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Abstract—This paper presents a novel approach to accelerate
program execution by mapping repetitive traces of executed in-
structions, called Megablocks, to a runtime reconfigurable array
of functional units. An offline tool suite extracts Megablocks
from microprocessor instruction traces and generates a Reconfig-
urable Processing Unit (RPU) tailored for the execution of those
Megablocks. The system is able to transparently movebcomputa-
tions from the microprocessor to the RPU at runtime. A prototype
implementation of the system using a cacheless MicroBlaze mi-
croprocessor running code located in external memory reaches
speedups from 2.2 X to 18.2x for a set of 14 benchmark Kkernels.
For a system setup which maximizes microprocessor performance
by having the application code located in internal block RAMs,
speedups from 1.4 X to 2.8 X were estimated.

Index Terms—Binary translation, hardware accelerator, in-
struction traces, megablock, reconfigurable computing.

I. INTRODUCTION

HE challenging requirements of designing and imple-

menting high-performance and flexible industrial control
systems at low cost have made the use of field programmable
gate arrays (FPGAs) an attractive option [1]. These modern,
high-capacity devices are being used as platforms for the
implementation of complete systems-on-chip, including one
or more central processing units (CPUs) connected to applica-
tion-specific accelerators. However, the required design efforts
to implement those systems are high. The design-flow combines
software development and hardware design, the latter usually
starting from a specification in a hardware description language
(HDL) such as Verilog [2], and thus requiring hardware design
expertise.
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One way to a faster design process is to use high-level syn-
thesis tools, such as Catapult C, which translate C code to HDL
[3]. This often requires rewriting the source code to fit the trans-
lator’s requirements and limitations. Implementing the interface
between the generated hardware and the software is also neces-
sary, a task which might require additional, manually-developed
hardware, and further source code modifications.

The work described here explores an alternative approach:
loops in an execution trace are automatically identified and
mapped to a Reconfigurable Processing Unit (RPU), consisting
of a specialized reconfigurable array of Functional Units (FUs),
and whenever one of those loops needs to be executed the array
is transparently invoked and configured at runtime. The loops
chosen for hardware implementation correspond to a special
type of repetitive instruction traces called Megablock [4]. The
Megablock is a type of loop detected in the execution trace of
a program. All iterations of a Megablock type loop have the
same execution path. The Megablock has been proposed as
a structure to be used for mapping execution traces of CPU
instructions to hardware accelerators [4]. The detection of
Megablocks is done by identifying repeating patterns of ele-
mentary units (e.g., basic blocks) in the streams of instructions
forming the execution trace of a program.

The Megablocks identified are transformed into CDFGs
(Control-Data Flow Graphs), which are then used as input
to an offline tool chain that generates a specialized RPU for
accelerated execution of the specific set of loops represented by
the Megablocks. The RPU is runtime-reconfigured to execute
each Megablock. In this paper, the program execution traces are
obtained using a cycle accurate CPU simulator. The synthesis
of the RPU is done offline, but the reconfiguration of the RPU
occurs at runtime without changes to the executable binary.

A preliminary version of the system prototype, presented in
[5], revealed some of the advantages of this approach. The main
contributions of the work presented in this paper are:

* Novel approach to the acceleration of binary code by map-
ping object code blocks (sets of Megablocks) to a runtime
reconfigurable array of FUs;

» Completely transparent use of the reconfigurable array of
FUs at runtime using an unmodified CPU;

» Implementation of a fully-functional hardware prototype
using a MicroBlaze [6] as CPU on a Spartan-6 Xilinx
FPGA [7];

+ Experimental evaluation of the system showing significant
performance improvements.

The remainder of this paper is organized as follows. Section 11

presents previous work in this area. Section III introduces the
Megablock, while Section IV describes the proposed reconfig-
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urable architecture and explains some of the design decisions
made for the implementation of the system. Section V presents
experimental results collected from the implementation of the
system on a Spartan-6 FPGA, together with estimates for an im-
proved architecture. Finally, Section VI concludes the paper and
briefly introduces future work.

II. RELATED WORK

Considering that FPGAs are becoming more common of-the-
shelf components in embedded systems across several fields
[11, [8], [9], it has become important to fully exploit their pro-
cessing capabilities. This also entails integrating FPGA-related
development tasks in the product development flow so as to
limit toolchain complexity and reduce engineering costs over
the whole product lifetime [10], [11]. One particular research
topic has been the use of reconfigurable fabrics (e.g., FPGAs)
to accelerate execution of general purpose applications in em-
bedded scenarios [12], [13]. Some approaches include the Warp
Processor [14], [15], the AMBER architecture [16], [17], the
Configurable Compute Array (CCA) [18], [19], the DIM Re-
configurable System [20], [21], and the Megablock approach
(4], [22].

The Warp Processor [14], [15] is composed of a MicroB-
laze processor with a loosely coupled custom FPGA. In [15] a
multi-processor scenario is also analyzed. Basic blocks are de-
tected at runtime by backward branch monitoring, and on-chip
tools generate a hardware description for the custom FPGA. The
binary of the application is then modified at runtime to use the
generated hardware.

