on these values immediately before sforge occurs. It suffices
to establish that message (P ∗, (l, i1, o1, . . . , l, ik, ok)) could not have been queried from the Sign oracle. Access

https://technet.microsoft.com/en-us/library/cc162804.aspx
https://technet.microsoft.com/en-us/library/cc162804.aspx
http://eprint.iacr.org/2016/1027

to the signing key that allows signatures to be performed is only permitted to the special process with handle
0. From the construction of S∗, we know that producing such a signature would only occur via the inclusion of
(P ∗, (l, i1, o1, . . . , l, ik, ok)) in its trace. Since we know that this is not the case, (P ∗, filter[l](ios)) could not have been
queried from the signature oracle. We conclude therefore that B outputs a valid forgery whenever sforge occurs.

In game G2
LAC,A(1λ), the adversary loses whenever a mforge event occurs. Intuitively, this event corresponds to

the adversary producing a tag that was not computed by the security module, and hence constitutes a forgery with
respect to Π. Given that the two games are identical until this event occurs, we have that

Pr[G1
LAC,A(1λ)⇒ T]− Pr[G2

LAC,A(1λ)⇒ T] ≤ Pr[mforge] .

Game G1LAC,A(1
λ):

prms←$ M.Init(1λ)
(P,L∗, l, n, stA)←$ A1(prms)
sforge← F
P∗ ← Compile(prms, P, L∗)
For k ∈ [1..n]:

(ik, o
∗
k, stA)←$ AM2 (stV , stA)

Parse (ok, σ)← o∗k
If Σ.Vrfy(prms, σ, (P∗, filter[l]((l, ik, ok) : ios))):

ios← ((l, ik, ok) : ios)
Else: Return F
If ((P∗, (l, i1, o1, . . . , l, ik, ok), ?), σ′) 6∈ TraceM(0):

sforge← T; Return F

T ← (l, i1, o1, . . . , l, in, on)
For hdl∗ s.t. ProgramM(hdl∗) = P∗

(l′1, i
′
1, o
′
1, . . . , l

′
m, i
′
m, o

′
m)← TraceMR

(hdl∗)
T ′ ← filter[l](TraceP [st;CoinsM(hdl∗)](l

′
1, i
′
1, . . . , l

′
m, i
′
m))

If T v T ′ Return F
Return T

Game G2LAC,A(1
λ):

prms←$ M.Init(1λ)
(P,L∗, l, n, stA)←$ A1(prms)
sforge← F; mforge← F
P∗ ← Compile(prms, P, L∗)
For k ∈ [1..n]:

(ik, o
∗
k, stA)←$ AM2 (stV , stA)

Parse (ok, σ)← o∗k
If Σ.Vrfy(prms, σ, (P∗, filter[l]((l, ik, ok) : ios))):

ios← ((l, ik, ok) : ios)
Else: Return F
If ((P∗, (l, i1, o1, . . . , l, ik, ok), ?), σ′) 6∈ TraceM(0):

sforge← T; Return F
If 6 ∃ hdl∗. ProgramM(hdl∗) = P∗ ∧
(l, i1, o1, . . . , l, ik, ok) v filter[l](TraceP [st;CoinsM(hdl∗)](TraceM(hdl∗)):
Then mforge← T; Return F

T ← (l, i1, o1, . . . , l, in, on)
For hdl∗ s.t. ProgramM(hdl∗) = P∗

(l′1, i
′
1, o
′
1, . . . , l

′
m, i
′
m, o

′
m)← TraceMR

(hdl∗)
T ′ ← filter[l](TraceP [st;CoinsM(hdl∗)](l

′
1, i
′
1, . . . , l

′
m, i
′
m))

If T v T ′ Return F
Return T

Fig. 14. Second game hop for the proof of security of our AC protocol.

We upper bound the distance between these two games, by constructing an adversary C against the existential
unforgeability of MAC scheme Π in the security module such that

Pr[mforge] ≤ AdvAuth
Π,C (λ)

Adversary C simulates the environment of G2
LAC,A as follows: the operation of machine M is simulated exactly

with the caveat that the MAC operations computed inside the internal security module are replaced with calls to
the Auth oracle provided in the existential unforgeability game. More precisely, whenever a process running code
R∗ within an IEE in the remote machine requests a MAC on message m from the security module, algorithm C
calls its own oracle on (P ∗,m) to obtain t.

Let T ← (l, i1, o1, . . . , l, ik, ok). When mforge is set according to the rules of game G2
LAC,A, algorithm C retrieves

the trace of the process with handle 0 running S∗, locates the input/output pair (((P ∗, T), t), σ′) and outputs
message (P ∗, T) and candidate tag t. To see this is a valid forgery, first observe that, having failed the sforge check,
we know that (((P ∗, T), t), σ′) is in the trace of the process with handle 0, so by its construction we also know
that the corresponding input ((P ∗, T), t) must contain a valid tag. It suffices to establish that message (P ∗, T)
could not have been queried from the Auth oracle. Suppose that the first part of the mforge check failed, i.e.,
that 6 ∃ hdl∗. ProgramM(hdl∗) = P ∗. Then, because the security module signs the code of the processes requesting
the signatures, we are sure that such a query was never placed to the Auth oracle. Furthermore, any MAC query
for a message starting with P ∗ must have been caused by the execution of an instance of P ∗. Now suppose
some instances of P ∗ were indeed running in the remote machine, but that none of them displayed the property
(l, i1, o1, . . . , l, ik, ok) v filter[l](Translate(ATraceM(hdl∗))). Then, by the construction of P ∗, we can also exclude
that (P ∗, T) was queried from the MAC oracle. As such, we conclude that C outputs a valid forgery whenever
mforge occurs.

