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Abstract The amount and the variety of data generated

by today’s online social and telecommunication network

services are changing the way researchers analyze social

networks. Facing fast evolving networks with millions of

nodes and edges are, among other factors, its main chal-

lenge. Community detection algorithms in these conditions

have also to be updated or improved. Previous state-of-the-

art algorithms based on the modularity optimization (i.e.

Louvain algorithm), provide fast, efficient and robust

community detection on large static networks. Nonethe-

less, due to the high computing complexity of these algo-

rithms, the use of batch techniques in dynamic networks

requires to perform network community detection for the

whole network in each one of the evolution steps. This fact

reveals to be computationally expensive and unstable in

terms of tracking of communities. Our contribution is a

novel technique that maintains the community structure

always up-to-date following the addition or removal of

nodes and edges. The proposed algorithm performs a local

modularity optimization that maximizes the modularity

gain function only for those communities where the editing

of nodes and edges was performed, keeping the rest of the

network unchanged. The effectiveness of our algorithm is

demonstrated with the comparison to other state-of-the-art

community detection algorithms with respect to Newman’s

Modularity, Modularity with Split Penalty, Modularity

Density, number of detected communities and running

time.

Keywords Dynamic community detection � Large-scale

networks analysis � Modularity � Evolving networks

1 Introduction

Community Detection is one of the most important tasks

in social network analysis. Previously developed algo-

rithms have been used mainly for static network data [4].

Very fast heuristic-based algorithms to optimize the graph

communities modularity function are nowadays able to

handle and discover communities in larger static networks

[1]. With one of these algorithms, the Louvain Method, it

was possible to find communities in a very efficient way

in several large-scale static networks: Twitter social net-

work dataset with 2.4M nodes and 38M links [14]; Lin-

kedIn social network dataset with 21M nodes [8]; Mobile

phone network with 4M nodes and 100M links [6]. In this

work, we modified the original Louvain algorithm [1] to

fulfill the requirements of a community detection task in

evolving large-scale networks. When compared with

original Louvain, the proposed modifications revealed to

be conclusive about the gains in terms of modularity and

speed. The supremacy of the algorithm was also con-

firmed by comparing results with three other algorithms

(LabelRank [18], LabelRankT [16], GANXiSw [20] [19]

and AFOCS [11]). In our work, we managed to provide

the following contributions to dynamic community

detection problem:
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Optimization: Our algorithm only performs community

detection in the full network at the first

snapshot. In the following snapshots, the

previous community structure is taken into

account by applying the Louvain in a

much smaller aggregated network;

Efficiency: Empirical results have demonstrated that

the proposed dynamic version keeps most

of the communities of the previous

snapshot unchanged. The modified

Louvain steps will only compute

communities which are affected by

addition or removal of nodes/edges. Small

network’s changes resulted in better

elapsed time executions. Just two or three

iterations are enough to reduce the full

network to an equivalent smallest one by

several orders of magnitude;

Stability: Unlike the static Louvain, that may

change significantly the way communities

are obtained between snapshots (two runs

in the snapshot lead to different solutions

due its non-determinism). In the proposed

algorithm, unaffected communities keep

unchanged. Therefore, they preserve the

same nodes and even the same community

id between snapshots. Community

stability is important because it will

simplify the process of tracking of

communities over time.

2 Related work

Frequently, the Louvain algorithm [1] is used in dynamic

network community detection by performing individual

runs of the algorithm in snapshots of the network. This

approach apart from being computationally inefficient

makes it almost impossible to track communities in a fine-

grained way. The algorithm is non-deterministic and pro-

duces a solution for the communities that is very unsta-

ble between separate runs on the snapshots. The

community detection work referenced in a 2010 survey [4]

was later complemented by an incremental community

detection algorithm based on modularity and proposed in

[15]. The algorithm based on the principles of events in the

life of communities (growth, contraction, merging, split-

ting, birth and death) defined by [13] calculates the mod-

ularity gain in each one of the iterations to detect and track

communities over time in incremental networks. This

algorithm only considers the addition of new edges,

describing a two-step approach in detecting static com-

munities. In the first step, it uses the Louvain method, then

applies an incremental number of up-to-date strategies to

track the dynamic communities. The algorithm is very

dependent on the initial community structure of the net-

work. Another algorithm, the QCA [12], was presented as

being a fast and adaptive algorithm that provides efficient

identification of the community structure of dynamic social

networks. This algorithm allows the addition and removal

of nodes and edges. Starting with the initial communities

calculated with the Louvain method, the algorithm applies

adaptive node community changes by considering each

node as an autonomous agent demonstrating flocking

behavior toward their preferable neighboring groups [21].

In a following work, the same authors proposed AFOCS

[11], a new community detection algorithm for dynamic

networks. This algorithm shares the same principles of

QCA being only modified to allow the possibility of

detection of overlapping communities. A detailed com-

parison between QCA and AFOCS was presented in [11].

Due to the unavailability of the source code of QCA, in the

present work only AFOCS is being considered for evalu-

ation purposes. Label propagation techniques and specifi-

cally speaker–listener label propagation (SLPA) was used

in community detection over large networks. LabelRank

[20] and GANXiSw [20] [19] used the SLPA technique to

perform static network community detection while Label-

RankT [16] was designed to handle dynamic networks. The

main focus of those algorithms is overlapping community

detection. Nonetheless, all of them have a non-overlapping

mode. In our work, the non-overlapping mode was con-

sidered the reference. The algorithms presented better

performance for low overlapping density networks [17].

3 Preliminaries

3.1 Notation

The undirected unweighted graph that represents a network

with N nodes and M links is given by G ¼ ðV ;EÞ. The com-

ponents of the graph are: the node set V, which is just a list of

indices; the edge set E where each edge consists of two ver-

tices. The undirected graph has n ¼ jVj nodes,

V ¼ fu1; u2; . . .; ung, and e ¼ jEj edges, E ¼ fði1; j1Þ;
ði2; j2Þ; . . .; ðie; jeÞg. For each node u, du is its respective

degree. The disjoint set of communities of the graph is given

by C ¼ fC1;C2; . . .;Cng, where each Ci 2 C is a community

ofG. The community to which the node u is assigned is given

by c ¼ N2CðuÞ , TOT(c) is the sum of all the degrees of the

nodes that belong to the community c, IN(c) the number of

inner loops of the community c and w ¼ NEIGðcÞ the set of

adjacent communities. During the course of the paper we will

use the following nomenclature: Steps, refer to individual

steps of the Louvain Algorithm. Iterations, refer to the
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iterations of the Louvain algorithm (repeated till no increase in

modularity is possible). Operations reflect the kind of changes

that could be applied to the communities of the network (e.g.

merging or splitting communities). Procedures are main tasks

of the proposed algorithm.