The AMBER architecture [16], [17] is based on a tight cou-
pling between the hardware accelerator and a MIPS processor.
The accelerator is integrated into the processor’s pipeline and
reconfigured at runtime using stored configurations. These are
generated offline, from applications running on a simulator,
by detection of repeated backward branches over a certain
threshold. This approach is intrusive due to the tight coupling
and requires further development effort to adapt to different
processor architectures.

The CCA [18], [19] uses an accelerator tightly coupled to
an ARM processor. Their work addresses CDFG detection and
mapping. Detection was initially performed online, but was later
moved to a compile time step [18], which requires special in-
structions to delimit the code regions to be mapped to hardware,
making the approach non-transparent to software toolchains.
In further work, the CCA was integrated as an FU into a dif-
ferent type of loop accelerator, focused on binary portability
for hardware accelerated systems, specifically, acceleration of
modulo-schedulable loops [23]. Since binary compatibility of
applications developed for a given hardware accelerator system
is compromised upon further hardware development, [23] pro-
poses a solution where a virtual machine module monitors the
processor’s instruction stream and generates control and config-
urations for any given accelerator, decoupling the software from
the hardware. Configurations are generated from binary trans-
lation, and alternatives implementing some translation steps ei-
ther online or offline are presented. An average global speedup
of 2.66 is achieved for the optimal solution.
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The DIM Reconfigurable System [20], [21] is based on a
run-time binary translation mechanism that transparently de-
tects groups of up to 3 basic blocks suitable for hardware ex-
ecution. The accelerator is tightly coupled to a MIPS processor
pipeline, having access to its register file. It is composed of het-
erogeneous coarse grained FUs arranged in homogenous rows.
Load/Store FUs allow for memory access to random memory
positions.

Paek et al. [24] implement a coarse-grained array of homo-
geneous FUs with a static interconnection scheme. Reconfig-
uration occurs at runtime according to information extracted
from binaries disassembled offline. It is a static code analysis
approach that detects suitable loops (e.g., with an iteration count
known at compile time; kernels should not be control-domi-
nated). The loops are compiled for the accelerator, and the bi-
nary is modified to include mapping and communication rou-
tines. Sequential memory accesses are supported, and data are
passed to/from the array via a shared memory mechanism. In
contrast, the approach proposed in this paper uses information
from execution traces, which allows for precise determination
of frequent execution paths, and imposes fewer restrictions on
the detected loops (e.g., it is not necessary to know the number
of iterations). The executed binary is unmodified, and the re-
sulting reconfigurable array uses fixed-functionality processing
elements with reconfigurable interconnects, and is tailored for
accelerating a specific set of loops.

Bispo and Cardoso [4], [22] propose the mapping of repeti-
tive trace-based patterns of instructions, named Megablocks, in
the context of dynamically moving instructions executing on a
CPU to reconfigurable arrays. The objective of the Megablock
is to address several difficulties related to mapping loops of se-
quential code to hardware, such as determination of the number
of loop iterations, and the handling of jumps and branches in
sequential code. It is shown that Megablocks can represent
significant portions of the execution of a program, with cov-
erage comparable to or greater than other online loop-detection
methods, such as loops identified by backward jumps. As each
Megablock considers a single execution path, and is thus suit-
able for optimizations, it is inappropriate for execution traces
with highly irregular paths. Alternative paths are treated as exit
points. Although the approach is analyzed and speedup estima-
tions are presented in [4], [22], the current paper presents the
first real implementation of a software/hardware system using
the Megablock concept. It also shows experimental evidence
of the suitability of the approach to accelerate execution traces.

III. MEGABLOCKS

A Megablock [22] represents a sequence of executed instruc-
tions (trace) forming an iteration iz, which repeats at least 2 times
until one of its exit conditions is true. Fig. 1 shows a portion of
the instruction trace from the calculation of the Fibonacci se-
quence on a MicroBlaze processor. The code has a single loop
which, when executed, repeats the same sequence of six in-
structions. This sequence of six instructions represents the it-
eration it of the Megablock. It contains five arithmetic instruc-
tions (using addk, addik, and rsubk) and one branch instruction
(bneid). Whenever the branch instruction is executed, the value
of register 18 is compared to zero, and if different from zero,
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0x00000194
0x00000198
0x0000019C
0x000001A0
0x000001A4
0x000001A8

addk r3, r4, r7
addik re6, ro6, 1
addk r7, r4, r0
rsubk rl1l8, r6, rb5
bneid r18, -16
addk rd4, r3, r0

0x00000194
0x00000198
0x0000019C
0x000001AO0
0x000001A4

addk r3, r4, r7
addik re6, re6, 1
addk r7, r4, r0
rsubk rl1l8, ro6, rb5
bneid rl18, -16

0x000001A8 addk r4, r3, r0

Fig. 1. Repeating pattern of instructions in the trace of the fibonacci bench-
mark, running on a MicroBlaze processor.

the control flow jumps back four instructions and repeats itera-
tion it (as the branch has a single delay slot, it will execute an
additional instruction before jumping). If register 18 is equal
to zero, the repetitions stop. This branch instruction represents
the only exit point of this Megablock.

The number of iterations in the loop of a program might not
be known a priori. Thus, to widen its applicability, instead of a
traditional loop control with a fixed number of iterations, the
Megablock exclusively uses “exit points” to determine when
computations end. By definition, a Megablock always has at
least one exit point.