To complete the proof, we argue that the adversary never wins in game G2
LAC,A. To see this, observe that when

the game reaches the final check, we have the guarantee that

∃ hdl∗. ProgramM(hdl∗) = P ∗ ∧
(l, i1, o1, . . . , l, in, on) v filter[l](TraceP [st;CoinsM(hdl∗)](TraceM(hdl∗))

Which exactly matches the final criteria of T v T ′.
To finish the proof, we must now show that this scheme also provides security with minimum leakage. This

implies defining a ppt simulator S that provides identical distributions with respect to experiment in Figure 5. This
is easy to ascertain given the simulator behaviour described in Figure 15: S1 and S3 follow the exact description of
the actual machine, modulo the generation of (pk, sk) and key. S2 takes an external output produced by P [st](l, i)
and returns an output in accordance to the behaviour of M, which given our language L may differ from a real
output only by the random coins. As such, the distribution provided by the simulator is indistinguishable to the
one provided by a real machine, and our claim follows.

ut

Simulator S = {S1,S2,S3}

Simulator S will perform according to theM execution description.

– Upon input 1λ, S1 generates a key pair for process S∗, a MAC key for the security module and initializes the traces and states as an
empty list. The public key will be the public parameters, while the secret key be stored in its initial state.

S1(1λ):
key←$ Π.Gen(1λ)

(pk, sk)←$ Σ.Gen(1λ)
Traces← []
Return (pk, (key, sk,Traces))

– S2 maintains a list of traces Traces with the respective list ios and stage stage. Given this, it masks output o∗ as if produced by an
actual machine execution.

S2(hdl, P, L, l, i, o∗, stS):
Parse (key, sk,Traces)← stS
If Traces[hdl] 6= []: ios← Traces[hdl]
Else: ios← []
If l ∈ L∗:

ios← (l, i, o∗) : ios
m← (o∗,Π.Mac(key, P, filter[l](ios)))

Else: m← o∗

Traces[hdl]← ios; stS ← (key, sk,Traces)
Return (m, stS)

– S3 standardly computes the next output given input i, program R and state st. Sim(P∗[st], l, i, ios, key) refers to the operation of
executing P∗ with label l and input i for trace ios and considering a security module with key key, producing output m and updated
trace ios. The result is afterwards treated similar to S2.

S3(hdl, P∗, l, i, st, stS):
Parse (key, sk,Traces)← stS
If hdl = 0:

Parse (m, t)← i∗

If Π.Ver(key, t,m): Return Σ.Sign(sk,m)
Else Return ⊥

If Traces[hdl] 6= []: ios← Traces[hdl]
Else: ios← []
L← labels(P∗)
(m, ios)←$ Sim(P∗[st], l, i, ios, key)
Traces[hdl]← ios; stS ← (key, sk,Traces)
Return (m, stS)

Fig. 15. Description of simulator S

B Proof of the Utility Theorem

In [3] the proof of utility, presented in Appendix C consists in a sequence of 4 games G0AttKE,A to G3AttKE,A. The
first hop removes the possibility of an AC forgery, thus ensuring that messages are delivered properly from the
remote program executing the key exchange to the local party. The second hop, using minimal leakage, replaces

execution in the remote machine by a simulated execution based on a real execution of the compiled program.
The final game hop replaces the execution of the remote key exchange by call to the AttKE security oracles, and
conclude immediately by security of the AttKE. Due to the similarities of both proofs, we do not rewrite the whole
proof, instead we highlight the differences coming from our different notion of attestation and our more general
composition pattern.

Our proof is a sequence of four games G0′AttKE,A to G3′AttKE,A. We highlight here how the sequence of games is
constructed in relation with the original utility proof from [2].
First game hop. The first game G0′AttKE,A is the utility game presented in Figure 8. In [2] the first hop consists
in adding a forgeAC event in the Send oracle to ensure that the initial segment of the trace witnessed by a local
party matches the initial segment of a valid execution of the distant protocol. Here, similarlym we add a forgeLAC
event, making sure that the subtrace corresponding to the appropriate label matches a remote execution, the Send
oracle is replaced by the one described in Figure 16.

Oracle Send(o∗, i):
o← LAC.Verify[stiV](prms, li, inilast, o

∗)
If o =⊥: Return ⊥
If b = 0 thenM←M elseM←M′
If o 6=⊥ ∧ 6 ∃hdl s.t. ProgramM(hdl) = R∗i .

Rev(o : T iL) v filter[li]TraceM(hdl): forgeLAC← T
m∗←$ LocKE[stiKE](o)
inilast ← m∗;T iL ← m∗ : o : T iL
If stiKE.δ ∈ {derived, accept} ∧ stiKE.key /∈ fake:

key∗←$ {0, 1}λ
fake← (key, key∗) : fake

Return m∗

Fig. 16. Send oracle from G1′AttKE,A

The correctness of this game hop follows from the same arguments as the proof of Theorem 3 in [3].
Second game hop. The second game hop in [3] consist in replacing the remote machine by the simulator, provided
by the minimum leakage property. The minimal leakage property is exactly the same in AC and LAC, and this
second game hop is exactly the same.