3.2 Modularity function

We used a modularity measure Q to evaluate the quality of

the community structure of a graph. Modularity serves as

the objective function during the process of calculating the

communities [10]. This measure, apart from being the most

widely used [2, 3], was considered as the quality measure

used in the evaluation of the algorithms. Higher values for

the modularity Q mean better community structures.

Therefore, the objective is to find a community assignment

for each node in the network such that Q is maximized

using the modularity function defined by

Q ¼ 1

2m

X

i;j

Aij �
kikj

2m

� �
dðci; cjÞ ð1Þ

Aij represents the weight of the edge between i and j, ki ¼P
jAij is the sum of the weights of the edges attached to

vertex i, ci is the community to which vertex i is assigned,

the d-function dðu; vÞ is 1 if u ¼ v and 0 otherwise and

m ¼ 1
2

P
ijAij. To calculate the modularity of a specific

community, the number of inner edges (in [n]) and the total

number of edges (tot[n]) of a specific node n is used. The

modularity of the full network can be calculated using the

previous Q function, by considering all the entries of in and

tot for all the nodes.

3.3 Representing communities

Using Fig. 1c as an example, the network is defined using a

list of the degrees for each one of the seven nodes (pairs

node ! degree): degrees ¼ fð1; 2Þ; ð2; 2Þ; . . .; ð6; 2Þg,

with size jn2cj ¼ 7, the list of edges that form the network

(pairs src ! dest): links ¼ fð1; 2Þ; ð1; 3Þ; . . .; ð6; 7Þg and

the weights of each one of the edges (pairs

edge ! weight): weights ¼ fð1; 1Þ; ð1; 1Þ; . . .; ð6; 1Þg, with

size jlinksj ¼ jweightsj ¼ 16. The association between

node community is given by: n2c ¼ fð1; 3Þ; ð2; 3Þ; . . .;
ð6; 7Þg, the number of inner edges for each one of the

communities being in ¼ fð1; 0Þ; ð2; 0Þ; ð3; 6Þ; ð5; 2Þ; ð4; 0Þ;
ð7; 2Þ; ð6; 0Þg, and the total number of edges in and out of

the community: tot ¼ fð1; 0Þ; ð2; 0Þ; ð3; 7Þ; ð5; 5Þ; ð4; 0Þ;
ð7; 4Þ; ð6; 0Þg, where jn2cj ¼ jinj ¼ jtotj ¼ 7. The same

can be extended to the Fig. 1d network: n2c ¼
fð3; 3Þ; ð5; 5Þ; ð7; 7Þg, in ¼ fð3; 6Þ; ð5; 2Þ; ð7; 2Þg, tot ¼
fð3; 7Þ; ð5; 5Þ; ð7; 4Þg, degrees ¼ fð3; 2Þ; ð5; 3Þ; ð7; 2Þg,

links ¼ fð3; 3Þ; ð3; 5Þ; . . .; ð7; 7Þg, weights ¼ fð3; 6Þ; ð3; 1Þ;
. . .; ð7; 2Þg. Communities are represented by dark gray

nodes and identified by the higher order of all the nodes

that belong to the community. Nodes belonging to the same

community are being placed inside the same area.

3.4 Introduction to the Louvain algorithm

Figures 1 and 2 describe the sequences of the Louvain

algorithm to perform community detection in two

example networks. The algorithm uses a greedy opti-

mization method that attempts to optimize the modu-

larity of a partition of the network in successive

iterations. It is non-deterministic, this means that mul-

tiple runs on the same network may lead to distinct final

community structures. Communities are calculated by

maximizing the objective function in a two-step opti-

mization in each one of the iterations. In the first step

(step 1), small communities are formed by optimizing

the modularity locally. Only local changes of commu-

nities are allowed in this step. In the following step (step

2), nodes belonging to the same community are aggre-

gated in a single node that represents a community in a

new aggregated network of communities. Iteratively
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(a) original network

(b) initial communities

(c) step 1 of 1st iteration

(d) step 2 of 1st iteration

(e) step 1 of 2nd iteration

(f) step 2 of 2nd iteration

Fig. 1 The original Louvain algorithm steps
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these steps are repeated until no increase in modularity

is possible with a hierarchy of communities being pro-

duced: Fig. 1a shows the initial network; Fig. 1b rep-

resents initial individual node communities; Fig. 1c

exemplifies local modularity optimization after first step;

Fig. 1d symbolizes community aggregation results and

the new initial communities; Figs. 1e and 1f are the two

Louvain steps where the local modularity optimization

and community aggregation for the second iteration are

presented; the algorithm stops at the 2nd iteration since

no increase in modularity is possible. Figure 2 shows the

network in Fig. 1 with a set of edges being added

(A ¼ fð1; 4Þ; ð5; 7Þ; ð1; 9Þ; ð10; 11Þg). The new edges as

well new nodes 9, 10 and 11 are marked using dashed

lines in the initial network (Fig. 2a). Once the original

algorithm does not allow the addition or removal of new

nodes and edges after obtaining the community structure,

a re-computation of the communities starting from an

initial network is necessary. Figure 2c presents the initial

communities. In the first step (step 1) modularity is

optimised by allowing only local changes of communi-

ties (Fig. 2d). In the following step (step 2), found

communities are aggregated to build a new network of

communities (Fig. 2d). The optimal solution is obtained

right after the first iteration, i.e. no increase in modu-

larity was possible with additional community structure

changes.