Control-flow instructions (e.g., branches) make hardware im-
plementation more difficult and prevent optimizations, due to
the multiple paths they introduce. Instead of considering mul-
tiple paths, each Megablock represents a single path of a loop
across several branches. Thus, the Megablock includes an exit
point for each instruction able to change the control flow.

Fig. 2 shows C code for a loop which contains an inner loop
and a possible infrequent path for the common execution sce-
nario, and Fig. 2 shows the CDFG of the outer loop. Depending
on the execution, the trace produced by running the code can
form two different Megablocks with the same start address,
“ABBD” and “ACD?”, as shown in Fig. 3(c). If a Megablock
is formed for path “ACD?”, its iteration count may be too
low to warrant implementation in hardware. Alternatively, a
Megablock may be formed for the repetitive path “ABBD”
(with unrolled inner loop), with the branch to the infrequent
path considered as an exit point.

Megablocks are useful if they represent a significant part of
the execution of a program. Previous work [22] shows that for
many benchmarks, Megablocks can have coverage similar to
or greater than other runtime detection methods, such as moni-
toring short backward branches (used by Warp [8]).

A. Detecting Megablocks

Megablocks are found by detecting a repetitive pattern of
up to M instructions in the execution trace. Since each indi-
vidual instruction has an associated address value, the problem
is equivalent to detecting patterns in the instruction addresses.
Fig. 1 has a pattern of size 6, which corresponds to the sequence
of addresses 0x194, 0x198, 0x19C, 0x1A0, 0x1A4 and Ox1AS8.
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for (i1=0; i<n; 1i++) {
// Infrequent Path
if(ali] > max value) a[i] = max value;
else for(j=i; j<i+2; j++) // inner loop
aljl = al3l + 2;

} a)
D
A <
B g
, B g
Outer/ D =
Loop | A
\ B
. \ B
<4 D D
Loop A
v Exit .
b) )

Fig.2. Example of an inner loop with an infrequent path: (a) C code; (b) CDFG;
(c) Execution trace of the CDFG and Megablock formation.

The size of detected patterns can be reduced by considering
coarser elements other than instruction addresses [16]. For in-
stance, pattern detection can be done over basic block addresses.
In Fig. 1, the list of addresses from 0x194 to 0x1A8 forms a
single basic block. Using basic block addresses instead of in-
struction addresses as pattern elements decreases the size of the
detected pattern from 6 to 1. A study using a representative set
of benchmarks has shown that to maximize the coverage of de-
tected Megablocks, the maximum size of the pattern can be as
high as 32, even when considering coarser elements (e.g., basic
blocks) [22].

The problem of detecting a Megablock can be seen as an in-
stance of the problem of detecting repeated substrings, e.g., z,
with  being a substring containing 1 or more elements. This is
also known as the squares, or tandem repeats detection problem
[25]. In our case, substring x represents a single iteration of a
loop. Although the objective is to find patterns with many repe-
titions (a square strictly represents only two repetitions), it was
observed that if a sequence of instructions forms a square, it is
likely that more z elements will follow (e.g., zzzx ...). The
method adopted here considers that two repetitions are enough
to declare the detection of a Megablock.

There are algorithms which can find all tandem repeats in
O(nlogn + z), where n is the length of the string and z is
the size of the output [26]; there is also a linear time algorithm
which uses suffix trees [27]. However, these algorithms are not
suitable if runtime Megablock detection is needed. Since the
stream of instructions is usually consumed at a constant rate
(i.e., when there are no stalls), we favor streaming oriented al-
gorithms, possibly using a buffer temporarily storing contiguous
subsequences of instructions.

Fig. 3 presents the algorithm developed to meet these require-
ments. The algorithm defines, a priori, the maximum size of the
sequence (i.e., the maximum number of elements in a pattern). It
uses M counters, one for each element of the FIFO. The FIFO
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M - maximum number of elements in sequence
MatchingFifo - size M FIFO of PatternElements
MatchCount - size M, initialized to zero
PatternElement - unique representation of each
instruction or basic block

processElement (PatternElement)
for idx 1 to M
if PatternElement equals MatchingFifo[idx]
if MatchCount [idx] < 1idx
MatchCount [idx]++;
else
MatchCount [idx] = 0;

for idx 1 to M
if MatchCount[idx] equals idx
Pattern of size idx detected

shift PatternElement into MatchingFifo

Fig. 3. Algorithm for detection of squares up to a maximum size.

stores the previous M elements and gives read access to any
element. When a new element arrives, it is compared with the
M elements already in the FIFO. The position in the FIFO de-
termines the size of the pattern being detected (e.g., position 2
detects patterns of size 2). If there is a match in a position of the
FIFO, the counter corresponding to that position is incremented.
If the counter reaches a value equal to the corresponding pattern
size, a match for that size is signaled. If there is a mismatch,
the counter is reset to zero. Finally, the element is added to the
FIFO. When the FIFO is full, the oldest value is discarded.

When the FIFO is full, each following element can signal up
to M matches for squares with different sizes. For instance, by
feeding the pattern aaaaaa to the algorithm, after processing
the last element 3 matches are detected, for squares with sizes
1 (a), 2 (aa) and 3 (aaa), respectively. An arbiter must select
the most relevant match. For instance, in order to consider only
inner loops, priority is given to the match with the smallest sub-
string size; to detect patterns with unrolled inner loops, but only
when they appear inside outer loops (e.g., aabaab . . .), priority
is given to the match with the longest pattern, but only if there
is no match of a shorter pattern simultaneously in the current
and in the previous set of matches (to prevent unrolling in cases
such as aaaa).