This second game allows us to reason on the semantics of the original code instead of the compiled code executed
in an IEE. This lets us take advantage of the semantics of parallel and sequential composition in the next game
hop.
Third game hop. In the third game hop, the crucial point is emulating a run of the protocol using the oracles
from the AttKE security game. As in the proof of Theorem 3 from [3], we keep a list of instances of key exchanges
related to the various programs, updated in the Load oracle. The NewSession oracle creates a new instance of RemKE

using the NewLoc oracle and the Send oracle uses the SendLoc oracle, exactly as in the original utility proof. The
crucial modifications appear in the Run oracle and are presented in Figure 17.

We remark that for this last game hop to be valid, we crucially need both the fact that only the key and relavant
parts of the key exchange state are passed through φ, which is ensured by the fact that the mapping function in
the sequential composition is (φkey|φ1| . . . |φn). Additionally, the state of the key exchange has to be completely
independent from the state of the other programs composed in parallel in order for us to be able to emulate it using
the SendRem oracle. This property is ensured by the semantics of the parallel composition. With these remarks, we
observe that the semantics of this third game is exactly the same as the semantics of G2′AttKE,A, in a similar way to
the utility proof in [3]. Finally, we observe that the adversary wins G3AttKE,A if it wins the AttKE security game
(modulo the reduction simulating all non-AttKE oracles), which concludes the proof.

C Proof of Theorem 3

Proof. This proof is made by simulation. First, we present the construction of simulator S, with the task of
interacting with A on behalf of honest participants of the protocol, i.e.,M.Load,M.Run and Send for parties 1 to
k. We then present arguments for why adversary A cannot distinguish between this displayed interaction and the
real world protocol execution.

Oracle Run(hdl, (l, in)):
(R∗i , st, j, stage)← List[hdl]
If (R∗i , l0) ∈ PrgList and R∗i = LAC.Compile(〈〈P |P1 . . . |Pl〉(l0,l1,...,ln);Q〉(φkey|φ1|...|φn),p,q):

If stage = 1:
If l = (p, l0, ε):

If st.finished.l: Return (F, ε)
o←$ SendRem(in, i, j)
Parse (o, sid, δ, pid)← o:
If δ = accept:

st.finished.l← T
st.l.key← TestRem(i, j)

Else If l = (p, lk, l
′)

o← Pk[st.lk](l
′, in)

st.finished.lk ← o.finished
If st.finished.lk: st.lk ← φk(st.lk)

o← (∧ni=0st.finished.li, o)
(o∗, stS)←$ S2(hdl, R∗, l, in, o, stS)
If (∧ni=0st.finished.li, o): stage = 2

T hdl
R ← o∗ : in : T hdl

R

Else:
o←$ Q[st](l, in)
(o∗, stS)←$ S2(hdl, P, φ,Q,R∗, in, o, stS)

Else:
(o, st, stS)←$ S3(hdl, R∗, in, st, stS)

List[hdl]← (R∗, st, j, stage)
Return o∗

Fig. 17. Run oracle from G3′AttKE,A

Observe that, according to the experiment in Figure 7, despite being used in different contexts (e.g. the same S
for emulating the machine and the presentation of outputs), the simulator can always distinguish to which call it
is responding to. This is because it receives different inputs in different occasions, with exception of honest party
initialization and output retrieval, whose orders are predictable (GetOutput will always provide S with an already
initialized id). As such, for clarity of presentation, we describe our simulator in Figure 18 (local participants) and
Figure 19 (remote machine) with different behavior for different calls. Notice that in this scenario there is noM,
however the simulator perfectly follows the description ofM to emulate its behaviour. Following its description in
Section 3, let SMInit(1λ) be the initialization function of the security module, producing public parameters prms
and internal state sk, and let P ∗[hdlst, sk](l, i) be the execution of compiled P ∗ given the internal state hdlst and
private parameters sk, according to the description of the security module, producing (possibly attested) output
o∗.

The behaviour detailed in S does not trivially entail indistinguishability from the real world on all cases. The
two main differences between how the simulator handles calls and how the same instructions would be executed in
the real world are highlighted in the presented figures, and are now further detailed.

– The simulator is replacing the exchanged keys associated with honest participants with randomly generated ones
(fake), and using them throughout the second stage of the protocol.

– Instead of the honest participant’s inputs and outputs, the simulator is encrypting strings of 0s with the same
length as the real-world values (obtained by Lin and Lout).

We now argue that, nevertheless, this provides an indistinguishable view for any A. We prove this in three game
hops from the real world, from Figure 20 to Figure 23. The first hop will replace M with the slightly different
M′, which replaces keys exchanged by honest participants by freshly generated keys (in exactly the same way the
simulator is doing it). The correctness of this hop follows from the utility theorem, using a hybrid argument to
replace keys of all k honest parties. Afterwards, we replace the encrypted inputs/outputs of honest parties, by
encrypting dummy payloads of the correct length. The correctness of this hop follows from the indistinguishability
of the underlying authenticated encryption scheme. Finally, we restrict the possibility of A to produce a forged
encryption, by accordingly establishing a bad event. The correctness of this final hop follows from the unforgeability
of the underlying authenticated encryption scheme.