3.5 From static to dynamic networks

To enable true dynamic graph community detection, the

Louvain Method described in Sect. 3.4 was modified to

support incremental community structure changes when

nodes are added or removed from the network. Regarding

incremental networks, networks that only support the

addition of new nodes and edges, four types of operations

to communities were already defined [15]:

Operation 1 (Op1): keeps the community structure

unchanged;

Operation 2 (Op2): merges two communities into one;

Operation 3 (Op3): assigns nodes to an existing

community;

Operation 4 (Op4): creates a new community with new

nodes.

Figure 3 shows the four types of new edges that can be

added to a graph. Full dynamic community detection is

achieved by extending the algorithm to support the scenarios
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11)} added
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of the problem regarding the removal of edges as defined in

Fig. 3. The four operations need to be considered:

Operation 5 (Op5): keeps the community structure

unchanged;

Operation 6 (Op6): splits a community in two or more

communities.

Operation 7 (Op7): removes a terminal node from an

existing community;

Operation 8 (Op8): removes an existing community

formed by two nodes.

In terms of community structure, Op2 and Op8 reduce the

number of communities while Op4 and Op6 increase it.Op1,

Op3, Op5 and Op7 actually do nothing on the community

structure. Table 1 exhibits the effects at community structure

level and respective possible operations when edges are being

added to the graph. Table 2 presents equivalent information

for the cases where edges are being removed.

4 Local modularity optimization

Algorithm 1 presents the pseudo-code of the proposed

dynamic community detection algorithm. The algorithm input

parameters are the initial network (G ¼ ðV ;EÞ) and the list of

edges to be added and removed from the graph during the

iterations (A and R respectively). For storing the community

information the algorithms use two internal community net-

works: the lower level network (Cll) where the original net-

work is maintained, and the upper level network (Cul) where

the aggregated community network is stored. Section 4.1

describes the roles of each one of the networks. The algorithm

main procedure (line 4) handles the main flow and the several

subprocedures for specific algorithm tasks. These tasks’ sub-

procedures are separated into two types. The subprocedures

type that does not change the network and are used to get data

from both the lower level and upper level network (e.g.

CommunityChangedNodes(), line 11), and subproce-

dures that update the networks in terms of edges or nodes and/

or community assignment (eg. DisbandCommuni-

ties(), line19 or line 26). The task procedures of the

algorithm are conceptual and aggregate subprocedures to

complete specific tasks (i.e. adding edge to the Cll). They are

repeated until a modularity increase is possible or edges to be

removed or added.

Procedure P1a: Adding edge to Cll consists in the

retrieval of a list of affected nodes and

respective communities by the addition

of an edge (line 17) and by the addition

of the edge itself to Cll (line 18);

Procedure P1b: Removal of edge in the Cll. This

procedure consists in the retrieval of a

list of affected nodes and respective

communities when the removal of an

edge is performed (line 24), and by the

removal of the edge itself to Cll (line

25);

Procedure P2: Disband Affected Communities in Cll.

Based on the list of affected nodes and

respective communities retrieved by

AffectedByAddition() or Af-

fectedByRemoval() the affected

communities will be disbanded in Cll

(line 19 or line 26);

Procedure P3: Update the Cul with changes of Cll. The

list of affected nodes and respective

communities retrieved by Affect-

edByAddition() or Affect-

edByRemoval() will be also used

to replicate the changes in community

structure to the Cul (line 20 or line 27).

Notice that in this procedure, the added

Table 1 Effects at community structure level that result from addition of edges/nodes

Edges Structure Description

Add Cross-community edge
Op1 or Op2

The two nodes incident to the edge already exist and belong to different communities (Fig. 3a). Because the
increased edge is a cross-community edge, which means source and destination nodes belong to two different
communities; therefore, operation Op1 or Op2 can take place. The former keeps the community structure
unchanged, while the latter combines both communities into one

Inner community edge
Op1

The two nodes incident to the edge already exist and belong to the same community (Fig. 3b). Adding a new edge
between two nodes belonging to the same community increases the inner connections of the community and
maintains the inter-community connections unchanged, which coincides with the basic principle of the
modularity increase, so Op1 will be taken resulting in an unchanged community structure

Half-new edge Op3 or Op4 In this case, the increased edge is a half-new edge, which means that one of the nodes already exists in the network
while the other is new (Fig. 3c). Operation Op3 or Op4 can be taken, Op3 assigns the new node to the existent
community, Op4 creates a new community with the new node depending on the gain of modularity of both
settings

New edge Op4 Both of the nodes incident to the edge are new (Fig. 3d). In this case two of Op4’s results could take place,
assigning both nodes to the same new community, or creating two individual communities for each one of the
nodes
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or removed edges will also be updated

in the Cul;

Procedure P4: Cul will be used to perform the Louvain

Algorithm Step 1 and calculate the

changes in the community structure

that may lead to a locally optimised

modularity (line 10);

Procedure P5: Update Cll with the communities that

changed by applying the Louvain

Algorithm Step 1 to Cul (line 12);

Procedure P6: Use the Cul to perform the Louvain

Algorithm Step 2 and aggregate com-

munities (line 14).

Table 2 Effects at community structure level that result from removal of edges/nodes

Edges Structure Description

Remove Cross-community edge
Op5

The two nodes incident to the removed edge belong to different communities (Fig. 3a). Removing this type of
edges maintains the inner connections of the community and decreases the inter-community connections,
modularity of the two communities will increase. This operation will never result in the merging of existent
communities neither will it disband any of the communities where the nodes linked by the removed edge
belong. In this case Op5 will occur resulting in an unchanged community structure

Inner community edge
Op5 or Op6

The two nodes incident to the edge belong to the same community (Fig. 3b). Removing this type of edges
decreases the inner connections of the community but preserves the inter-community connections unchanged.
The decreasing of the inner modularity may lead to two distinct operations: Op5 by maintaining the community
structure unchanged or Op6 where the disbanding of the community results in smaller communities or the
joining of parts of the disbanded community to other existent communities with better individual modularity

Edge to isolated node Op7 One of the nodes incident to the edge is an isolated node, removing this edge implies removing the isolated node
(Fig. 3c). This operation will not affect the community structure because the removed node is a terminal node,
and therefore it will not change the inner connections of the community. Meaning that Op7 should take place