Because of the repetitive nature of the Megablock, any ad-
dress in the pattern can be taken as the start address. As the start
address can influence single-pass optimizations, we chose the
lowest address of the Megablock which appears only once as
the start address. For the example in Fig. 1, the start address ac-
cording to this heuristic is 0x194.

B. Megablock Graph

In the mapping approach described in this paper, Megablocks
are transformed and then mapped into a dataflow graph (DFG)
representation. Fig. 4 represents the graph obtained from the
execution trace of Fig. 1.

The DFG is built by taking the start address of the Megablock
(i.e., 0x194 in Fig. 1) and adding nodes to the graph according
to the sequence of instructions of the Megablock. Each CPU
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r4 (input)

keedback 0)
A

17 (input)

0:1 15 (input)

16 (input)

0:0

control
4:equalZero

Fig. 4. CDFG of the Megablock found in the fibonacci kernel.

Exit:0

instruction is transformed into one or more platform-indepen-
dent instructions. When building the graph, additional infor-
mation—not represented in Fig. 4—is generated, including a
counter for each type of graph node, tables which map each
output of the graph to its last definition in the graph, and a table
with all non-data dependencies between operations. This infor-
mation is needed for implementing Megablocks, for instance, to
indicate which nodes produce the output values that must be sent
to the CPU on termination of the Megablock, which CPU reg-
isters are the destinations of these values and what restrictions
need to be imposed when scheduling operations. Optimizations
such as constant folding and propagation, and algebraic simpli-
fications are then applied to the DFG.

The DFG represents one iteration (the kernel) of the
Megablock and contains operations (oval nodes), constants
(white square nodes), input values (“Liveln” square nodes)
and exit points (“Exit” square nodes). All connections in the
DFG represent dataflow between the nodes. For illustrative
reasons, the labels in the connections in Fig. 4 indicate output
and input indexes, respectively. For instance, “0:1” means
“output 0 of source node connects to input 1 of destination
node”. The connection labeled “control”, between source node
4:EqualZero and destination node Exit : 0 establishes a
1-to-1 relationship between the Boolean output of an operation
(e.g., true or false) and an exit point. The output determines
if an exit is activated or not, according to the exit rule of the
destination node.

The results from each Megablock iteration are passed to the
following iteration via feedback connections that feed data back
to the “Livelns”, as dictated by the detected dataflow.

IV. HARDWARE ARCHITECTURE AND SUPPORT TOOLS

The architecture of a hardware prototype supporting trans-
parent hardware acceleration is shown in Fig. 5. In order to
avoid modifications of the CPU or its interfaces, or of the
software toolchain, as in other approaches [16], [19], [20],
the implementation uses standard interfaces such as the PLB
(Processor Local Bus) [6]. Modifications of the CPU instruc-
tion streams are made at runtime without rewriting instruction
memory and thus ensuring full transparency.
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CPU Communication
(MicroBlaze) Routines
instruction bus DDR2
‘ PLB passthrough
Megablock  PLB [pqp| [ps,  RM
Addrs. Injector - (MicroBlaze)
PLB passthrough
(PLB passthrough

| Input/Output Registers Control Registers

} Operations and Routing Iteration Control

Reconfigurable Processing Unit

Fig. 5. Target System Architecture.

The hardware prototype system consists of five modules as
shown in Fig. 5. The Reconfigurable Processing Unit (RPU) is a
loosely coupled hardware accelerator connected to the PLB. An
injector module monitors the instruction address bus and trig-
gers the use of the RPU by modifying the contents of the instruc-
tion stream. The injector acts as a pass-through for all the in-
structions to be executed by the CPU. In this prototype, the CPU
loads program instructions from external memory (DDR2). The
Reconfiguration Module (RM) is responsible for managing the
runtime configuration of the RPU.

The system was conceived for an FPGA environment: instead
of using a single all-purpose RPU, the tool chain generates the
HDL description of an RPU tailored for a single or a set of
programs to be executed in the system. This step is done offline
and automatically, as detailed further in this section.

A. RPU Architecture

Fig. 6 shows an example of a possible arrangement of the
array of FUs in the RPU. The RPU is organized as a set of rows
with a variable number of single-operation FUs. If there is an op-
eration with one constant input, the RPU generation process tai-
lors the FU to that input, as is the case with the bra FU in Fig. 6,
which represents an arithmetic shift right by 13 operation. The
current implementation supports arithmetic and logic operations
with integers, including carry operations. Floating point oper-
ations, integer divisions, and memory accesses are currently
not supported. Crossbar connections are included between ad-
jacent rows, and are runtime reconfigurable. Connections span-
ning more than one row are established by pass-through FUs
(labeled pass in Fig. 6). Runtime reconfiguration changes the
connections established by the inter-row crossbar switches. If
the RPU is already configured for the Megablock to be exe-
cuted, reconfiguration is skipped, reducing its overhead. Fig.
6 also depicts one possible interconnection arrangement for a
Megablock. According to its configuration, the RPU executes
any one member of the set of Megablocks it was designed to
support. Configurations applied at runtime are generated offline
along with the RPU description.