S(1λ): // parameter initialization
prms, st.sk←$ SMInit(1λ)

st.λ← 1λ; st.hdl← 0; st.fake← []
Return (st, st.prms)

S(st, id): // party setup
(stL,RemKE)← SetupKE(st.λ, id)
st.id.stL ← stL
st.stage← 0
Return (st,RemKE)

S(st, id): // party initialization
st.id.InList← []; st.id.stage← 0;
st.id.seqin ← 0; st.id.seqout ← 1; st.id.inlast ← ε
(Rem1

KE, . . . ,RemnKE)← Pub
st.P ← 〈 〈Rem1

KE, . . . ,RemnKE〉1,...,n ; Box〈F, Λ〉 〉φkey,p,q

st.L← {(p, (id, ε)), (q, id)}
st.id.stV ← (st.P, st.L)
L∗ ← {(p, (1, ε)), . . . , {(p, (n, ε))}
st.P∗ ← LAC.Compile(prms, st.P, L∗)
st.id.InLeak← []; st.id.InList← []
Return st

S(st, l, id): // add inputs
stid.InLeak[id]← stid.InLeak[id] + [l]
Return st

S(st, id): // output retrieval
Return (st.id.seqout/2) + 1

SFun(st, id,m): // emulate local participant id

If st.id.stage = 0 :
(i, st.id.stV)← LAC.Verify(st.prms, (p, (id, ε)), st.id.inlast,m, st.id.stV)
If i =⊥: Return ⊥
(o, st.id.stL)←$ LocKE(st.id.stL, i)
st.id.inlast ← o
If st.id.stL.key 6∈ st.fake ∧ st.id.stL.δ ∈ {derived, accept}:

key∗←$ {0, 1}st.λ

st.fake← (st.id.stL.key, key∗) : fake
If st.id.stL.δ = accept: stage← 1
m′ ← (st.id.stage, id, o)
Return (st,m′)

If st.id.stage = 1 :
If m = ε :
l← st.id.InLeak[0]
(in1, . . . , ink)← st.id.InLeak
st.id.InLeak← (in1, . . . , ink-1)

in← {0}l
o←$ Λ.Enc(fake(st.id.stL.key), (st.id.seqin, in))
st.id.InList[st.id.seqin]← o
st.id.inlast ← o
st.id.seqin ← st.id.seqin + 2
m′ ← (st.id.stage, id, o)
Return (st,m′)

Else:
m′ ← Λ.Dec(fake(st.id.stL.key),m)
If m′ = (st.id.seqout, out′) :

st.id.seqout ← st.id.seqout + 2
m′ ← (st.id.stage, id, ε)
Return (st,m′)

Else: Return ⊥

Fig. 18. Description of simulator S with respect to emulating local participants.

The first game (Figure 20) is simply the real game expanded with the protocol instantiation. In this setting,
whenever the adversary sets k as 0, i.e. corrupts all participants, the simulator already produces an indistinguishable
view. In this case there are no honest inputs/outputs, so the simulator has access to all information and can therefore
execute the protocol without replacing any keys and without encrypting any dummy payloads (st.id = ε for all id),
executing Fun whenever a corrupt input is provided to produce the corresponding output. As such, the following
steps will only refer to situations in which k 6= 0, where indistinguishability is not yet established.

In the second game G1F,π,A,M′(1λ) (Figure 21), we replace the machine in the ideal world with the machine
M ′ of the Utility game for which b = 1. This machine performs exactly what the simulator is doing with the list
fake, i.e., replacing keys for the first k participants whenever they finish the first stage of the protocol (the key
exchange). This is possible via two steps.

Fix identity id = 1. We can replace the behaviour ofM in G0F,π,A,M(1λ) regarding this participant using the
Utility Theorem 2, for which l∗ = id. In this scenario, the key (both in M′.Run and in Send) for that particular
participant will be replaced by a fake one and stored in fake (as described in G1F,π,A,M′(1λ), but only for id = 1).
The advantage gained by the adversary in this intermediate step is bound by its advantage in winning the experiment
in Figure 8, by providing

Rem2
KE, (p, (2, ε)), (q, 2), . . .Remn

KE, (p, (n, ε)), (q, n), (p, (1, ε)),Box〈F , Λ〉, φkey

To NewSession on every call.
Now observe that, for any scenario in which m participants have had their keys replaced by fake ones, it is

possible to apply the same Utility theorem for replacing the keys of m + 1 participants. In order to replace all k
keys, we are therefore required to apply the same Utility theorem k times, and thus

Pr[G0F,π,A,M(1λ)⇒ T]− Pr[G1F,π,A,M′(1
λ)⇒ T] ≤ AdvUT

AttKE,A(λ) ∗ k.

In the third game G2F,π,A(1λ) (Figure 22), we open the machine M ′ and change its behaviour for instances of
running program P ∗ on the second stage as follows:
– Upon receiving an honest participant input, instead of using it for computing Fun instead uses the first element

of ListIn.
– When producing an honest participant output, instead of returning an encryption of the value received from F,

it stores the value from F on an output list for this identity OutList and returns an encryption of zeros of the
same length as the output.

Similarly, on the local side for instances running the second stage:

S(st,Pub, P): //M.Load

st.hdl← st.hdl + 1
For i ∈ L: seq[i]← 0
st.HdlList← (st.hdl, seq, ε)
Return st.hdl

SFun(st, hdl,m): //M.Run

(P∗, seq, sthdl)← st.HdlList[hdl]
If P∗ = st.P∗: //The agreed protocol.