Edge between isolated
nodes Op8

The edge to be removed belongs to two isolated nodes. Removing this edge implies removing both nodes (Fig. 3d)
extinguishing the community or communities that those nodes belong to by applying Op8. The other
communities will remain unaffected

Algorithm 1 Dynamic Community Detection Algorithm
1: V ← {u1, u2, .., uv} , E ← {(i1, j1), (i2, j2), .., (ie, je)}
2: A ← array{(i1, j1), .., (im, jm)}
3: R ← array{(i1, j1), .., (in, jn)}
4: procedure Main(G ← (V, E), A, R)
5: Cll ← {C1, C2, ..,Cn}, Cul ← {}, Caux ← Cll

6: InitPartition(Caux)
7: mod ← Modularity(Caux), old mod ← 0
8: m ← 1, n ← 1
9: while (mod ≥ old mod ∨ m ≤ |A| ∨ v ≤ |R|) do
10: Caux ← OneLevel(Caux)
11: n, c CommunityChangedNodes(Cll, Caux)
12: Cll ← UpdateCommunities(Cll, n, c)
13: old mod ← mod, mod ← Modularity(Cll)
14: Cul ← PartitionToGraph(Cll)
15: if m ≤ |A| then
16: src, dest A[m]
17: anodes ← AffectedByAddition(src, dest, Cll)
18: Cll ← AddEdge(src, dest, Cll)
19: Cll ← DisbandCommunities(Cll, anodes)
20: Cul ← SyncCommunities(Cll, Cul, anodes)
21: end if
22: if n ≤ |R| then
23: src, dest R[n]
24: anodes ← AffectedByRemoval(src, dest, Cll)
25: Cll ← RemoveEdge(src, dest, Cll)
26: Cll ← DisbandCommunities(Cll, anodes)
27: Cul ← SyncCommunities(Cll, Cul, anodes)
28: end if
29: Caux ← Cul, m ← m+ 1, n ← n+ 1
30: end while
31: end procedure
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4.1 Process

The addition and removal of edges start after a first itera-

tion of the Louvain algorithm, the sequence of the algo-

rithm when adding or removing edges is given by the

following figure list: begins with Fig. 4a where the addition

or removal of nodes and edges is done using P1a. Fig-

ure 4b follows with the affected communities being dis-

banded to individual node communities using P2. To

maintain Cul up-to-date, all the changes in the Cll should be

replicated in the upper level network as exemplified in

Fig. 4f. Figure 4g follows, where the Louvain algorithm

step 1 is applied in P4, Fig. 4c exhibits the Cll being

updated with the new community assignment using P5, the

last Fig. 4h represents the final Cul after the Louvain step 2

is executed using P6. This network will be used in the next

algorithm iteration (Louvain iteration or addition/removal

of edges). Graphs of Figs. 4d, e are only represented as

auxiliary figures once they are not being used in any of the

algorithm steps. The process described may be seen as a

real example of how the dynamic community detection

algorithm works. The process starts with the initial network

of Fig. 1a after the first Louvain iteration being performed.

The network and community assignments of Fig. 1c will be

used as the Cll and Fig. 1d as the Cul. The following eight

steps will explain the addition of four new edges

(A ¼ ð1; 4Þ; ð5; 7Þ; ð1; 9Þ; ð10; 11Þ) and the removal of other

four ones (R ¼ ð1; 4Þ; ð5; 7Þ; ð1; 9Þ; ð10; 11Þ). The outcome

of each one of the steps will be the starting point for the

next one. After adding and removing the same edges, the

original network and respective community structure are

recovered. Summing up, the algorithm maintains two net-

works, the lower level network (Cll) responsible for main-

taining all the original nodes and final communities.

Additionally, the upper level network (Cul) used to perform

the iterations of the Louvain algorithm using smaller rep-

resentation of Cll. Synchronization tasks between Cul and Cll

are mandatory in each increment. In both networks, the
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aggregated communities are represented by the node with

the highest order number (i.e. a community of nodes 1, 3,

4, 7 and 9 is represented by community 9). Cul follows the

standard steps and iterations of the Louvain algorithm but

requires to be updated when the addition and removal of

nodes occur (performed in Cll). On the other hand, Cll

should be updated every time node community assign-

ments change. Both Cll and Cul should be kept synced

regarding the assignment of nodes to communities (com-

munity structure) and regarding network structure (nodes

and edges). In these network figures, left stack of graphs

represents the evolution of the lower level network (Cll)

and final communities, right stack represents the upper

level network (Cul) containing the aggregated network used

by each iteration of the Louvain algorithm. Figures 4, 5, 6,

7, 8, 9, 10 and 11 exhibit the process of updating dynam-

ically a network showing one example per type of edge

described in Sect. 3 for both addition and removal of edges.

Each one of the steps will identify the operations defined in

Sect. 3.5 and the corresponding task procedures used in

each one of the operations. Lower level network is dis-

played in the left side, upper level on the right:

Add cross-community edge: steps involved in the addi-

tion of an edge between nodes belonging to different

communities (Fig. 4). The community detection could lead

to two different operations as defined in Sect. 3.5. The

figure exhibits the two communities affected by the

addition of the edges maintained unchanged (Op1), but

cases resulting in the merge of the two communities (Op2)

could also occur. P1a adds a new edge between nodes 1

and 4 to the Cll (Fig. 4a). Node 1 belongs to community 3

while node 4 belongs to community 5. The addition of this

edge affects all nodes of communities 3 and 5 as presented

in the Cul (Fig. 4e); P2 disbands all affected communities at

the Cll with nodes forming individual node communities

(Fig. 4b). P3 updates the Cul with all the original individual

node communities, this network will be used as basis for a

new Louvain iteration (Fig. 4f); P4 outcome of the local

modularity optimization (Louvain step 1) on the Cul

(Fig. 4g); P5 updates the Cll with resulting new initial

communities obtained by local modularity optimization

(step 1) done at the Cul in the previous operation (Fig. 4c);

P6 aggregates communities (Louvain step 2) at the Cul

(Fig. 4h). This network will serve as basis for a new

Louvain iteration or a new addition/removal of edges;

