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Abstract Most streaming decision models evolve continuously over time, run in resource-
aware environments, and detect and react to changes in the environment generating data.
One important issue, not yet convincingly addressed, is the design of experimental work to
evaluate and compare decision models that evolve over time. This paper proposes a gen-
eral framework for assessing predictive stream learning algorithms. We defend the use of
prequential error with forgetting mechanisms to provide reliable error estimators. We prove
that, in stationary data and for consistent learning algorithms, the holdout estimator, the
prequential error and the prequential error estimated over a sliding window or using fad-
ing factors, all converge to the Bayes error. The use of prequential error with forgetting
mechanisms reveals to be advantageous in assessing performance and in comparing stream
learning algorithms. It is also worthwhile to use the proposed methods for hypothesis testing
and for change detection. In a set of experiments in drift scenarios, we evaluate the ability of
a standard change detection algorithm to detect change using three prequential error estima-
tors. These experiments point out that the use of forgetting mechanisms (sliding windows or
fading factors) are required for fast and efficient change detection. In comparison to sliding
windows, fading factors are faster and memoryless, both important requirements for stream-
ing applications. Overall, this paper is a contribution to a discussion on best practice for
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performance assessment when learning is a continuous process, and the decision models are
dynamic and evolve over time.

Keywords Data streams · Evaluation design · Prequential analysis · Concept drift

1 Introduction

The last twenty years or so have witnessed large progress in machine learning and its ca-
pability to handle real-world applications. Nevertheless, machine learning so far has mostly
centered on one-shot data analysis from homogeneous and stationary data, and on central-
ized algorithms. Most machine learning and data mining approaches assume that examples
are independent, identically distributed and generated from a stationary distribution. A large
number of learning algorithms assume that computational resources are unlimited, for ex-
ample, data fits in main memory. In that context, standard data mining techniques use finite
training sets and generate static models. Nowadays we are faced with a tremendous amount
of distributed data that can be generated from the ever increasing number of smart devices.
In most cases, this data is transient, and may not even be stored permanently. Our ability to
collect data is changing dramatically. Nowadays, computers and small devices send data to
other computers. We are faced with the presence of distributed sources of detailed data. Data
continuously flows, eventually at high-speed, generated from non-stationary processes. Ex-
amples of data mining applications that are faced with this scenario include sensor networks,
social networks, user modeling, radio frequency identification, web mining, scientific data,
financial data, etc.

For illustrative purposes, consider a sensor network. Sensors are geographically dis-
tributed and produce high-speed distributed data streams. They measure some quantity of
interest, and we are interested in predicting that quantity for different time horizons. Assume
that at time t our predictive model makes a prediction ŷt+k for time t + k, where k is the
desired horizon forecast. Later on, at time t + k the sensor measures the quantity of interest
yt+k . With a delay k we can estimate the loss of our prediction L(ŷt+k, yt+k).

Recent learning algorithms such as Cormode et al. (2007), Babcock et al. (2003), Ro-
drigues et al. (2008) for clustering; Domingos and Hulten (2000), Hulten et al. (2001),
Gama et al. (2003), Liang et al. (2010) for decision trees; Ferrer-Troyano et al. (2004),
Gama and Kosina (2011) for decision rules; Li et al. (2010), Katakis et al. (2010) in change
detection; Giannella et al. (2003), Chi et al. (2006) in frequent pattern mining, etc., main-
tain a model that continuously evolves over time, taking into account that the environment is
non-stationary and computational resources are limited. Examples of publicly available soft-
ware for learning from data streams include: the VFML toolkit (Hulten and Domingos 2003)
for mining high-speed time-changing data streams, the MOA system (Bifet et al. 2010a) for
learning from massive data sets, Rapid-Miner (Mierswa et al. 2006) a data mining system
with plug-in for stream processing, etc.

Although there are an increasing number of streaming learning algorithms, the metrics
and the design of experiments for assessing the quality of learning models is still an open
issue. The main difficulties are:

– we have a continuous flow of data instead of a fixed sample of i.i.d. examples;
– decision models evolve over time instead of being static;
– data is generated by non-stationary distributions instead of a stationary sample.
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Table 1 Differences between batch and streaming learning that may affect the way evaluation is performed.
While batch learners build static models from finite, static, i.i.d. data sets, stream learners need to build models
that evolve over time, being therefore dependent on the order of examples, are generated from a continuous
non-stationary flow of non-i.i.d data

Batch Stream

Data size Finite data set Continuous flow

Data distribution i.i.d. Non-i.i.d.

Data evolution Static Non-stationary

Model building Batch Incremental

Model stability Static Evolving

Order of observations Independent Dependent

The design of experimental studies is of paramount importance (Japkowicz and Shah
2011). It is a necessary condition, although not sufficient, to allow reproducibility, that is
the ability of an experiment or study to be accurately replicated by someone else working
independently. Dietterich (1996) proposes a straightforward technique to evaluate learning
algorithms when data is abundant: “learn a classifier from a large enough training set and
apply the classifier to a large enough test set.” Data streams are open-ended. This could fa-
cilitate the evaluation methodologies, because we have train and test sets as large as desired.
The problem we address in this work is: Is this sampling strategy viable in the streaming
scenario?

In this work we argue that the answer is no. Two aspects in the emerging applications and
learning algorithms that have strong impact in the evaluation methodologies are the contin-
uous evolution of decision models and the non-stationary nature of data streams. The main
differences in evaluating stream learning algorithms as opposed to batch learning algorithms
are sketched in Table 1.

To cope with this stream evaluation scenario, the approach we propose is based on se-
quential analysis. Sequential analysis refers to the body of statistical theory and methods
where the sample size may depend in a random manner on the accumulating data (Ghosh
and Sen 1991). This paper is a substantial extension of a previous one (Gama et al. 2009),
published in a top-level data mining conference, where these issues were firstly enunci-
ated.1 More than the technical contribution, this paper is a contribution to a discussion on
best practice for performance assessment and differences in performance when learning dy-
namic models that evolve over time.

The prequential method is a general methodology to evaluate learning algorithms in
streaming scenarios. The contributions of this paper are:

– We prove that, for consistent learning algorithms and an infinite number of examples
generated by a stationary distribution, the holdout estimator, the prequential error and the
prequential error estimated over a sliding window or using fading factors, converge to the
Bayes error;

– We propose a faster and memoryless approach, using fading factors, that does not require
to store all the required statistics in the window;

– We propose the Q statistic, a fast and incremental statistic to continuously compare the
performance of two classifiers;

1Nowadays, the software MOA (Bifet et al. 2010a) implements most of the evaluation strategies discussed
here.
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– We show that the use of fading factors in the McNemar test provide similar results to
sliding windows;

– We show that the proposed error estimates can be used for concept drift detection;
– We show that performing the Page-Hinkley test over the proposed error estimators im-

proves the detection delay, although at the risk of increasing false alarms.