If (p, (id, ε)) 6∈ st.L: Return ⊥
If sthdl[id].stage = 0 :

(id, in)← m
m′←$ P∗[sthdl, st.sk](id,m)
If st.id 6= ε ∧ sthdl[id].key 6∈ st.fake ∧ sthdl[id].δ ∈ {derived, accept}:

key∗←$ {0, 1}st.λ

st.fake← (sthdl[id].key, key∗) : fake
Else If sthdl[id].stage = 1 :

(seqin, id, in)← m
If (seq[id] 6= seqin): Return ⊥
If st.id 6= ε: //Honest participant

If st.id.InList[seq[id]] 6= in: Return ⊥
l← Fun(honest, id, ε)

out← {0}l
m′←$ Λ.Enc(fake(sthdl.key[id]), (seq[id] + 1, in))

Else: //Corrupt participant
in∗←$ Λ.Dec(fake(sthdl.key[id]), (seq[id] + 1, in))
out← Fun(corrupt, id, in∗)
m′←$ Λ.Enc(fake(sthdl.key[id]), (seq[id] + 1, out))

seq[id]← seq[id] + 2
Else: //Any other program onM.

(id, in)← m
m′←$ P∗[sthdl, st.sk](id,m)

st.HdlList[hdl]← (P, seq, sthdl)
Return (st,m′)

Fig. 19. Description of simulator S with respect to emulating the remote machine.

– When called for presenting the input, instead of encrypting the actual input, it stores it on a list of inputs InList
and encrypts a string of zeros of the same length.

– Upon receiving an output, instead of decrypting and storing it on ListOut, it retrieves the value of OutList and
stores it on ListOut.
We upper bound the distance between these two games, by constructing an adversary B against the indistin-

guishability of encryption scheme Λ such that

Pr[G1F,π,M′(1
λ)⇒ T]− Pr[G2F,π(1

λ)⇒ T] ≤ AdvIND
Λ,B(λ) ∗ k ∗ 2I

Adversary B simulates the environment of G2F,π,A(1
λ) as follows: it first has to try and guess which message will

be used to distinguish. Let I be the maximum number of inputs adversary A chooses to input for any participant.
It samples uniformly from [1..k] a participant p, and from [1..(I ∗ 2)] a message m. Since every input produces an
output, we establish that
– If m ∈ [1..I], B picked the m-th input.
– If m ∈ [I + 1, . . . , (I ∗ 2)], B picked the m

I -th output.
and proceed accordingly. B replaces all calls for encryption/decryption for inputs/outputs of participant p with
similar calls to Λ.Enc and Λ.Dec, with exception of the following. If m ∈ [1..I], whenever Send(id,m) for id = p is
called for the m-th time on the second stage, B challenges INDΛ,B(1λ) with message

((stid.seqin, in), (stid.seqin, {0}|in|))

Otherwise, whenever Run(hdl, l,m) for l = p and P = P ∗ (the agreed protocol) is called for the m
I -th time on the

second stage, B challenges INDΛ,B(1λ) with message

((seq[id] + 1, out), (seq[id] + 1, {0}|out|))

Observe that any advantage B acquires in this transformation can be effectively used to distinguish between
G1F,π,M′(1

λ) and G2F,π(1
λ), since the only difference between the two games is the encryption of either the first

message (the real value) or the second (the dummy payload with the same length). The two games are identical
modulo this difference.

G0F,π,A,M(1λ):
(n, F, Lin, Lout)← F
prms←$ M.Init(1λ)
(stA, k)←$ A(prms)
For id ∈ [1..k]:

(stid.stL, stid.pub)← SetupKE(1
λ, id)

Pub← (pub1, ..., pubk)
For id ∈ [k + 1..n]:

(stA, pubid)←$ A(stA, id,Pub)
Pub← (pub1, ..., pubn)
For id ∈ [1..k]:

stid.InList← []; stid.stage← 0;
stid.seqin ← 0; stid.seqout ← 1; stid.inlast ← ε
(Rem1

KE, . . . ,RemnKE)← Pub
P ← 〈 〈Rem1

KE, . . . ,RemnKE〉1,...,n ; Box〈F, Λ〉 〉φkey,p,q

L← {(p, (stid.id, ε)), (q, stid.id)}
stid.stV ← (P,L)

b←$ AO(stA)

Oracle SetInput(in, id):
If id 6∈ [1..k] Return ⊥
stid.InList← stid.InList + [in]

Oracle Load(P):
ReturnM.Load(P)

Oracle Run(hdl, l,m):
ReturnM.Run(hdl, l,m)

Oracle Send(id,m):
If id 6∈ [1..k] Return ⊥
If stid.stage = 0 :

(i, stid.stV)← LAC.Verify(stid.prms, (p, (stid.id, ε)), inlast,m, stV)
If i =⊥: Return ⊥
(o, stid.stL)←$ LocKE(stid.stL, i)
stid.inlast ← o
If (stid.stL.stKE.δ) = accept : Then stage← 1
m′ ← (stid.stage, stid.id, o)
Return m′

If stid.stage = 1 :
If m = ε :

in← stid.InList[0]
(in1, . . . , ink)← stid.ListInid

stid.ListInid ← (in1, . . . , ink-1)
o←$ Λ.Enc(stid.stL.key, (stid.seqin, in))
stid.inlast ← o
stid.seqin ← stid.seqin + 2
m′ ← (stid.stage, stid.id, o)
Return m′

Else:
m′ ← Λ.Dec(stid.stL.key,m)
If m′ = (stid.seqout, out′) :

stid.seqout ← stid.seqout + 2
stid.out← out′

m′ ← (stid.stage, stid.id, ε)
Return m′

Else: Return ⊥

Oracle GetOutput(id):
If id 6∈ [1..k] Return ⊥
Return stid.out

Fig. 20. Real world expanded.