Final Communities displayed at the Cll (Fig. 4d and

Cul (Fig. 4h);

Add inner community edge: steps involved in the addi-

tion of an edge between nodes belonging to the same

community (Fig. 5). This example will always result in an

unchanged community structure as described in the Op1 in

Sect. 3.5. P1a adds a new edge between node 5 and node 7

to the Cll (Fig. 5a). Nodes 5 and 7 belong to the same

community 7. Cul displays that the addition of this edge

affects only nodes of community 7 (Fig. 5e); P2 adds edges

to nodes of the same community, increases the modularity
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of the community, so it is expected that the community

structure of the community 7 will be kept unchanged

(Fig. 5b). P3 only updates the Cul with the new weight for

the community 7, the weight increase reflects the addition

of the inner edge (Fig. 5f). The resulting Cul will be used in

the next iteration of the Louvain algorithm; in P4 no

community structure changes after the local modularity

optimization (Louvain step 1) (Fig. 5g); P5 does not need

to update the Cll with the resulting new initial communities

obtained by local modularity optimization (step 1) in the

Cul (Fig. 5c); In P6, the aggregation of communities with

the Louvain algorithm (step 2), performed in the Cul did not

change the community structure (Fig. 5h). This network

will serve as basis for a new Louvain iteration or a new

addition/removal of edges;

Add half-new edge: steps involved in the addition of an

edge between a new node and an existing node belonging

to an existent community (Fig. 6). This example is an Op3

as described in Sect. 3.5. P1a adds a new edge between

node 1 and node 9 to the Cll (Fig. 6a). Node 1 belongs to

community 3 and node 9 is a new node. Cul shows that the

addition of this edge affects only nodes of community 3

(Fig. 6e); P2, taking into account that the addition of this

edge could change the community structure of community

3, will disband the communities at the Cll, with nodes of the

affected communities forming individual node communi-

ties (Fig. 6b). P4 updates the Cul with the community

structure changes introduced in the Cll (Fig. 6f) being the

input network for the next iteration of the Louvain algo-

rithm; P3 outcome of the local modularity optimization

(Louvain step 1) (Fig. 6g). All the four nodes form a single

community; P5 updates the Cll with resulting new initial

communities obtained by local modularity optimization

(step 1) in the Cul (Fig. 6c); P6 aggregates communities

(Louvain step 2) in the Cul (Fig. 6h). This network will

serve as basis for a new Louvain iteration or a new addi-

tion/removal of edges;

Add new nodes edge: steps involved in the addition of an

edge between two new nodes (Fig. 7). This example is an

Op4 as described in Sect. 3.5. P1a adds a new edge

between nodes 10 and 11 to the Cll (Fig. 7a). Nodes 10 and

11 are new nodes and do not belong to any current
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community. Cul exhibits that the addition of this edge does

not affect any of the current communities (Fig. 7e); P2

maintains the community structure unchanged for all the

other nodes and communities (Fig. 7a). In P3, Cul is only

updated to add the two new nodes and respective edge

(Fig. 7f) serving as input network for the next iteration of

the Louvain algorithm; only nodes 10 and 11 had their

community structure changed after the local modularity

optimization (Louvain step 1) done in P4, forming a new

community 11 (Fig. 7g); P5 updates nodes 10 and 11 of the

Cll with the resulting new initial communities obtained by

local modularity optimization (step 1) in the Cul (Fig. 7c);

P6 aggregates communities (Louvain step 2) in the Cul

(Fig. 7h). This network will serve as basis for a new

Louvain iteration or a new addition/removal of edges;

Remove inter-community edge: steps involved in the

removal of an edge between two nodes belonging to dif-

ferent communities (Fig. 8). This is an example of Op5 as

described in Sect. 3.5, the community structure will be

maintained unchanged though the local modularity of both

communities will increase. P1b removes an edge between

node 1 and node 4 to the Cll (Fig. 8a). Node 1 belongs to

community 9, node 4 belongs to community 7. The Cul

displays that the removal of this edge only affects com-

munities 9 and 7 (Fig. 8e); In P2, there is no need to

disband communities at the Cll. Removing edges between

inter-communities increases the modularity of each one of

the communities 9 and 7 (Fig. 8b). P3 does not need to

update the Cul with the community structure changes of the

Cll, only the weights of the edge between communities 9

and 7 need to be decreased to reflect the removal of the

edge (Fig. 8f). The next iteration of the Louvain algorithm

uses Cul; in P4, the outcome of the local modularity opti-

mization (Louvain step 1) presents that communities 9 and

7 remained separated (Fig. 8g), there was no gain in

modularity by joining any of the communities; P5 updates

the Cll with the resulting new initial communities obtained

by local modularity optimization (step 1) in the Cul

(Fig. 8c); P6 aggregates communities (Louvain step 2) in

Cul (Fig. 8h). This network will serve as basis for a new

Louvain iteration or a new addition/removal of edges;

Remove inner community edge: steps involved in the

removal of an edge between nodes belonging to the same

community (Fig. 9). The removal of the edge could lead to

two distinct operations as described in Sect. 3.5. Op5 in

case the removal of the edge decreases significantly the

modularity of the community, or Op6 if the edge removal

results in the splitting of the community into two or more

communities. P1b removes an edge between node 5 and 7

to Cll (Fig. 9a). Nodes 5 and 7 belong to community 7. Cul

9 1

2 3 5

4

6

710

11

1 1

1 1

1

1

1

1

1

1

1

9 1

2 3 5

4

6

710

11

1 1

1 1

1

1

1

1

1

1

1

9 1

2 3 5

4

6

710

11

1 1

1 1

1

1

1

1

1

1

1

9 1

2 3 5

4

6

710

11

1 1

1 1

1

1

1

1

1

1

1

9 711 1

8 102

9 711 1

8 102

9 711 1

8 102

9 711 1

8 102

(a) remove edge

(b) disband communities

(c) update from Louvain

(d) final communities

(e) remove edge

(f) update communities

(g) Louvain Step 1

(h) Louvain Step 2

Fig. 8 Remove inter-

community edges (1–4)