The paper is organized as follows. The next section presents an overview of the main lines
presented in the literature in learning from data streams and the most common strategies for
performance assessment. In Sect. 3 we discuss the advantages and disadvantages of the
prequential statistics in relation to the hold-out sampling strategy. We propose two new
prequential error rate estimates: prequential sliding windows and prequential fading factors,
and present convergence properties of these estimators. In Sect. 4 we discuss methods to
compare the performance of two learning algorithms. Section 5 presents a new algorithm
for concept drift detection based on sliding windows and fading factors error estimators.
The last section concludes the exposition, presenting the lessons learned.

2 Learning from data streams

Hulten and Domingos (2001) identify desirable properties of learning systems for efficiently
mining continuous, high-volume, open-ended data streams:

– require small constant time per data example;
– use fixed amount of main memory, irrespective to the total number of examples;
– built a decision model using a single scan over the training data;
– generate an anytime model independent from the order of the examples;
– ability to deal with concept drift. For stationary data, ability to produce decision models

that are nearly identical to the ones we would obtain using a batch learner.

From these desiderata, we can identify 3 dimensions that influence the learning process:

– space—the available memory is fixed;
– learning time—process incoming examples at the rate they arrive; and
– generalization power—how effective the model is at capturing the true underlying con-

cept.

In this work we focus on the generalization power of the learning algorithm, although we
recognize that the two first dimensions have direct impact in the generalization power of the
learned model.

We are in the presence of a potentially infinite number of examples. Is this fact relevant
for learning? Do we need so many data points? Sampling a large training set is not enough?
Figure 1 intends to provide useful information to answer these questions, showing the ac-
curacy’s evolution of VFDT (Domingos and Hulten 2000) in a web-mining problem. One
observes, in this particular problem, a rapid increase of the accuracy with the number of
examples; using more than ten million examples will not affect the accuracy, it will remain
stable near 80 %.

The fact that decision models evolve over time has strong implications in the evaluation
techniques assessing the effectiveness of the learning process. Another relevant aspect is the
resilience to overfitting: each example is processed once.
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Fig. 1 Performance evolution of
VFDT in a web-mining problem.
The accuracy (in percentage)
increases for increasing number
of training examples. For
illustrative purposes we present
the accuracy of C4.5 using the
maximum number of examples
that fit in memory (100k
examples)

3 Design of evaluation experiments

A key point in any intelligent system is the evaluation methodology. Learning systems gen-
erate compact representations of what is being observed. They should be able to improve
with experience and continuously self-modify their internal state. Their representation of
the world is approximate. How approximate is the representation of the world? Evaluation
is used in two contexts: inside the learning system to assess hypothesis, and as a wrapper
over the learning system to estimate the applicability of a particular algorithm in a given
problem. Three fundamental aspects are:

– What are the goals of the learning task?
– Which are the evaluation metrics?
– How to design the experiments to estimate the evaluation metrics?
– How to design the experiments to compare different approaches?

3.1 Experimental setup

For predictive learning tasks (classification and regression) the learning goal is to induce
a function ŷ = f̂ (x) that approximates f with arbitrary precision. The most relevant di-
mension is the generalization error. It is an estimator of the difference between f̂ and the
unknown f , and an estimate of the loss that can be expected when applying the model to
future examples.

One aspect in the design of experiments that has not been convincingly addressed is that
learning algorithms run in computational devices that have limited computational power. For
example, many existing learning algorithms assume that data fits in memory; a prohibitive
assumption in the presence of open-ended streams. This issue becomes much more rele-
vant when data analysis must be done in situ. An illustrative example is the case of sensor
networks, where data flows at high-speed and computational resources are quite limited.

Very few algorithms address the bounded memory constraint. A notable exception is
VFDT (Domingos and Hulten 2000) that can save memory by freezing less promising leaves
whenever memory reaches a limit. VFDT monitors the available memory and prune leaves
(where sufficient statistics are stored) depending on recent accuracy. An interesting frame-
work to evaluate learning algorithms under memory constraints appears in Kirkby (2008).
The author proposes 3 environments using increasing memory, for evaluating stream mining
algorithms:
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– Sensor environment: hundreds of Kbytes;
– Handheld computers: tens of Mbytes;
– Server computers: several Gbytes.

The memory management is more relevant for non-parametric decision models like deci-
sion trees or support vector machines because the number of free parameters evolve with
the number of training examples. For other types of models, like linear models that typi-
cally depend on the number of attributes, memory management is not so problematic in the
streaming context because the size of the model does not depend on the number of examples.
Kirkby (2008) proposes that general streaming algorithms should be evaluated in the 3 men-
tioned scenarios. A recent work, Bifet et al. (2010b) proposes the use of RAM-Hours as an
evaluation measure of the resources used by streaming algorithms. A GB of RAM deployed
for 1 hour defines one RAM-Hour. It is based on rental cost options of cloud computing
services.

In batch learning using finite training sets, cross-validation and variants (leave-one-out,
bootstrap) are the standard methods to evaluate learning systems. Cross-validation is appro-
priate for restricted size datasets, generated by stationary distributions, and assuming that
examples are independent. In data streams contexts, where data is potentially infinite, the
distribution generating examples and the decision models evolve over time, cross-validation
and other sampling strategies are not applicable. Research communities and users need other
evaluation strategies.

3.2 Evaluation metrics

Suppose a sequence of examples in the form of pairs (xi , yi ). For each example, the actual
decision model predicts ŷi , that can be either True (ŷi = yi ) or False (ŷi �= yi ). For each point
i in the sequence, the error-rate is the probability of observe False, pi . For a set of examples,
the error (ei ) is a random variable from Bernoulli trials. The Binomial distribution gives the
general form of the probability for the random variable that represents the number of errors
in a sample of examples: ei ∼ Bernoulli(pi) ⇔ Prob(ei = False) = pi .

Definition In the PAC learning model (Kearns and Vazirani 1994) a learner is called con-
sistent if for a sufficient large number of independent examples generated by a stationary
distribution, it outputs a hypothesis with error arbitrarily close to the Bayes error (B + ε)
with at least probability 1 − δ:

Prob(pi − B < ε) ≥ 1 − δ.

As a matter of fact, if the distribution of the examples is stationary and the examples are
independent, the error rate of a consistent learning algorithm (pi ) will decrease when the
number of training examples, i, increases. With probability equal to or greater than 1 − δ,
for an infinite number of training examples, the error rate will tend to the Bayes error (B).
Which means that for every real number ε > 0, there exists a natural number N1 such that
for every i > N1 we have, with probability equal to or greater than 1 − δ, |pi − B| < ε:

∀ε > 0, ∃N1 ∈ N : ∀i > N1 |pi − B| < ε.