In the fourth game G3F,π,A(1λ) (Figure 23), the adversary loses whenever authForge event occurs. Intuitively,
this event corresponds to the adversary producing an encryption that was not produced by either Send orM.Run
for id ∈ [1..k] (honest participant), and hence constitutes a forgery with respect to Λ. Given that the two games
are identical until this event occurs, we have that

Pr[G2F,π,A(1
λ)⇒ T]− Pr[G3F,π,A(1

λ)⇒ T] ≤ Pr[authForge] .

We upper bound the distance between these two games, by constructing an adversary C against the existential
unforgeability of encryption scheme Λ such that

Pr[authForge] ≤ AdvUF
Λ,C(λ) ∗ k

Adversary C simulates the environment of G3F,π,A(1
λ) as follows: it first has to try and guess which session will

produce the forgery. As such, it samples uniformly from [1..k] a participant p and replaces the key generated
for honest participant p (before adding to fake) with the key generated by Λ.Gen. From there on, every time an
encryption/decryption is requested for p, the same operation will be requested to Λ.Enc and Λ.Dec, respectively.

When authForge is set, according to the rules of G3F,π,A(1
λ), algorithm C outputs candidate encryption m. It

remains to show that this is a valid forgery. To see this, first observe that this is indeed a valid encryption, as
decryption is performed on this value immediately before authForge occurs. It suffices to establish that message
m could not have been queried from the Λ oracle. Access to this oracle is only permitted on the encryption of
inputs for this participant, and on outputs to this participant (when executing Run). From the construction of
these operations and the sequence numbers they entail, we know that producing such an encryption would only
occur via the inclusion of m in authList. Since we know this is not the case, m could not have been queried to the
encryption oracle. We conclude therefore that C outputs a valid forgery whenever authForge occurs.

Finally, we argue that the behavior displayed by the simulator is indistinguishable to what adversary A observes
in game G3F,π,A(1

λ). This is the case because the simulator no longer has private information to which he has no
access to. In G3F,π,A(1

λ), only the length of honest inputs and outputs is required to emulate their private inputs
and outputs, to which S has access to via Lin and Lout. Additionally, the simulator uses the same message sequence
numbers to prevent A from forcing an execution that deviates from the order in which inputs are provided and
outputs are retrieved. Since the executions are the same for all other aspects (including key replacements to fake
and exclusion of forged encryptions), A is provided the same view in both worlds.

G1F,π,A,M′ (1
λ):

(n, F, Lin, Lout)← F
prms←$ M′.Init(1λ)
fake← []
(stA, k)←$ A(prms)
For id ∈ [1..k]:

(stid.stL, stid.pub)← SetupKE(1
λ, id)

Pub← (pub1, ..., pubk)
For id ∈ [k + 1..n]:

(stA, pubid)←$ A(stA, id,Pub)
Pub← (pub1, ..., pubn)
For id ∈ [1..k]:

stid.InList← []; stid.stage← 0;
stid.seqin ← 0; stid.seqout ← 1; stid.inlast ← ε
(Rem1

KE, . . . ,RemnKE)← Pub
P ← 〈 〈Rem1

KE, . . . ,RemnKE〉1,...,n ; Box〈F, Λ〉 〉φkey,p,q

L← {(p, (stid.id, ε)), (q, stid.id)}
stid.stV ← (P,L)
P∗ ← LAC.Compile(prms, P, L)

b←$ AO(stA)

Oracle SetInput(in, id):
If id 6∈ [1..k] Return ⊥
stid.InList← stid.InList + [in]

Oracle Load(P):
ReturnM′.Load(P)

Oracle Run(hdl, l,m):
flag← F
If ProgramM(hdl) = P∗: flag← T
ReturnM′.Run(hdl, l,m, flag, fake)

Oracle Send(id,m):
If id 6∈ [1..k] Return ⊥
If stid.stage = 0 :

(i, stid.stV)← LAC.Verify(stid.prms, (p, (stid.id, ε)), inlast,m, stV)
If i =⊥: Return ⊥
(o, stid.stL)←$ LocKE(stid.stL, i)
stid.inlast ← o
If stid.stL.key 6∈ fake ∧ stid.stL.δ ∈ {derived, accept}:

key∗←$ {0, 1}λ
st.fake← (stid.stL.key, key∗) : fake

If (stid.stL.stKE.δ) = accept : Then stage← 1
m′ ← (stid.stage, stid.id, o)
Return m′

If stid.stage = 1 :
If m = ε :

in← stid.InList[0]
(in1, . . . , ink)← stid.ListInid

stid.ListInid ← (in1, . . . , ink-1)
o←$ Λ.Enc(fake(stid.stL.key), (stid.seqin, in))
stid.inlast ← o
stid.seqin ← stid.seqin + 2
m′ ← (stid.stage, stid.id, o)
Return m′

Else:
m′ ← Λ.Dec(fake(stid.stL.key),m)
If m′ = (stid.seqout, out′) :

stid.seqout ← stid.seqout + 2
stid.out← out′

m′ ← (stid.stage, stid.id, ε)
Return m′

Else: Return ⊥

Oracle GetOutput(id):
If id 6∈ [1..k] Return ⊥
Return stid.out

Fig. 21. First hop of the proof.