The architecture of the RPU was heavily influenced by
the structure of the Megablocks. Specifically, the RPU was
designed to execute loops with one path and multiple-exits. The
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add add bra
- Switches
7
anl pass pass
"] Switches
Routing | sub bne . "
| Exit condition
\ 0 |
1 output register ‘
Fig. 6. Synthetic example of a reconfigurable processing unit (RPU).
a c e g
Load operands | Compute = Recover results
F Route RPU H to RPU kernel to CPU

b d f
a) Injector detects Megablock and sends ID to RM
¢) CPU branches to CR
g) CPU branches back to application

Variable overhead

Constant overhead

Fig. 7. System communication model.

RPU does not need to know the number of iterations of the loop
before execution; instead, it keeps track of the possible exit
conditions of the loop and detects when an exit situation occurs
(the bne FU in Fig. 6 performs exit detection in this example).
For an RPU supporting multiple Megablocks, the configuration
also determines which exit conditions are to be considered to
terminate execution. The results of the iteration that triggers an
exit, i.e., the last iteration of the loop, are discarded, and the
last iteration of the loop is re-executed in software. The CPU
resumes execution at the Megablock address so it can follow
the correct control-flow path, which leads to the execution of
the branch corresponding to the triggered exit.

In the current implementation of the RPU, all operations com-
plete within one clock cycle. Each loop iteration takes as many
clock cycles as the number of rows in the RPU, as intermediate
results are registered at the outputs of the FUs. The RPU actsas a
bus slave communicating by means of a standard PLB interface.
Data transfer of operands and results is done through memory
mapped registers. Configuration is performed by writing to a set
of configuration registers, whose number depends on the size of
the array. These registers control the routing of the operands
through the RPU and define which exit conditions are active.

B. Communication Scheme

The transparent execution of computations on the RPU en-
tails several steps, summarized in Fig. 7. The injector is respon-
sible for interfacing the CPU with the rest of the system, as well
as for starting the reconfiguration process.

This approach changes the execution flow of the CPU without
overwriting the original instructions of the program or inter-
fering with the original software toolchain. The execution of
the Communication Routine (CR) may introduce a significant
overhead (slots d and f). Each CR contains 20 fixed MicroB-
laze instructions, plus one instruction per input or output value.
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The tasks performed by the CR include loading values into the
RPU (in slot d), polling the RPU for completion (during slot ¢),
checking the exit status and recovering values (slot f).

C. Prototype Considerations

As mentioned before, the transfer of control flow performed
by the injector is triggered by the detection of an instruction ad-
dress that corresponds to the start of a Megablock. Although two
or more Megablocks may start at the same memory address, the
current approach considers for Megablock implementation the
one with the highest code coverage measured during profiling.

Situations may occur where the CPU fetches instructions
which will never execute. This occurs if a Megablock starts
after a mispredicted branch instruction. The implementation
correctly identifies this situation: if the starting Megablock
address is followed by the next address in the Megablock,
this means the CPU did not discard the instruction, and is
attempting to execute the code region mapped to the RPU.

In the current implementation, the feedback routing of re-
sults to the next iteration is configured through a single register.
This limits the maximum number of input/outputs of the RPU.
It depends on a combination of the number inputs and outputs,
e.g., a maximum of 10 inputs for 8 outputs. A similar limita-
tion imposes a maximum number of 32 exit conditions. How-
ever, these limitations were not an obstacle for implementing
the Megablocks found in the benchmarks being used.

D. Tool Flow

Starting with an executable file in ELF (Executable and Link-
able Format), the offline tool suite extracts Megablocks, maps
them to the RPU, and generates the configurations. The Graph
Extractor tool [28] uses a cycle-accurate simulator of the CPU
to obtain execution traces.

The set of selected Megablocks is processed by two tools.
One generates the HDL (Verilog) descriptions for the RPU and
routing information to be used at runtime by the RM. The other
generates the CPU instructions for the communication routines
and a Verilog header file with the Megablock addresses for the
Injector. Both the routing information and the CRs are included
into the program memory of the RM. The RM copies the CRs
to DDR2, so that they can be executed by the CPU. The RPU
description generation tool processes Megablock information
provided by the Graph Extractor tool [28], determines FU
sharing across Megablock DFGs, assigns FUs to rows, adds
pass-through units, and generates Verilog header files that
characterize the placement of FUs. As only one Megablock will
be executing on the RPU at any given time, the tool generates
a description which reuses FUs between Megablocks.

V. EXPERIMENTAL EVALUATION

The proposed architecture and tools were tested and evalu-
ated with 14 integer benchmarks from embedded computing, as
well as commonly used algorithms [29]. Each benchmark con-
tains a kernel that operates on 32-bit integer values. In order
to ensure a fair comparison, each benchmark executes the cor-
responding kernel NV times, where N is a compile-time con-
stant. Nine of the kernels have a fixed number of loop iterations:
count, even_ones, ham_dist, pop_cnt, reverse, divlu, isqrt2, sqrt
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and usqrt. The number of iterations of the remaining kernels de-
pends on the values of the inputs.