For example, Duda and Hart (1973) prove that the k-nearest neighbor algorithm is guar-
anteed to yield an error rate no worse than the Bayes error rate as data approaches infin-
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Fig. 2 Comparison of error evolution as estimated by holdout and prequential strategies, in a stationary
stream (waveform data set). The learning algorithm is VFDT

ity. Bishop (1995) presents similar proofs for feed-forward neural networks, and Mitchell
(1997) for decision trees. The following mathematical proofs that appear in this paper apply
to consistent learners.

To evaluate a learning model in a stream context, two viable alternatives, presented in the
literature, are the predictive sequential method and holdout an independent test set. Figure 2
shows a comparison of error evolution as estimated by these two strategies on the waveform
data set problem, for the VFDT algorithm.

In the holdout evaluation, the current decision model is applied to a test set at regular
time intervals (or set of examples). For a large enough holdout, the loss estimated in the
holdout is an unbiased estimator.

Definition In a holdout test set with M examples, the 0-1 loss is computed as:

He(i) = 1

M

M∑

k=1

L(yk, ŷk) = 1

M

M∑

k=1

ek.

Theorem (Limit of the holdout error) For consistent learning algorithms, and for large
enough holdout sets, the limit of the loss estimated in the holdout is the Bayes error:
limi→∞ He(i) = B .

The proof is in Appendix B.1
In predictive sequential (or prequential) (Dawid 1984) the error of a model is computed

from the sequence of examples. For each example in the stream, the actual model makes
a prediction based only on the example attribute-values. We should point out that, in the
prequential framework, we do not need to know the true value yi for all points in the stream.
The framework can be used in situations of limited feedback by computing the loss function
and Si for points where yi is known.
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Definition The prequential error, computed at time i, is based on an accumulated sum of a
loss function between the prediction and observed values:

Pe(i) = 1

i

i∑

k=1

L(yk, ŷk) = 1

i

i∑

k=1

ek.

Theorem (Limit of the prequential error) For consistent learning algorithms, the limit of
the prequential error is the Bayes error: limi→∞ Pe(i) = B .

The proof is in Appendix B.2.
From the Hoeffding bound (Hoeffding 1963), one can ensure that with, at least, a proba-

bility of 95 %, the prequential error estimated over all the stream converges to its average μ

with an error of 1 %, for a sample of size of (at least) 18444 observations. The proof can be
found in Appendix A.

3.2.1 Error estimators using a forgetting mechanism

Prequential evaluation provides a learning curve that monitors the evolution of learning as
a process. Using holdout evaluation, we can obtain a similar curve by applying, at regular
time intervals, the current model to the holdout set. Both estimates can be affected by the
order of the examples. Moreover, it is known that the prequential estimator is pessimistic:
under the same conditions it will report somewhat higher errors (see Fig. 2). The prequential
error estimated over all the stream might be strongly influenced by the first part of the error
sequence, when few examples have been used for train the classifier. Incremental decision
models evolve overtime, improving their performance. The decision model used to classify
the first example is different from the one used to classify the hundredth instance. This ob-
servation leads to the following hypothesis: compute the prequential error using a forgetting
mechanism. This might be achieved either using a time window of the most recent observed
errors or using fading factors. Considering a sliding window of size infinite or a fading factor
equal to 1, these forgetting estimators equal the prequential estimator.

Error estimators using sliding windows Sliding windows are one of the most used forget-
ting strategies. They are used to compute statistics over the most recent past.

Definition The prequential error is computed, at time i, over a sliding window of size w

({ej |j ∈]i − w, i]}) as:

Pw(i) = 1

w

i∑

k=i−w+1

L(yk, ŷk) = 1

w

i∑

k=i−w+1

ek.

Theorem (Limit of the prequential error computed over a sliding window) For consistent
learning algorithms, the limit of the prediction error computed over a sliding window of
(large enough2) size w is the Bayes error: limi→∞ Pw(i) = B .

The proof is in Appendix B.3.

2It is necessary to consider a window with large enough size in order to achieve an unbiased estimator of the
average.
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Lemma The prequential error estimator, Pe(i), is greater than or equal to the prequential
error computed over a sliding window, Pw(i), considering a sliding window of large enough
size w � i: Pe(i) ≥ Pw(i).

The proof is in Appendix B.3.
For example, using the Hoeffding bound, with a probability of 95 %, the Pe(i) converges

to its average μ with an error of 1 % for i = 18444. Taking into account the previous lemma,
one can work out that at observation i = 18444, the Pw(i) will be smaller than or equal to
the Pe(i). And so forth, the Pw(i) will approximate the average μ with an even smaller error.

Error estimators using fading factors Another approach to discount older information
across time consists of using fading factors. The fading sum Sx,α(i) of observations from
a stream x is computed at time i, as:

Sα(i) = xi + α × Sα(i − 1)

where Sα(1) = x1 and α (0 � α ≤ 1) is a constant determining the forgetting factor of
the sum, which should be close to 1 (for example 0.999). This way, the fading average at
observation i is then computed as:

Mα(i) = Sα(i)

Nα(i)
(1)

where Nα(i) = 1 + α × Nα(i − 1) is the corresponding fading increment, with Nα(1) = 1.
An important feature of the fading increment is that:

lim
i→+∞

Nα(i) = 1

1 − α
.

This way, at each observation i, Nα(i) gives an approximated value for the weight given
to recent observations used in the fading sum.

Definition The prequential error computed at time i, with fading factor α, can be written
as:

Pα(i) =
∑i

k=1 αi−kL(yk, ŷk)∑i

k=1 αi−k
=

∑i

k=1 αi−kek∑i

k=1 αi−k
, with 0 � α ≤ 1.

Theorem (Limit of the prequential error computed with fading factors) For consistent
learning algorithms, the limit of the prequential error computed with fading factors is ap-
proximately the Bayes error: limi→∞ Pα(i) ≈ B .

The proof is in Appendix B.4.
Furthermore, the prequential estimator computed using fading factors, Pα(i), will be

lower than the prequential error estimator, Pe(i). In Sect. 3.3 we present the pseudo-code
for the three feasible alternatives to compute the prequential error previously introduced.

The proofs of the previous theorems assume the stationarity of the data and the indepen-
dence of the training examples. The main lesson is that any of these estimators converge,
for an infinity number of examples, to the Bayes error. All these estimators can be used in
any experimental study. However, these results are even more relevant when dealing with
data with concept drift. Indeed, the above theorems and the memoryless advantage support
the use of prequential error estimated using fading factors to assess performance of stream
learning algorithms in presence of non-stationary data. We address this topic in Sect. 5.
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Illustrative example The objective of this experiment is to illustrate the demonstrated con-
vergence properties of the error estimates using the strategies described above. The learning
algorithm is VFDT as implemented in MOA (Bifet et al. 2010a). The experimental work
has been done using the Waveform and the LED (Asuncion and Newman 2007) datasets, be-
cause the Bayes-error is known: 14 % and 26 %, respectively. We also use the RandomRBF
(RBF) and Random Tree (RT) datasets available in MOA. The Waveform stream is a three
class problem defined by 21 numerical attributes, the LED stream is a ten class problem
defined by 7 boolean attributes, the RBF and the RT streams are two-class problems defined
by 10 attributes.