Let
AdvDistinguish

F,A = Pr[RealF,π,A,M(1λ)⇒ T]− Pr[IdealF,π,A,S(1
λ)⇒ T]

To conclude, we have that

AdvDistinguish
F,A = Pr[G0F,π,A,M(1λ)]− Pr[G3F,π,A(1

λ)]

= (Pr[G0F,π,A,M(1λ)]− Pr[G1F,π,A,M′(1
λ)]) + (Pr[G1F,π,A,M′(1

λ)]− Pr[G2F,π,A(1
λ)])+

(Pr[G2F,π,A(1
λ)]− Pr[G3F,π,A(1

λ)])

≤ AdvAtt
UT,A(λ) ∗ k + AdvIND

Λ,B(λ) ∗ k ∗ 2I + Pr[forgeAuth]

≤ AdvAtt
UT,A(λ) ∗ k + AdvIND

Λ,B(λ) ∗ k ∗ 2I + AdvUF
Λ,C(λ) ∗ k

and Theorem 3 follows.

G2F,π,A(1λ):
(n, F, Lin, Lout)← F
(prms, sk)←$ SMInit(1λ)
hdl← 0
fake← []
(stA, k)←$ A(prms)
For id ∈ [1..k]:

(stid.stL, stid.pub)← SetupKE(1
λ, id)

Pub← (pub1, ..., pubk)
For id ∈ [k + 1..n]:

(stA, pubid)←$ A(stA, id,Pub)
Pub← (pub1, ..., pubn)
For id ∈ [1..k]:

stid.ListIn← []; stid.ListOut← []; stid.stage← 0
stid.seqin ← 0; stid.seqout ← 1; stid.inlast ← ε
(Rem1

KE, . . . ,RemnKE)← Pub
P ← 〈 〈Rem1

KE, . . . ,RemnKE〉1,...,n ; Box〈F, Λ〉 〉φkey,p,q

L← {(p, (stid.id, ε)), (q, stid.id)}
stid.stV ← (P,L)
P∗ ← LAC.Compile(prms, P, L)

b←$ AO(stA)

Oracle Run(hdl, l,m):
(P, seq, sthdl)← HdlList[hdl]
If P = P∗: //The agreed protocol.

If (p, (id, ε)) 6∈ L: Return ⊥
If sthdl[id].stage = 0 :

(id, in)← m
m′←$ P∗[sthdl, sk](id,m)
If stid 6= ε ∧ sthdl[id].key 6∈ fake ∧ sthdl[id].δ ∈ {derived, accept}:

key∗←$ {0, 1}1
λ

st.fake← (sthdl[id].key, key∗) : fake
Else If sthdl[id].stage = 1 :

(seqin, id, in)← m
If (seq[id] 6= seqin): Return ⊥
If stid 6= ε: //Honest participant

m′ ← Λ.Dec(fake(stid.stL.key), in)
If m′ = (seq[id], out′) :

out← F[stF](id, InList[seq[id]])
stid.OutList[seq[id] + 1]← out

m′←$ Λ.Enc(fake(sthdl.key[id]), (seq[id] + 1, {0}|out|))
Else: //Corrupt participant

in∗←$ Λ.Dec(sthdl.key[id], (seq[id] + 1, in))
out← F[stF](id, in)
m′←$ Λ.Enc(sthdl.key[id], (seq[id] + 1, out))

seq[id]← seq[id] + 2
Else: //Any other program onM.

(id, in)← m
m′←$ P∗[sthdl, st.sk](id,m)

HdlList[hdl]← (P, seq, sthdl)
Return m′

Oracle Load(P):
hdl← hdl + 1
For i ∈ L: seq[i]← 0
HdlList← (hdl, seq, ε)
Return hdl

Oracle SetInput(in, id):
If id 6∈ [1..k] Return ⊥
stid.InList← stid.InList + [in]

Oracle Send(id,m):
If id 6∈ [1..k] Return ⊥
If stid.stage = 0 :

(i, stid.stV)← LAC.Verify(stid.prms, (p, (stid.id, ε)), inlast,m, stV)
If i =⊥: Return ⊥
(o, stid.stL)←$ LocKE(stid.stL, i)
stid.inlast ← o
If stid.stL.key 6∈ fake ∧ stid.stL.δ ∈ {derived, accept}:

key∗←$ {0, 1}λ
st.fake← (stid.stL.key, key∗) : fake

If (stid.stL.stKE.δ) = accept : Then stage← 1
m′ ← (stid.stage, stid.id, o)
Return m′

If stid.stage = 1 :
If m = ε :

in← stid.InList[0]
(in1, . . . , ink)← stid.ListInid

stid.ListInid ← (in1, . . . , ink-1)
stid.InList[stid.seqin]← in

o←$ Λ.Enc(fake(stid.stL.key), (stid.seqin, {0}
|in|))

stid.inlast ← o
stid.seqin ← stid.seqin + 2
m′ ← (stid.stage, stid.id, o)
Return m′

Else:
m′ ← Λ.Dec(fake(stid.stL.key),m)
If m′ = (stid.seqout, out′) :

stid.ListOut← stid.OutList[stid.seqout] : stid.ListOut
stid.seqout ← stid.seqout + 2
m′ ← (stid.stage, stid.id, ε)
Return m′

Else: Return ⊥

Oracle GetOutput(id):
If id 6∈ [1..k] Return ⊥
(out1, . . . , outk)← stid.ListOut
Return out1 || . . . || outi

Fig. 22. Second hop of the proof.