15 Page 10 of 20 Soc. Netw. Anal. Min. (2016) 6:15

123



displays that the removal of this edge affects only nodes of

community 7 (Fig. 9e); now that the edge is between nodes

belonging to the same community, the community structure

can change to an unpredictable community structure. In

P2, all nodes belonging to the affected communities will

form individual node communities (Fig. 9b). In P3, the Cul

is updated with the community structure changes of the Cll

(Fig. 9f) and will be used as input for the next Louvain

iteration; P4 outcome of the local modularity optimization

(Louvain step 1). The four nodes formed two separated

communities, community 6 and 7 (Fig. 9g); P5 updates the

Cll with resulting new initial communities obtained by local

modularity optimization (step 1) in the Cul (Fig. 9c); P6

aggregates communities (Louvain step 2) in the Cul

(Fig. 9h). This network will serve as a basis for a new

Louvain iteration or a new addition/removal of edges;

Remove edge to terminal node: steps involved in the

removal of an edge between a terminal node inside an existing

community (Fig. 10). This is an example of Op7 in Sect. 3.5.

P1b removes edge between node 1 and 9 to the Cll (Fig. 10a).

Node 1 and node 9 belong to the same community.Cul displays

that the removal of this edge affects only nodes of community

9 (Fig. 10e); note that the removal of this edge may change the

community structure of community 9 and needs to reflect the

removal of node 9, the disbanding of the community 9 will be

performed at the Cll byP2. All nodes belonging to the affected

community will form individual node communities (Fig. 10b).

P3 updates the Cul with the community structure changes of

the Cll (Fig. 10f). Cul will be used for the next iteration of the

Louvain algorithm; P4 outcome of the local modularity

optimization (Louvain step 1) (Fig. 10g). It must be remarked

that in this step a community 3 was formed with nodes 1, 2 and

3 and community 7 with aggregated nodes 6 and 7;P5 updates

the Cll with resulting new initial communities obtained by

local modularity optimization (step 1) in the Cul (Fig. 10c);P6

aggregates communities (Louvain step 2) in the Cul (Fig. 10h).

This network will serve as basis for a new Louvain iteration or

a new addition/removal of edges;

Remove edge between isolated nodes: steps involved in

the removal of an edge between two nodes of an isolated

community (Fig. 11). This is an example of Op8 in Sect.

3.5. P1b removes an edge between node 10 and node 11 to

the Cll. Nodes 10 and 11 are two isolated nodes that,

themselves, form a community with only two nodes

(Fig. 11a). Cul indicates that the removal of this edge and

respective nodes affects only the community 11 (Fig. 11e);

in P2, once the edge is between two isolated nodes, the

community structure of all the other communities will
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remain unchanged (Fig. 11a). In P3 the Cul will only be

updated to remove the two nodes and respective edge

(Fig. 11f) and will be the input network for the next Lou-

vain iteration; because there was no increase of modularity

by joining communities 3 and 7, the community structure

has not changed after the local modularity optimization

(Louvain step 1) done in P4 (Fig. 11g; In P5, there was no

need to update the communities obtained by local modu-

larity optimization (step 1) in the Cul since they remain

unchanged (Fig. 11c); in P6, no community aggregation of

the Louvain algorithm (step 2) was performed in the Cul

(Fig. 11h). This network will serve as basis for a new

Louvain iteration or a new addition/removal of edges.

5 Experimental analysis

The Dynamic Louvain algorithm was evaluated in incre-

mental and dynamic network setups, Sects. 5.2.1 and 5.2.2,

respectively. Results for incremental networks were

obtained for the high-energy physics theory citation net-

work [9], using the original Louvain, Dynamic Louvain,

LabelRank, LabelRankT, GANXiSw and AFOCS. The

original Louvain algorithm served as a baseline. As the

original Louvain and LabelRank only support static net-

works, their results reflect the full network runs with added

edges at each increment (snapshots). In this setup , snap-

shot size varies from 1, 2, 5, 10 and 20 edges randomly

added in each increment (i.e. no timestamp information

was used). In a second incremental network setup, the same

high-energy physics theory citation network dataset was

used, but now with snapshots built by aggregating times-

tamps of citations in a monthly basis. Evaluation was

performed only for algorithms Dynamic Louvain, Label-

RankT, GANXiSw and AFOCS.

In the dynamic network setup, the Autonomous systems

AS-733 dataset [9] was used to obtain results for the three

algorithms that support dynamic community detection

(Dynamic Louvain, LabelRankT and AFOCS) and GAN-

XiSw that does not support dynamic community detection.
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The empirical evaluation was done by comparing run

times of each increment (duration of each increment and

cumulative execution time), the size of the network

(number of nodes and edges) and three measures of the

quality of the community structure: modularity (Q), mod-

ularity with split penalty (Qs) and modularity density (Qds)

detailed in Sect. 5.1. The number of detected communities

and the number of nodes that are not assigned to any

community are also included in the evaluation.

The hardware used was a Intel (R) Core (TM) i7-

4702MQ processor computer with 8 GBytes and SSD

HDD. Three runs per algorithm/dataset were performed

with values presented in graphs as the average values of

each one of those 3 runs.

5.1 Measuring quality of network community

structure

Modularity is one the most used metrics to measure the

strength of the community structure found by community

detection algorithms [2, 3]. Algorithms, like the Louvain,

use the modularity as the objective function during the

process of calculating the communities. Two opposite yet

coexisting problems of modularity maximization are known:

in some cases, it tends to favor small communities over large

ones while in others favor large communities over small

ones showing an resolution limit problem [5]. A new mea-

sure called Modularity Density [2, 3] was proposed as an

improved measurement of the community quality compared

to modularity. This new measure takes into account the two

problems described before. In addition because not all of the

evaluated algorithms maximize the modularity, it was

decided to include an analysis covering the following mea-

sures of Quality of Network Community Structure:

Newman’s modularity: For unweighted and undirected

networks, modularity is defined as the ratio of difference

between the actual and expected number of edges within

the community. Already presented in Sect. 3.2, for the

given community partition of a network G ¼ ðV ;EÞ, with

Ej j edges, modularity (Q) is given by:
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Q ¼
X

ci2C

Ein
ci

�� ��
Ej j �

2 Ein
ci

�� ��þ Eout
ci

�� ��
2 Ej j

 !2
2
4

3
5 ð2Þ

with C being the set of all communities, ci is a specific com-

munity i ofC, Ein
ci

�� �� the number of edges within community ci,

and Eout
ci

�� �� the number of edges from the nodes of community

ci to nodes that belong to nodes of other communities.