Figure 3 plots the holdout error, the prequential error, the prequential error estimated
using sliding-windows of different sizes and the prequential error estimated using different
fading factors. All the plots are means from 10 runs of VFDT on datasets generated with
different seeds. The most relevant fact is that the window-size and the fading factor does
not matter too much: the prequential error estimate using forgetting mechanisms always
converges fast to the holdout estimate.

3.3 Pseudo-code of algorithms for prequential estimation

Algorithms 1, 2 and 3 present the pseudo-code for the update rules in prequential error esti-
mation using all history, sliding windows and fading factor respectively. The implementation
of sliding windows (Algorithm 2) for prequential error estimation use circular vectors. Ex-
ponential histograms (Datar et al. 2002) might be used in the case of very large windows.
All the algorithms require constant space and constant update time.

3.4 Discussion

All the error estimators discussed so far apply to stationary processes. Under this constraint,
the first relevant observation is: The prequential error estimate over all the history is pes-
simistic. It is a pessimistic estimate because the decision model is not constant and evolves
over time. The decision model used to classify the nth instance is not the same used to
classify the first instance. Under the stationarity assumption, the performance of the deci-
sion model improves with more labeled data. The second relevant observation is that the
proposed forgetting mechanism (sliding windows and fading factors) preserve convergence
properties similar to the holdout error estimator. The use of these error estimators in non-
stationary and evolving data is discussed in Sect. 5.

Error estimators using sliding windows are additive; the contribution of a term is con-
stant, while it is inside the window and the forgetting mechanism (when the term is out
of the window) is abrupt. The key difficulty is how to select the appropriate window size.
A small window can assure fast adaptability in phases with concept changes; while large

Algorithm 1 Update Prequential Error Estimator
Require: ei {/* Loss at example i */}
Ensure: Error estimator Pe(i)

Pe(0) ← 0 {/* Initialize the error estimate */}
. . .

Pe(i) ← ei+(i−1)∗Pe(i−1)

i
{/* Update the error estimate */}

. . .
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Fig. 3 Comparison of error evolution between holdout, prequential, prequential over sliding windows of
different sizes and prequential using fading factors
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Algorithm 2 Update Prequential Error Estimator in sliding window
Require: Window size: w

Require: ei {/* Loss at example i */}
Ensure: Window error estimator Pw(i) (i > w)

{/* Initialization */}
S ← 0 {/* Initialize the error estimate */}
E[1 : w] ← 0 {/* Initialize the vector of size w */}
. . .

{/* Update the error estimate */}
p ← ((i − 1) mod w) + 1
S ← S − E[p] + ei

E[p] ← ei

Pw(i) = S
min(w,i)

. . .

Algorithm 3 Update rule for Prequential error estimator using fading factors
Require: Fading factor α (0 � α ≤ 1)
Require: ei {/* Loss at example i */}
Ensure: Fading error estimator Pα(i)

Sα(0) ← 0;Nα(0) ← 0 {/* Initialize the error estimate */}
. . .

{/* Update the error estimate */}
Sα(i) ← ei + α ∗ Sα(i − 1)

Nα(i) ← 1 + α ∗ Nα(i − 1)

Pα(i) = Sα(i)

Nα(i)

. . .

windows produce lower variance estimators in stable phases, but cannot react quickly to con-
cept changes. The fading factors are multiplicative, corresponding to exponential forgetting.
A term always contributes to the error, smoothly decreasing has more terms are available.

Error estimates using sliding windows and fading factors require user defined parame-
ters: the window size and the fading factor. It is known that estimating unknown parameters
over larger sample sizes (and stationary environments) generally leads to increased preci-
sion. Nevertheless, after some point in sample size, the increase in precision is minimal, or
even non-existent. The first question we need to discuss is: What are the admissible values
for the window size? The estimator of the error rate, a proportion is given by p̂ = #e

n
, where

#e is the number of errors. When the observations are independent, this estimator has a
(scaled) binomial distribution. The maximum variance of this distribution is 0.25/n, which
occurs when the true parameter is p̂ = 0.5. For large n, the distribution of p̂ can be approx-
imated by a normal distribution. For a confidence interval of 95 %, the true p is inside of
the interval {p̂ − 2

√
0.25/n; p̂ + 2

√
0.25/n}. If this interval cannot be larger than ε, we can

solve the equation 4
√

0.25/n for n. For example, a window of n = 1000 implies ε = 3 %,
while for ε = 1 % a sample size of n = 10000 is required. With respect to fading factors, the
equivalent question is: What are the admissible values for the fading factor? At time-stamp
t the weight of example t − k is αi−k . For example, using α = 0.995 the weight associated
with the first term after 3000 examples is 2.9E−7. Assuming that we can ignore the ex-
amples with weights less than ε, an upper bound for k (the set of “important” examples) is
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Fig. 4 Comparison between two different neural-networks topologies in a electrical load-demand problem.
The loss function is the mean-squared error. The figure plots the evolution of the Qi = log(A/B) statistic.
The sign of Qi is always negative, illustrating the overall advantage of method B over method A

log(ε)/ log(α). The fading factors are memoryless, an important property in streaming sce-
narios. This is a strong advantage over sliding-windows that require maintaining in memory
all the observations inside the window.

4 Comparative assessment

In this section we discuss methods to compare the performance of two algorithms (A and
B) in a stream. Our goal is to distinguish between random and non-random differences in
experimental results.

Let SA
i and SB

i be the sequences of the prequential accumulated loss for each algorithm.

A useful statistic that can be used with almost any loss function is: Qi(A,B) = log(
SA
i

SB
i

). The

signal of Qi is informative about the relative performance of both models, while its value
shows the strength of the differences. Qi is symmetric, given that log(A/B) = − log(B/A).
In an experimental study using real data from an electrical load-demand forecast problem,
plotted in Fig. 4, Qi reflects the overall tendency but exhibits long term influences and is
not able to fast capture when a model is in a recovering phase. Two feasible alternatives are
sliding windows, with the known problems of deciding the window-size, and fading-factors.
Both methods have been used for blind model adaptation without explicit change detection,
in drift scenarios (Klinkenberg 2004; Koychev 2000). The formula for using fading factors
with the Qi statistic is:

Qα
i (A,B) = log

(
Li(A) + α × SA

i−1

Li(B) + α × SB
i−1

)
.