Two additional benchmarks were considered, each one com-
bining a set of 6 kernels: mergel consists of count, even_ones,
fibonacci, ham _dist, pop_cnt and reverse; merge2 consists of
compressi, divlu, expand, gcd2, isqrt2 and maxstrli. These
benchmarks are used to validate the transparent support of
multiple Megablocks with different characteristics on a single
RPU. In addition, they are used to verify that the tools correctly
identify resources that can be reused between Megablock
DFGs.

A. Experimental Setup

The Graph Extractor tool [28] was used to do an offline ex-
traction of the Megablocks from execution traces. For the detec-
tion, inner loop unrolling was disabled, basic blocks were used
as the pattern element, and the maximum pattern size considered
was 32. For each kernel (except the merge ones), the Megablock
with the highest coverage was implemented. On average, the se-
lected Megablocks cover 90% of the executed instructions.

For the evaluation, parameter N was set to 500, and each
kernel is compiled with mb-gcc 4.1.2, using the — 02 flag and
additional flags which enable specific units of the MicroBlaze
processor (e.g., -mxl-barrel-shift for barrel shifter instructions).

The prototype uses a Digilent Atlys board with a Xilinx
Spartan-6 LX45 FPGA [7] and 128 Mbyte DDR2 memory. The
CPU is a MicroBlaze processor optimized for speed, clocked
at 66.7 MHz. The same clock signal is used for all modules,
including the RPU. Two kernels (mpegcrc and usqrt) required
lowering the clock frequency of the system to 33.3 MHz, due
to delays in the generated RPU. The RM was implemented as
another MicroBlaze with the reconfiguration data in its local
memory. This additional MicroBlaze can also be used for
monitoring purposes.

B. Results

Table I summarizes the characteristics of the Megablocks
used in the evaluation. Most kernels present similar values for
the number of instructions executed per Megablock call; the
most notable exception is fibonacci, which executes from 3 to
16 times more instructions per call than the other benchmarks.
Included in Table I are values for maximum Instruction Level
Parallelism (ILP), percentage of instructions covered by the
Megablocks (column Cov.) over the total executed instructions,
and average number of Instructions per Cycle (IPC), assuming
each instruction takes one clock cycle to execute.

Table I also summarizes the characteristics of the RPUs gen-
erated for each kernel. Due to the interconnection scheme used,
most of the FUs are pass-throughs. The FU column indicates
the total number of FUs, and OP Ratio gives the percentage
of FUs that implement actual operations (as opposed to pass-
throughs). The RPU depth (i.e., number of rows) ranges from
3 to 8. The number of bits required for configuration of the
inter-row switches grows with the number of FUs in each row
and with RPU depth: the largest individual benchmark (usgrt)
requires 352 bits (44 bytes).

The RPUs for the merged benchmarks exploit resource
sharing. Therefore, the total number of resources used is less
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TABLE I
CHARACTERISTICS OF THE EXTRACTED MEGABLOCKS AND GENERATED RPUS

Megablocks RPUs
Kernels  Avg. Inst. Cov OP Ratio #Conf.
prcall ILP %) IPC [#FU FR %) Depth Bits

count 192 2 949 20 12 4 500 3 72
even_ones 192 3 940 20| 16 6 37.5 3 87
fibonacci 1497 3 994 20| 15 6 40.0 3 87
ham_dist 192 3 940 20 15 6 40.0 3 81
pop_cnt 256 3 972 27| 15 6 533 3 84
reverse 224 3 956 23| 14 6 50.0 3 81
compress 138 3 89.7 20| 26 8 30.8 4 160
divlu 155 2 905 1.7 94 556 3 38
expand 138 3 897 20 26 8 308 4 126
gcd 330 2 988 13| 21 5 38.1 6 99
isqrt 90 3 840 20| 13 5 462 3 72
maxstr 120 2 88.1 13| 10 4 40.0 3 54
mpegcre 434 4 876 20[ 40 7 35.0 7 189
usqrt 255 6 849 21| 59 9 288 8 352
mergel 426 3 983 21| 28 8 643 3 204
merge2 162 3 932 11| 35915 444 6 402
85
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Fig. 8. Synthesis results for system implementation: Lookup Tables (LUTs),
Flip-flops (FFs).

than the total sum of the resources of the individual benchmarks.
Due to FU sharing, the mergel and merge2 implementations
use 32% and 51% of the total number of FUs (operations and
pass-throughs), respectively.

The merge2 benchmark demonstrates an RPU that supports
Megablock DFGs of different depths. The RPU has a depth
equal to the maximum depth of the individual DFG kernels, and
smaller DFGs are supported by using pass-throughs in the ad-
ditional rows.

Fig. 8 characterizes the FPGA implementation of the RPUs.
The maximum RPU clock frequencies are in the 52.1—153.7
MHz range (as reported by the synthesis tools). Most RPUs
work above the MicroBlaze clock frequency (66.7 MHz). Since
the current implementation uses a single clock for the RPU and
the MicroBlaze, most benchmarks were run with a 66.7 MHz
clock; the exceptions are mpegcrc and usgrt, which used a 33.3
MHz clock.

Resource utilization for the Spartan-6 LX45 FPGA ranges
from 5.3% to 27.8% for LUTs, and from 1.3% to 5.4% for
flip-flops. The implementation of merge! requires 55% of the
LUTs and 27% of the FFs that would be needed if the RPU were
generated with no sharing of FUs. For merge2, these values are
81% and 38%, respectively.