Modularity with split penalty: To address the drawback

of favoring small communities, the quality of the com-

munity structure should take into account the edges

between different communities [2, 3]. The Modularity with

Split Penalty (Qs) is calculated by subtracting from mod-

ularity the split penalty (SP) which is the fraction of edges

that connects nodes of different communities:

SP ¼
X

ci2C

X

ci2C
cj 6¼Ci

Eci;cj

�� ��
2 Ej j

2
64

3
75 ð3Þ

where Eci;cj

�� �� is the number of edges from community ci to

community cj for unweighted networks. Therefore, by

subtracting the split penalty given by Eq. 3 to the New-

man’s modularity equation 2, Qs is given by:

Qs ¼Q�SP ¼
X

ci2C

Ein
ci

�� ��
Ej j �

2 Ein
ci

�� ��þ Eout
ci

�� ��
2 Ej j

 !2

�
X

ci2C
cj 6¼Ci

Eci;cj

�� ��
2 Ej j

2
64

3
75

ð4Þ

Modularity density: Both Newman’s modularity (Q) and

modularity with split penalty (Qs) are still independent of

the number of nodes in the communities as long as the

number of edges is preserved. They still reveal the reso-

lution limit problem, moreover, modularity with split

penalty (Qs) makes this problem even worse [2, 3]. To

address the above two shortcomings, [2, 3] introduced

community density into modularity by incorporating both

the number of edges and the number of nodes in the

communities and also the Split Penalty. For undirected

networks, modularity density (Qs) is defined by:

Qds ¼
X

ci2C

Ein
ci

�� ��
Ej j dci �

2 Ein
ci

�� ��þ Eout
ci

�� ��
2 Ej j dci

 !2

�
X

ci2C
cj 6¼Ci

Eci;cj

�� ��
2 Ej j dci;cj

2
64

3
75

ð5Þ

with, dci being the internal density of community ci,

dci ¼
2 Ein

ci

�� ��
cij j cij j � 1ð Þ

ð6Þ

and dcicj the pair-wise density between community ci and

community cj,

dci;cj ¼
Eci;cj

�� ��

cij j cj
�� �� : ð7Þ

5.2 Test scenario

Three test scenarios were considered in the evaluation of

the algorithm. In Sect. 5.2.1 two incremental network set-

ups where edges and nodes are added to an initial network,

no removal of edges and nodes has been performed. In the

first incremental scenario, no timestamped data were con-

sidered. In the second incremental scenario, the edges were

added to the network according to their paper citation date.

In the second scenario, Sect. 5.2.2, a fully dynamic setup

was used, with edges and nodes being added and removed

from the initial network.

5.2.1 Incremental network setup

The high-energy physics theory citation network dataset

[9] is a medium-size undirected network with 27770

nodes and 352807 edges1. The results were obtained by

performing runs with 99 increments for configurations of

1, 2, 5, 10 and 20 edges per increment. The initial net-

work used for each configuration was the original net-

work with an amount of TotalIncrements � Number Of

Edges removed randomly from the initial network, i.e.

for configuration with one edge per increment, 99 edges

were randomly removed to be added during the process.

Table 3 presents the initial network size in terms of

initial edges and the number of edges added per con-

figuration. Table 4 and Fig. 12 show the results com-

parison, for the original Louvain, LabelRank and

GANXiSw, with full batch runs with initial full network

plus added edges in the current increment and the results

for the Dynamic Louvain, LabelRankT and AFOCS,

used incremental runs, with the initial network being the

one obtained from the previous increment with the new

edges added.

Now an incremental network with timestamped data

was evaluated. The timestamps of the nodes (paper

submission time to Arxiv) of the high-energy physics

theory citation network dataset [9] were used. Instead of

adding an randomly chosen edge, the nodes and edges

were added according to the submission date. Nodes

were aggregated monthly (136 months) between January

1992 and April 2003. Each month represents a step. The

initial network has 4 nodes (papers) and 2 edges (cita-

tions). Table 5 and Fig. 13 show the results obtained in

this setup.

1 http://snap.stanford.edu/data/cit-HepTh.html.
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5.2.2 Dynamic network setup

The Autonomous Systems AS-733 dataset [9] is a medium-

size dynamic undirected network with a maximum of 6474

nodes and 13895 edges2. The dataset contains 733 daily

instances (from November 8 1997 to January 2 2000), only

the first 400 instances were used in the present evaluation.

In contrast to the citation network, where nodes and edges

only get added over time (not deleted), the AS-733 dataset

exhibits the addition and deletion of the nodes and edges

over time. Table 6 and Fig. 14 show the results for the

Dynamic Louvain, LabelRankT, GANXiSw and AFOCS

with network being initialised with the snapshot of

November 8, 1997 and in each of the subsequent 399 steps,

nodes and edges were added or removed accordingly to the

respective day.

5.3 Comparison and evaluation of network size

and execution time

Figure 12 presents execution times and network size for the

different edge increments configurations (k ¼ f1; 2; 5;

10; 20g). All algorithms, except the Dynamic Louvain,

maintain the network size in their original size. The dura-

tion time for each increment is also constant. The variable

network size of the Dynamic Louvain, always smaller than

their counterparts, leads to an improved efficiency when

adding new nodes and edges. Results indicated that the

lower network size for each one of the steps was correlated

with lower values for the duration. This effect is more

noticeable for k ¼ 1 and k ¼ 2 where network size falls

very sharply after a few increments. Apart from the com-

munities affected by the additions of edges, the rest of the

network is converging very fast to the modularity opti-

mized communities. Incremental execution times are low

because step 1 and step 2 of the Louvain algorithm operate

in smaller networks (approx. 164 nodes with 249 edges). A

slight degradation in the duration of some incremental

steps was noticed for k[ 2. Those peaks in duration are

associated with increases in the size of the network due the

disbanding of communities to the original nodes when

adding cross-community edges (Fig. 4) or removing inner

community edges (Fig. 9). Worse values occur when

community disbanding affect the large communities with

the duration maintained around static Louvain baseline.