Figure 5 plots the evolution of the Qi statistic computed using a sliding window and a
fading factor. It is interesting to observe that the Qi statistic captures changes in the relative
performance of the two learning algorithms.
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Fig. 5 Plot of the Qi statistic over a sliding window of 250 examples (top). The bottom figure plots the Qi

statistic using a fading factor of α = 0.995

4.1 The 0–1 loss function

For classification problems, one of the most used tests is the McNemar test.3 The McNe-
mar’s test is a non-parametric method used on nominal data. It assesses the significance of
the difference between two correlated proportions, where the two proportions are based on
the same sample. It has been observed that this test has acceptable type I error (Dietterich
1996; Japkowicz and Shah 2011).

To be able to apply this test we only need to compute two quantities ni,j : n0,1 denotes
the number of examples misclassified by A and not by B, whereas n1,0 denotes the num-
ber of examples misclassified by B and not by A. The contingency table can be updated
on the fly, which is a desirable property in mining high-speed data streams. The statistic

M = sign(n0,1 − n1,0) × (n0,1−n1,0)2

n0,1+n1,0
has a χ2 distribution with 1 degree of freedom. For

a confidence level of 0.99, the null hypothesis is rejected if the statistic is greater than
6.635 (Dietterich 1996).

3We do not argue that this is the most appropriate test for comparing classifiers. An in depth analysis on
statistical tests to compare classifiers in batch scenario appears in Demsar (2006).
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Fig. 6 The evolution of signed McNemar statistic between two algorithms. Vertical dashed lines indicate
drift in data, and vertical solid lines indicate when drift was detected. The top panel shows the evolution of
the error rate of two naive-Bayes variants: a standard one and a variant that detects and relearns a new model
whenever drift is detected. The bottom panel shows the evolution of the signed McNemar statistic computed
for these two algorithms

4.2 Illustrative example

We have used the SEA concepts dataset (Street and Kim 2001) a benchmark problem for
concept drift. Figure 6 (top panel) shows the evolution of the error rate of two naive-Bayes
variants: a standard one and a variant that detects and relearn a new decision model whenever
drift is detected. The McNemar test was performed to compare both algorithms. The bottom
panel shows the evolution of the statistic test computed over the entire stream. As it can
be observed, once this statistic overcomes the threshold value (6.635), it never decreases
below it, which is not informative about the dynamics of the process under study. Again, the
problem is the long term influences verified with the Qi statistic. It is well known, that the
power of statistical tests, the probability of signaling differences where they do not exist,
are highly affected by data length. Data streams are potentially unbounded, which might
increase the number of Type II errors.

To overthrow this drawback, and since the fading factors are memoryless and prove to
exhibit similar behaviors to sliding windows, we compute this statistical test using different
windows size and fading factors. Figure 7 illustrates a comparison on the evolution of a
signed McNemar statistic between the two algorithms, computed over a sliding window of
1000 and 100 examples (on the top panel) and computed using a fading factor with α =
0.999 and α = 0.99 (on the bottom panel). It can be observed that the statistics reject the
null hypothesis almost at the same point. The use of this statistical test to compare stream-
learning algorithms now shows itself feasible by applying sliding-window or fading-factors
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Fig. 7 The evolution of signed McNemar statistic between two naive-Bayes variants. The two top panels
show the evolution of the signed McNemar statistic computed over a sliding window of 1000 and 100 exam-
ples, respectively, and the two bottom panels show the evolution of the signed McNemar statistic computed
using a Fading Factor with α = 0.999 and α = 0.99, respectively. The dotted line is the threshold for a sig-
nificance level of 99 %. For different fading factors we got different results about the significance of the
differences

techniques. Nevertheless, these experiments point out that for different fading factors we got
different results about the significance of the differences.

5 Evaluation methodology in non-stationary environments

An additional problem of the holdout method comes from the non-stationary properties of
data streams. Non-stationarity or concept drift means that the concept about which data is
obtained may shift from time to time, each time after some minimum permanence. The
permanence of a concept is designated as context and is defined as a set of consecutive
examples from the stream where the underlying distribution is stationary. Learning time-
evolving concepts is infeasible, if no restrictions are imposed on the type of admissible
changes. For example, Kuh et al. (1990) determine a maximal rate of drift that is acceptable
for any learner. We restrict this work to methods for explicit change detection because they
are informative about the dynamics of the process generating data. We focus on change
detectors that monitor the evolution of learning performance, a common strategy for drift
detection metrics (Widmer and Kubat 1996; Street and Kim 2001; Klinkenberg 2004). In
this section we study the use of forgetting mechanisms, based on sliding windows or fading
factors, in error estimates for drift detection.

Learning from high-speed time changing data streams is a considerably growing research
field and several methods capable of dealing with change detection have been presented in
the literature (Hulten et al. 2001; Basseville and Nikiforov 1993; Kifer et al. 2004; Widmer
and Kubat 1996; Klinkenberg 2004; Koychev 2000; Gama et al. 2004; Bifet and Gavaldà
2007). In evolving streams, some useful evaluation metrics for assessing change detection
methods used in this work, include:

– Probability of True detection: capacity to detect drift when it occurs;
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Fig. 8 Experiments in SEA dataset illustrating the first drift at point 15000. The left panel shows the evo-
lution of the naive-Bayes prequential error. The right panel represents the evolution of the Page-Hinkley test
statistic and the detection threshold λ

– Probability of False alarms: resilience to false alarms when there is no drift; that is not
detect drift when there is no change in the target concept;

– Delay in detection: the number of examples required to detect a change after the occur-
rence of a change.

5.1 The Page-Hinkley algorithm

The Page-Hinkley (PH) test (Page 1954) is a sequential analysis technique typically used
for monitoring change detection in signal processing (Mouss et al. 2004; Hartl et al. 2007).
It allows efficient detection of changes in the normal behavior of a process which is estab-
lished by a model. The PH test is designed to detect a change in the average of a Gaussian
signal (Mouss et al. 2004). This test considers a cumulative variable mT , defined as the
cumulated difference between the observed values and their mean till the current moment:

mT =
T∑

t=1

(xt − x̄T − δ)

where x̄T = 1/T
∑t

t=1 xt and δ corresponds to the magnitude of changes that are allowed.
The minimum value of this variable is also computed: MT = min(mt , t = 1 . . . T ). As a

final step, the test monitors the difference between MT and mT : PHT = mT − MT . When
this difference is greater than a given threshold (λ) we signal a change in the distribution.
The threshold λ depends on the admissible false alarm rate. Increasing λ will entail fewer
false alarms, but might miss or delay change detection.