Table II summarizes the results measured with the prototype.
The execution times were measured using dedicated timers
(counting clock cycles). For each benchmark, the table includes
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TABLE II
PERFORMANCE RESULTS FOR DDR-BASED PROTOTYPE

Kernels SW SW+HW  Speedup HW no OH OH
(ms) (ms) (ms) (%)

count 37.7 9.6 3.9 0.73 92.4
even_ones 38.0 9.1 4.2 0.73 92.1
fibonacci 280.8 15.4 18.2 5.67 63.2
ham_dist 38.0 8.8 4.3 0.73 91.8
pop_cnt 47.1 9.1 5.2 0.73 92.1
reverse 42.8 9.5 4.5 0.73 92.3
compress 27.9 10.4 2.7 0.52 95.0
divlu 329 9.3 3.5 0.73 92.2
expand 279 10.4 2.7 0.52 95.0
ged 435 83 53 1.88 77.3
isqrt 20.1 9.0 2.2 0.34 96.2
maxstr 27.0 9.1 3.0 0.68 92.5
mpegcre 137.3 22.7 6.0 3.29 85.5
usqrt 73.2 19.3 3.8 1.94 89.9
mergel 456.1 71.5 6.38 9.30 87.0
merge2 175.4 66.5 2.64 6.95 89.6

the execution time for the software version (SW), for the
hardware-accelerated version (SW+HW), and the associated
speedup. Also included is the running time of the hardware
version without the communication overhead (HW no OH).

The last column shows the communication overhead (OH)
relative to total execution time. The effective speedups mea-
sured (including communication overhead) range between 2.2 x
and 18.2x (4.96x on average). For the merge benchmarks the
speedup is lower than the average of the individual benchmarks
they merge (6.7x and 3.2x for the benchmarks in mergel and
merge?2, respectively) due to the overhead of RPU reconfigura-
tion.

Since the CPU has no cache, the MicroBlaze requires 23
clock cycles to fetch each instruction from the external DDR2
memory. For this scenario, the observed speedup is mainly due
to avoiding this instruction fetch delay by executing operations
on the RPU instead. Each CR is also in external memory. There-
fore, the time required for executing the CR overwhelms the ex-
ecution time of the RPU. The high communication overhead is
also aggravated by the relatively low number of average instruc-
tions executed per call (see Table I).

In order to evaluate the performance difference between spe-
cialized hardware implementations of each kernel and our ap-
proach, all benchmarks except mergel and merge?2 were synthe-
sized using the high-level synthesis tool, Catapult C Synthesis
v2010a [30]. This approach generates one dedicated hardware
module per kernel. For the synthesis we used loop pipelining
with an iteration interval of 1 for all kernels. For the special-
ized architectures, on average only 0.53% of LUTs and 0.21%
of the FPGA registers are needed. We consider here that the
hardware cores generated with Catapult C replace the FU array
and the same data communication scheme is used. The average
estimated speedup obtained over the software solution is 5.7 %
(from a minimum of 2.3x and a maximum of 24.1x) for a 66.7
MHz system clock. Although the generated kernels are individ-
ually faster than the FU array (average clock frequency is 237
MHz), system performance is constrained by the communica-
tion overhead. Therefore, only a modest speedup over the RPU
version is achieved (less than 3%).
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Fig. 9. System architecture with support for code execution from BRAM.

C. Speedup Estimation for BRAM+FSL-Based Execution

Using an external memory for CPU code without cache sup-
port imposes a significant overhead. An alternative is to consider
an implementation which executes the kernels from on-chip
memory implemented with BRAMs (Block RAMs), and use a
point-to-point interface between the CPU and RPU. The injector
interfaces with the RPU in the same manner. This scenario en-
sures the fastest possible execution of the software version. The
injector is attached to the dedicated bus (Local Memory Bus,
LMB) that connects the CPU to the local memory (see Fig. 9).

Communication with the RPU is done directly via a Fast Sim-
plex Link (FSL) interface [6]. When a Megablock start address
is detected, the injector directly inserts the stream of instruc-
tions, which are adapted CRs held in its own memories. The
load/store instructions previously used by the CPU to commu-
nicate with the RPU via the PLB bus are now replaced with
instructions (get/put) that send/receive a single value over the
FSL. Once all operands are sent to the RPU, the injector sends
a start signal to the RPU. The CPU then stalls until the RPU de-
livers the results as FSL get instructions are blocking. The RPU
sends back a done signal which reports the exit status once cal-
culations are done. The injector then continues the CR, recov-
ering results. CRs are now fetched at the same speed as regular
BRAM accesses, which is 1 instruction per cycle.

In order to estimate the speedups for this scenario, it is as-
sumed that a CR now contains only 4 fixed instructions versus
the previous 20. These are absolute branches back to the starting
address of the Megablock and take 4 cycles to execute. In ad-
dition, there are as many put/get instructions as inputs/outputs.
Each completes in one clock cycle instead of the 12 cycles re-
quired to write successive values over the PLB.