G3F,π,A(1λ):
(n, F, Lin, Lout)← F
(prms, sk)←$ SMInit(1λ)
hdl← 0
fake← []
forgeAuth← F
authList← []
(stA, k)←$ A(prms)
For id ∈ [1..k]:

(stid.stL, stid.pub)← SetupKE(1
λ, id)

Pub← (pub1, ..., pubk)
For id ∈ [k + 1..n]:

(stA, pubid)←$ A(stA, id,Pub)
Pub← (pub1, ..., pubn)
For id ∈ [1..k]:

stid.ListIn← []; stid.ListOut← []; stid.stage← 0
stid.seqin ← 0; stid.seqout ← 1; stid.inlast ← ε
(Rem1

KE, . . . ,RemnKE)← Pub
P ← 〈 〈Rem1

KE, . . . ,RemnKE〉1,...,n ; Box〈F, Λ〉 〉φkey,p,q

L← {(p, (stid.id, ε)), (q, stid.id)}
stid.stV ← (P,L)
P∗ ← LAC.Compile(prms, P, L)

b←$ AO(stA)
If forgeAuth = T: b←$ {0, 1}

Oracle Run(hdl, l,m):
(P, seq, sthdl)← HdlList[hdl]
If P = P∗: //The agreed protocol.

If (p, (id, ε)) 6∈ L: Return ⊥
If sthdl[id].stage = 0 :

(id, in)← m
m′←$ P∗[sthdl, sk](id,m)
If stid 6= ε ∧ sthdl[id].key 6∈ fake ∧ sthdl[id].δ ∈ {derived, accept}:

key∗←$ {0, 1}1
λ

st.fake← (sthdl[id].key, key∗) : fake
Else If sthdl[id].stage = 1 :

(seqin, id, in)← m
If (seq[id] 6= seqin): Return ⊥
If stid 6= ε: //Honest participant

If m′ = (seq[id], out′) :
out← F[stF](id, InList[seq[id]])
stid.OutList[seq[id] + 1]← out

m′←$ Λ.Enc(fake(sthdl.key[id]), (seq[id] + 1, {0}|out|))

authList← (fake(sthdl.key[id]), (seq[id] + 1, {0}|out|)) : authList
Else: //Corrupt participant

in∗←$ Λ.Dec(sthdl.key[id], (seq[id] + 1, in))
out← F[stF](id, in)
m′←$ Λ.Enc(sthdl.key[id], (seq[id] + 1, out))

seq[id]← seq[id] + 2
Else: //Any other program onM.

(id, in)← m
m′←$ P∗[sthdl, st.sk](id,m)

HdlList[hdl]← (P, seq, sthdl)
Return m′

Oracle Load(P):
hdl← hdl + 1
For i ∈ L: seq[i]← 0
HdlList← (hdl, seq, ε)
Return hdl

Oracle SetInput(in, id):
If id 6∈ [1..k] Return ⊥
stid.InList← stid.InList + [in]

Oracle Send(id,m):
If id 6∈ [1..k] Return ⊥
If stid.stage = 0 :

(i, stid.stV)← LAC.Verify(stid.prms, (p, (stid.id, ε)), inlast,m, stV)
If i =⊥: Return ⊥
(o, stid.stL)←$ LocKE(stid.stL, i)
stid.inlast ← o
If stid.stL.key 6∈ fake ∧ stid.stL.δ ∈ {derived, accept}:

key∗←$ {0, 1}λ
st.fake← (stid.stL.key, key∗) : fake

If (stid.stL.stKE.δ) = accept : Then stage← 1
m′ ← (stid.stage, stid.id, o)
Return m′

If stid.stage = 1 :
If m = ε :

in← stid.InList[0]
(in1, . . . , ink)← stid.ListInid

stid.ListInid ← (in1, . . . , ink-1)
stid.InList[stid.seqin]← in

o←$ Λ.Enc(fake(stid.stL.key), (stid.seqin, {0}
|in|))

authList← (fake(sthdl.key[id]), (stid.seqin, {0}
|in|)) : authList

stid.inlast ← o
stid.seqin ← stid.seqin + 2
m′ ← (stid.stage, stid.id, o)
Return m′

Else:
m′ ← Λ.Dec(fake(stid.stL.key),m)
If m′ 6=⊥ ∧ (fake(stid.stL.key),m) 6∈ authList:

forgeAuth← T
If m′ = (stid.seqout, out′) :

stid.ListOut← stid.OutList[stid.seqout] : stid.ListOut
stid.seqout ← stid.seqout + 2
stid.out← out′

m′ ← (stid.stage, stid.id, ε)
Return m′

Else: Return ⊥

Oracle GetOutput(id):
If id 6∈ [1..k] Return ⊥
(out1, . . . , outk)← ListOutid

Return out1 || . . . || outi

Fig. 23. Third hop of the proof.

	Secure Multiparty Computation from SGX