Figure 8 illustrates how PH test works. The left figure plots the trace of the prequen-
tial error of a naive-Bayes classifier (using data from the first concept of the SEA dataset).
A concept drift occurs at point 15000 which leads to an error increment. The PH test allows
detecting the significant increase of the error. The right figure represents the evolution of
the statistic test PHt and the detection threshold (λ). As it can be observed, the PH statistic
test follows the increase of the error rate. The λ parameter should guarantee that the algo-
rithm, while being resilient to false alarms, can detect and react to changes as soon as they
occur, decreasing the detection delay time. Controlling this detection threshold parameter
we establish a tradeoff between the false positive alarms and the miss detections.

5.2 Monitoring drift using prequential error estimates

To assess the proposed error estimates in drift scenarios, we monitor the evolution of the
different prequential error estimates using the PH test. The data stream generators are Wave-
form, LED, Random Tree (RT) and RBF as implemented in MOA. The data was generated
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by emulating an abrupt concept drift event as a combination of two distributions. For the
LED, Waveform and RBF datasets the first distribution was generated with the LEDGener-
ator, the WaveformGenerator and the RandomRBFGenerator (respectively) and the second
distribution was generated with the LEDGeneratorDrift, the WaveformGeneratorDrift and
the RandomRBFGeneratorDrift (respectively). For second stream of LED and Waveform
datasets we set to 7 and 21 the number of attributes with drift (respectively). The second
RBF stream was generated setting the seed for the random generation of the model to 10
and adding speed drift to the centroids of the model (0.01). For the RT dataset, both dis-
tributions were generated with the RandomTreeGenerator, varying the seed of the second
concept. For the LED data stream the change occurs at example 128k and for the other
streams the change occurs at example 32k.

The learning algorithms are VFDT-MC and VFDT-NBAdaptive as implemented in
MOA. The PH test parameters are δ = 0.1 and λ = 100. For the prequential error estimates
we use sliding windows of size 1k, 2k, 3k, 4k and 5k and fading factors of 0.9970, 0.9985,
0.9990, 0.9993 and 0.9994.

Table 2 presents a summary of the delay in the drift detection on the aforementioned
datasets, and varying the parameters of the different prequential error estimates. The results
refer to the mean and standard deviation from 10 runs on streams generated with different
seeds. These experiments point out the advantage of using forgetting error estimators. The
PH test using the prequential error computed over all the stream only detects the change
in the Waveform stream and VFDT-NBAdaptive learner (in all the runs), and misses the
detection in all the other cases. The PH test computed over prequential error estimates using
sliding windows or fading factors always detects the drift without any false alarm. The
exception is on the RBF stream and VFDT-MC learner where, for a small number of runs
(reported in parenthesis), the PH test was not able to detect the change. These results point
out that the delay in detection increases by increasing the window size or by increasing the
fading factor. The PH test detects much faster change points with VFDT-NBAdaptive than
using VFDT-MC. Moreover, there is some evidence that error estimates based on fading
factors allow fast detection rates. Figure 9 presents, for each stream, the 3 error estimates:
the prequential error using all the history, the prequential error over a sliding window of size
1k and the prequential error using a fading factor of 0.997. Each plot shows the evolution
of the different prequential estimates and the point where a change is detect. The learning
algorithm is VFDT-NBAdaptive.

5.3 Monitoring drift with the ratio of prequential error estimates

Learning in time-evolving streams requires a tradeoff between memory and forgetting.
A common approach to detect changes (Bach and Maloof 2008; Bifet and Gavaldà 2007)
consists of using two sliding windows: a short window containing the most recent informa-
tion and a large window, used as reference, containing a larger set of recent data including
the data in the short window. The rationale behind this approach is that the short window is
more reactive while the large window is more conservative. When a change occurs, statistics
computed in the short window will capture the event faster than using the statistics in the
larger window. Similarly, using fading factors, a smooth forgetting mechanism, a smaller
fading factor will detect drifts earlier than larger ones.

Based on this assumption, we propose a new online approach to detect concept drift. We
propose to perform the PH test with the ratio between two error estimates: a long term error
estimate (using a large window or a fading factor close to one) and a short term error estimate
(using a short window or a fading factor smaller than the first one). If the short term error
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Fig. 9 Change detection using PH test from prequential error estimates. The learning algorithm is VFDT-N-
BAdaptive. Each plot corresponds to a data stream and presents the evolution of prequential error estimates.
The vertical lines identify the point where change was detected. In these experiments, the fastest drift detec-
tion method is the prequential estimate based on fading factors
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estimator is significantly greater than the long term error estimator, we signal a drift alarm.
In the case of fading factors, we consider α1 and α2 (with 0 � α2 < α1 < 1) and compute the
fading average w.r.t. both: Mα1(i) and Mα2(i) at observation i using Algorithm 3. The ratio
between them is referred as: R(i) = Mα2(i)/Mα1(i). The PH test monitors the evolution
of R(i) and signals a drift when a significant increase of this variable is observed. The
pseudo-code is presented in Algorithm 4. With sliding windows, the procedure is similar.
Considering two sliding windows of different sizes SW1 = {ej |j ∈ ]i − w1, i]} and SW2 =
{ej |j ∈ ]i −w2, i]} (with w2 < w1) and computing the moving average w.r.t. both: Mw1(i) =
1/w1

∑i

j=i−w1
ej and Mw2(i) = 1/w2

∑i

j=i−w2
ej , at observation i using Algorithm 2. The

PH test monitors the ratio between both moving averages.

Experimental evaluation In these experiments we use the same streams, learning algo-
rithms and parameters of the PH test as in the previous section. In this study, we vary the
values of the first fading factor and the length of the larger window to compare results. Ta-
ble 3 present the delay time for the experiments in the context described above. We can
control the rate of forgetting using different fading factors or different windows lengths.
With respect to the ratio using different fading factors, the value of the second fading factor
is set to 0.9970 and the value of the first one varies from 0.9994 to 0.9990. For the ratio using
different sliding windows, the length of the second window is set to 1000 and the length of
the first one varies from 5k to 3k. Greater differences between the fading factors values (or
the sliding windows’ lengths) will reinforce the weight of most recent data, enhancing the
capacity to forget old data and leading to earlier detections. Figure 10 illustrates the delay
time for both methods. With respect to fading factors we use α1 = 0.9994 and α2 = 0.9970;
for sliding windows we use windows of size 1k and 5k. As stated in the previous sections,
the fading factors, besides less memory consumption, get advantage over sliding windows,
allowing fast concept drift detections. It is also possible to notice that an increase in length
of the larger window and an increase in the first fading factor produce similar results in
the delay time: the ratio of error rates computed with a fading factor close to one presents
smaller delay times in drift detection, alike the ratio of error rates computed with a large
window’s length (larger windows present a comparable behavior to higher fading factors).