In this alternative, it is the injector that performs the RPU
reconfiguration, instead of the RM, via its own FSL connec-
tion. This can be done at the same time as the CPU sends the
operands to the RPU. Table III shows the estimates calculated
for this model. The expression n x d was used to calculate the
number of clock cycles for execution in the RPU alone (HW no
OH), where n is the number of iterations and d is the depth of
the RPU. The total execution time with hardware acceleration
(SW+HW) includes the communication overhead, given by the
expression CReyeles + Nyegs X Lp to calculate the number of
overhead clock-cycles, where CReycles is the fixed number of
cycles needed to execute the CR (4, in this case), N;egs is the
number of RPU registers (inputs and outputs) to communicate,
and L g is the BRAM access delay (1 clock cycle, in this case).
Since all benchmarks (except mergel and merge2) implement a
single Megablock, we did not include the RPU reconfiguration
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TABLE III
ESTIMATED PERFORMANCE FOR BRAM-BASED CODE EXECUTION

Kernels SW SW+HW Speedup HW no OH

(ms) (ms) OH (ms) (%)
count 2.0 0.9 2.2 0.7 10.3
even_ones 1.8 0.9 1.9 0.7 11.9
fibonacci 13.3 5.8 23 5.7 1.7
ham_dist 1.8 0.9 1.9 0.7 11.1
pop_cnt 2.5 0.9 2.8 0.7 11.1
reverse 2.0 0.9 22 0.7 11.1
compress 1.5 0.8 1.9 0.5 16.9
divlu 1.6 0.9 1.6 0.7 8.6
expand 1.6 0.8 2.0 0.5 16.9
ged 32 2.0 1.6 1.9 3.9
isqrt 1.0 0.6 1.7 0.3 19.6
maxstr 1.3 0.9 14 0.7 9.1
mpegcre 9.5 4.7 2.0 33 6.5
usqrt 6.3 3.1 2.0 1.9 11.7
mergel 23.1 10.3 2.2 9.2 7.2
merge2 9.7 8.6 1.1 6.9 13.1

overhead, which is only incurred once. For mergel and merge?2,
this overhead was considered. The estimates indicate an average
overhead of 11% in individual benchmarks when using the FSL
interface, versus 89% measured for the DDR case.

As the software execution from BRAMs represents the
best possible case for the MicroBlaze processor, hardware
speedup is significantly reduced, because there is no longer
a high penalty for accessing memory. However, estimations
indicate that speedups (including all overheads) for individual
benchmarks between 1.4x and 2.8x (1.96x on average) are
achievable.

In this scenario, replacing the FU array by the kernels gener-
ated with Catapult C achieves higher speedups, since the com-
munication overhead has a lower impact on the overall perfor-
mance. The average estimated speedup is 4.6 x, with speedups
for individual benchmarks between 2.6 x and 7.1 x. On average,
the implementations generated by Catapult C are 2.4x faster
than our proof-of-concept implementation, while using about
one-tenth of the resources. Note that in a system with special-
ized hardware versions, the injector module can still be used to
transparently move the computation from the CPU to the dedi-
cated hardware.

We applied the same estimation approach to an extended set
of 62 integer benchmarks (including image processing algo-
rithms [31] and commonly used algorithms [29]), which pro-
duce Megablocks with memory operations. The estimations in-
dicate an average speedup of 2.7x. Those results assume the
use of dual-port BRAMSs, which support up to 2 memory oper-
ations per clock cycle [7]. This extended set of benchmarks in-
cludes more complex examples than the ones presented earlier
in this section. Those benchmarks and their individual speedups
include: md5 (1.8x), bilinear (4.8x),fft (1.2x), fir (7.3x ), and

fdct (6.7x). Using the same approach, we applied our mapping

technique to an airborne collision avoidance application, known
as 3D Path Planning, provided by Honeywell. It consists of 841
lines of C code, distributed over 10 files and 48 functions. A step
of the application requires 50 601 067 MicroBlaze clock cycles.
We use our target architecture with Megablocks mapped to a
2D CGRA based on the structure of the RPU depicted in Fig. 6,
extended with 2 load/store units per row. This implementation
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considers 9 Megablocks responsible for almost 87% of the total
execution time. The speedup achieved by the execution of the
Megablock sections of code in the RPU is around 2.34x, re-
sulting in an estimated overall application speedup of 2x.

VI. CONCLUSION

This paper presented a novel approach for transparently
moving computations from a CPU to reconfigurable processing
units (RPUs). Execution traces are analyzed offline to identify
loops that can be valuably moved to specialized RPUs imple-
mented in an FPGA. The loop identification process targets
Megablocks, structures representing repeating patterns of in-
structions. An RPU is then synthesized to support the selected
set of Megablocks. At runtime, the execution the Megablocks
is moved transparently from the CPU to the RPU, which is
reconfigured to carry out the computations of each Megablock.
The implemented system prototype shows that this is a feasible
and promising approach for transparently accelerating the
execution of embedded programs.

The implemented system is fully functional, runtime-recon-
figurable and complete. The support tools successfully generate
a hardware description that combines several Megablocks with
DFGs of varying depths along with the configuration and com-
munication information required at runtime. The loose coupling
between the injector and the remaining system modules allows
the system to be easily adapted to other CPUs, as well as other
types of memory interface. The use of the injector module
avoids the need to recompile the programs, while ensuring
controlled behavior modification of the CPU by altering its
instruction stream.

Future work will address the support of caches memory and
floating-point operations, as well as the reduction of the amount
of resources needed to implement an RPU. Possible further de-
velopments include the implementation of online Megablock
extraction and RPU synthesis, in order to have an autonomously
adaptable embedded system.
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