The order of magnitude in detection delay time of the results presented in Table 2 is thou-
sands of examples, while in Table 3 is hundreds of examples. Nevertheless, while monitoring
the ratio of error estimates allow much faster detection, it is more risky. We observed false
alarms and miss detections, mostly with VFDT-MC. In a set of experiments not reported
here, we observed that the choice of α in fading factors and the window size is critical. Once
more, in these experiments drift detection based on the ratio of fading estimates is somewhat
faster that with sliding windows.

6 Conclusions

The design of scientific experiments is in the core of the scientific method. The definition of
the metrics and procedures used in any experimental study is a necessary condition, albeit
not sufficient, for reproducibility, that is the ability of an experiment or study to be accurately
replicated by someone else working independently. The main problem in evaluation methods
when learning from dynamic and time-changing data streams consists of monitoring the
evolution of the learning process. In this work we defend the use of predictive sequential
error estimates using sliding windows or fading factors to assess the performance of stream
learning algorithms in presence of non-stationary data. The prequential method is a general
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Fig. 10 The evolution of the ratio of error rate estimates and the delay times in drift detection. The learning
algorithm is VFDT-NBAdaptive. Each figure corresponds to a data stream and plots the ratio of error estimates
using two different fading factors and two different sliding windows. The vertical lines identify the point
where change was detected
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Algorithm 4 Drift detector based on the ratio of two fading factors
Require: Fading factor α1 (0 � α1 ≤ 1)
Require: Fading factor α2 (0 � α2 < α1)
Require: Admissible change δ

Require: Drift threshold λ

Require: ei {/* Loss at example i */}
Ensure: drift ∈ {TRUE,FALSE}

. . .

{/* Initialize the error estimators */}
Sα1(0) ← 0; Sα2(0) ← 0; SR(0) ← 0; mT (0) ← 0; MT ← 1
{/* Update the error estimator */}
Sα1(i) ← ei + α1 ∗ Sα1(i − 1)

Nα1(i) ← 1 + α1 ∗ Nα1(i − 1)

Mα1 ← Sα1 (i)

Nα1 (i)

Sα2(i) ← ei + α2 ∗ Sα2(i − 1)

Nα2(i) ← 1 + α2 ∗ Nα2(i − 1)

Mα2 ← Sα2 (i)

Nα2 (i)

R(i) = Mα2
Mα1

{/* Page Hinkley test */}
SR(i) ← SR(i − 1) + R(i)

mT (i) ← mT (i − 1) + R(i) − SR(i)

i
− δ

MT ← min(MT ,mT (i))

if mT (i) − MT ≥ λ then
drift ← TRUE

else
drift ← FALSE

end if
. . .

methodology to evaluate learning algorithms in streaming scenarios. In those applications
where the observed target value is available later in time, the prequential estimator can be
implemented inside the learning algorithm. For stationary data and consistent learners, we
proved that the prequential error estimated with memoryless forgetting mechanisms is a
good estimate of the error for stream learning algorithms. The convergence properties of the
forgetting mechanisms in error estimation can be applied in concept drift detection. Thus, the
use of a forgetting prequential error is recommended for continuously assess the quality of
stream learning algorithms. We present applications of the proposed method in performance
comparison, hypothesis testing and drift detection. We observe that drift detection is much
more efficient using prequential error estimates with forgetting mechanisms.

The research presented in this work opens interesting opportunities: the system would be
capable of monitoring the evolution of the learning process itself and self-diagnosis the evo-
lution of it. We are currently implementing change detection mechanisms and corresponding
adaptation strategies inside VFDT like algorithms. Other direct applications are tracking the
best expert algorithms (Herbster and Warmuth 1998) and dynamic weighted majority algo-
rithms (Kolter and Maloof 2007) that continuously track the evolution of the performance
of its components.
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In this work we focus on loss as performance criteria. Nevertheless, other criteria, im-
posed by data streams characteristics, must be taken into account. Learning algorithms run
in devices with fixed memory. They need to manage the available memory, eventually dis-
carding parts of the required statistics or parts of the decision model. We need to evaluate
the memory usage over time and the impact in accuracy when using the available mem-
ory. Another aspect is that algorithms must process the examples as fast as (if not faster
than) they arrive. Whenever the rate of arrival is faster than the processing speed, some sort
of sampling is required. The number of examples processed per second and the impact of
sampling on performance are other evaluation criteria. Overall, with this work, a new step
forward is given in the discussion of good-practices on performance assessment of stream
learning algorithms.
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Appendix A: Error estimation and sample size

For any bounded loss function, we can estimate a confidence interval for the sum of random
variables to deviate from its expected value, using Hoeffding bounds (Hoeffding 1963):

Prob
(|X̄ − μ| ≥ 1 − ε

) ≤ 2 exp

(−2ε2n

R

)
,

where R is the range of the random variable. (2)

For example, with a probability of 95 %, the error estimated over a sample size of 18444
randomly drawn examples, approximate the expected value over all the stream with an error
less than 1 %. A simple algebraic manipulation of (2) transforms it into

Prob
(|X̄ − μ| < ε

) ≥ 1 − 2 exp

(−2ε2n

R

)
.

Setting δ = 5 % and ε = 1 %, we obtain:

2 exp

(−2 × 0.012 × n

1

)
= 0.05 ⇔ n = 18444.

Appendix B: Convergence proofs

B.1 Limit of the holdout error

Theorem (Limit of the holdout error) For consistent learning algorithms, and for large
enough holdout sets, the limit of the loss estimated in the holdout is the Bayes error.

Proof Assuming that at time i the probability of observing a false is pi , the errors in
the holdout test are independent and identically distributed (i.i.d.) random variables, all
Bernoulli distributed with success probability pi : ek ∼ Bernoulli(pi),∀k = 1, . . . ,M , where
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the expected value of ek is pi : E(ek) = pi . Then, from the Law of Large Numbers, the aver-
age obtained from a large number of trials (He(i)) converges to the expected value:

∀ε > 0, ∃N1 ∈ N : ∀i > N1

∣∣∣∣∣
1

M

M∑

k=1

ek − E(ek)

∣∣∣∣∣ < ε

⇔ ∣∣He(i) − E(ek)
∣∣ < ε ⇔ ∣∣He(i) − pi

∣∣ < ε.

Since for an infinite number of examples, the error rate of the learning algorithm (pi )
will tend to the Bayes error (B), we obtain:

∀ε > 0, ∃N1 ∈ N : ∀i > N1

∣∣He(i) − B
∣∣ < ε ⇔ lim

i→∞
He(i) = B. �

B.2 Limit of the prequential error

Theorem (Limit of the prequential error) For consistent learning algorithms, the limit of
the prequential error is the Bayes error.

Proof Using simple algebraic manipulation:

∣∣Pe(i) − B
∣∣ =

∣∣∣∣∣
1

i

i∑

k=1

ek − B

∣∣∣∣∣ =
∣∣∣∣∣
1

i

i∑

k=1

(ek − B)

∣∣∣∣∣

=
∣∣∣∣∣
1

i

N1∑

k=1

(ek − B) + 1

i

i∑

k=N1+1

(ek − B)

∣∣∣∣∣

≤
∣∣∣∣∣
1

i

N1∑

k=1

(ek − B)

∣∣∣∣∣ +
∣∣∣∣∣
1

i

i∑

k=N1+1

(ek − B)

∣∣∣∣∣.

Let ε > 0. Then, there exists N1 ∈ N, such that for any i > N1, we have Prob(ei ∼ Ber(B)) ≥
1−ε. Therefore, from the Law of Large Numbers, the average obtained from a large number
of trials converges to the expected value (B):

∣∣∣∣

∑i

k=N1+1 ek

i − N1
− B

∣∣∣∣ <
ε

2
.

Hence, for i > N1, we have:

∣∣∣∣∣
1

i

N1∑

k=1

(ek − B)

∣∣∣∣∣ +
∣∣∣∣∣
1

i

i∑

k=N1+1

(ek − B)

∣∣∣∣∣

<

∣∣∣∣∣
1

i

N1∑

k=1

(ek − B)

∣∣∣∣∣ + (i − N1)ε

2i
<

∣∣∣∣∣
1

i

N1∑

k=1

(ek − B)

∣∣∣∣∣ + ε

2
.

Hence, considering N2 > N1 ∈ N such that ∀i > N2, 1
i

∑N1
k=1 |ek − B| < ε

2 , ∀ε > 0, we
obtain that:
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∃{N1,N2} ∈ N : ∀i > N2 :
∣∣∣∣∣
1

i

i∑

k=1

ek − B

∣∣∣∣∣ <
ε

2
+ ε

2
= ε, ∀ε > 0

⇔ lim
i→∞

Pe(i) = B. �

B.3 Limit of the prequential error using a sliding window

Theorem (Limit of the prequential error computed over a sliding window) For consistent
learning algorithms, the limit of the prediction error computed over a sliding window of
(large enough4) size w is the Bayes error.

Proof Using simple algebraic manipulation:

∣∣Pw(i) − B
∣∣ =

∣∣∣∣∣
1

w

i∑

k=i−w+1

ek − B

∣∣∣∣∣

=
∣∣∣∣∣

1

w

N1∑

k=i−w+1

(ek − B) + 1

w

i∑

k=N1+1

(ek − B)

∣∣∣∣∣

≤
∣∣∣∣∣

1

w

N1∑

k=i−w+1

(ek − B)

∣∣∣∣∣ +
∣∣∣∣∣

1

w

i∑

k=N1+1

(ek − B)

∣∣∣∣∣.

From the Law of Large Numbers, we obtain that:

∣∣∣∣

∑i

k=N1+1 ek

i − N1
− B

∣∣∣∣ <
ε

2
.

Hence, for i > N1, we have:

≤
∣∣∣∣∣

1

w

N1∑

k=i−w+1

(ek − B)

∣∣∣∣∣ +
∣∣∣∣∣

1

w

i∑

k=N1+1

(ek − B)

∣∣∣∣∣

<

∣∣∣∣∣
1

w

N1∑

k=i−w+1

(ek − B)

∣∣∣∣∣ + (i − N1)ε

2w

<

∣∣∣∣∣
1

w

N1∑

k=i−w+1

(ek − B)

∣∣∣∣∣ + ε

2
.

Hence, considering N2 ∈ N such that ∀w > N2:

1

w

N1∑

k=i−w+1

|ek − B| < ε

2
, ∀ε > 0,

4It is necessary to consider a window with large enough size in order to achieve a feasible computation of an
average.
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we obtain that:

∃{N1,N2} ∈ N : ∀i > N1,∀w > N2 :
∣∣∣∣∣

1

w

i∑

k=i−w+1

ek − B

∣∣∣∣∣ <
ε

2
+ ε

2
= ε, ∀ε > 0

⇔ lim
i→∞

Pw(i) = B. �

Lemma The prequential error estimator, Pe(i), is greater than or equal to the prequential
error computed over a sliding window, Pw(i), considering a sliding window of large enough
size w � i.

Proof 5

Pe(i) = 1

i

i∑

k=1

ek ⇔ Pe(i) =
∑i−w

k=1 ek + ∑i

k=i−w+1 ek

i

⇔ Pe(i) = (i − w)
∑i−w

k=1 ek

i−w
+ w

∑i
k=i−w+1 ek

w

i

⇔ Pe(i) = (i − w)ēi−w + wPw(i)

i
⇒ Pe(i) ≥ (i − w)ēi + wPw(i)

i

⇔ Pe(i) ≥ (i − w)Pe(i) + wPw(i)

i
⇔ i ∗ Pe(i) − (i − w)Pe(i) ≥ wPw(i)

⇔ (
i − (i − w)

) ∗ Pe(i) ≥ wPw(i) ⇔ Pe(i) ≥ Pw(i). �

B.4 Limit of the prequential error using fading factors

Theorem (Limit of the prequential error computed with fading factors) For consistent
learning algorithms, the limit of the prequential error computed with fading factors is ap-
proximately the Bayes error.

Proof Using simple algebraic manipulation:

∣∣Pα(i) − B
∣∣ =

∣∣∣∣

∑i

k=1 αi−kek∑i

k=1 αi−k
− B

∣∣∣∣

=
∣∣∣∣

∑N1
k=1 αi−kek∑i

k=1 αi−k
+

∑i

k=N1+1 αi−kek

∑i

k=1 αi−k
− B

∣∣∣∣.

From the proof of the limit of the prequential error, we obtain that:

∑i

k=N1+1 ek

i − N1
= B.

Hence, ∃N1 ∈ N : ∀i > N1, we have:

5From the PAC learning theory the error rate of the learning algorithm will decrease, so the average of errors
can be seen as a decreasing function and so if N1 < N2 ⇒ ēN1 > ēN2 .
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∣∣∣∣

∑N1
k=1 αi−kek∑i

k=1 αi−k
+

∑i

k=N1+1 αi−kek

∑i

k=1 αi−k
− B

∣∣∣∣

≈
∣∣∣∣

∑N1
k=1 αi−kek∑i

k=1 αi−k
+

∑i

k=N1+1 αi−kēk

∑i

k=1 αi−k
− B

∣∣∣∣

=
∣∣∣∣

∑N1
k=1 αi−kek∑i

k=1 αi−k
+

∑i

k=N1+1 αi−kB
∑i

k=1 αi−k
− B

∣∣∣∣

=
∣∣∣∣

∑N1
k=1 αi−kek∑i

k=1 αi−k
+ B

(∑i

k=N1+1 αi−k

∑i

k=1 αi−k
− 1

)∣∣∣∣ ≤ ε, ∀ε > 0

⇔ lim
i→∞

Pα(i) ≈ B. �
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