Consecutive merges and disbands of communities require a

higher effort in the synchronization of the lower and upper

level networks resulting in values of size closer to the full

network and duration values above the ones obtained by

the original Louvain. In the results for 10 or more edges,

figures exhibit an approximation to the original Louvain.

When adding a high number of edges, the probability of

community disbanding in increments increases, leading the

Dynamic Louvain algorithm to work upon the same

Table 3 Initial network size with total added edges

Initial

edges

Increments Edges per

increments

Total of new

edges

352708 99 1 99

352609 99 2 198

352312 99 5 495

351817 99 10 990

350827 99 20 1980

Table 4 Incremental network results (average): network size, dura-

tion (ms), modularity (Q) and cumulative execution time (ms) for the

high-energy physics theory citation network dataset

Increment size

1 2 5 10 20

Louvain

# Nodes 27,770 27,769 27,768 27,767 27,765

# Edges 704,511 704,411 704,111 703,615 702,620

Duration 286 288 281 286 284

Modularity

(Q)

0.5923 0.5922 0.5925 0.5928 0.5916

Dynamic Louvain

# Nodes 1609 3914 9081 13,465 15,508

# Edges 38,819 100,938 242,207 370,043 442,364

Duration 230 1370 1855 2714 3553

Modularity

(Q)

0.6235 0.6279 0.5984 0.5819 0.5881

LabelRank

# Nodes 27,770 27,768 27,767 27,766 27,764

# Edges 704,470 704,368 704,062 703,556 702,541

Duration 70,556 70,448 74,643 75,071 75,865

Modularity

(Q)

0.5976 0.5978 0.5729 0.5494 0.5312

LabelRankT

# Nodes 27,770 27,767 27,766 27,766 27,762

# Edges 704,455 704,290 703,838 703,029 701,446

Duration 8775 9871 11,407 12,955 10,930

Modularity

(Q)

0.5980 0.5980 0.5280 0.5265 0.5183

GANXiSw

# Nodes 27,770 27,768 27,767 27,766 27,764

# Edges 704,470 704,368 704,062 703,556 702,541

Duration 60,847 62,477 60,905 60,604 60,436

Modularity

(Q)

0.5666 0.5666 0.5656 0.5664 0.5646

2 http://snap.stanford.edu/data/as.html.
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Fig. 12 Incremental network results: evolution of network size,

increment duration (ms), average modularity and cumulative execu-

tion time (ms) for different edge increment configurations

(k ¼ f1; 2; 5; 10; 20g) for algorithms Louvain, Dynamic Louvain,

LabelRank, LabelRankT, GANXiSw and AFOCS. X-axis show each

one of the 100 increments. Y in log scale except for modularity

Table 5 Timestamped

incremental network results

(average): network size,

duration (ms), cumulative

execution time (ms), total

communities, modularity (Q),

split penalty (SP), modularity

with split penalty (Qs),

modularity density (Qds) and

unassigned nodes for the high-

energy physics theory citation

network dataset

Dynamic

Louvain

LabelRankT GANXiSw AFOCS

# Nodes 9541 11,871 11,784 11,784

# Edges 207,713 223,303 221,661 221,661

Duration 1072 7282 16,919 10,419

Cumulative 145,784 983,013 2,301,004 1,416,920

Total communities 431 507 498 309

Modularity (Q) 0.6016 0.6441 0.6362 0.1952

Split penalty (SP) 0.3562 0.1898 0.2187 0.5133

Modularity with split penalty (Qs) 0.2513 0.4543 0.4175 -0.3473

Modularity density (Qds) 0.1109 0.1047 0.1141 0.0283

Unassigned nodes 118 31 0 3467
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Fig. 13 Timestamped incremental network results: evolution of

network size, increment duration (ms), average modularity and

cumulative execution time (ms) for increment configurations of

1 month for algorithms Dynamic Louvain, LabelRankT, GANXiSw

and AFOCS. X-axis show each one of the 136 increments. Y in log
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Table 6 Dynamic network

results (average): network size,

duration (ms), cumulative

execution time (ms), total

communities, modularity (Q),

split penalty (SP), modularity

with split penalty (Qs),

modularity density (Qds) and

unassigned nodes for the

Autonomous systems AS-733

dataset

Dynamic Louvain LabelRankT GANXiSw AFOCS

# Nodes 2811 3722 3718 3718

# Edges 11,756 13,423 13,407 13,407

Duration 55 549 1109 544

Cumulative 22,070 219,786 443,488 217,714

Total communities 224 156 150 84

Modularity (Q) 0.5590 0.4337 0.4955 0.1210

Split penalty (SP) 0.4010 0.2211 0.2281 0.7603

Modularity with split penalty (Qs) 0.1581 0.2127 0.2674 -0.6436

Modularity density (Qds) 0.0821 0.0478 0.0565 0.0069

Unassigned nodes 37 8 0 6154
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number of nodes and edges as the other algorithms. Nev-

ertheless, the Dynamic Louvain exhibits lower execution

times than LabelRank, LabelRankT, GANXiSw and

AFOCS for all k values. Table 4 presents the average

results in terms of network size and duration in each one of

the runs for each one of the algorithms. In the timestamped

incremental network results presented in Fig. 13 and

Table 5, due to an increase of the number of edges added in

each one of the increments, the Dynamic Louvain is

dealing with a network almost of the same size of the

original network. This effect reveals a penalty in the

duration of each one the steps. Nevertheless Dynamic

Louvain presents better always duration and cumulative

execution times than LabelRankT and GANXiSw. When

compared with AFOCS, the first 50 increments show worse

duration and cumulative time performance, the algorithms

quickly recovers after 50 increments and achieve 145.784

ms while AFOCS took 1.416.920 ms (aprox. 10� more).

Figure 14 and Table 6 display the results for the incre-

mental network setup. In the presented 400 steps, each one

containing the addition and removal of nodes and edges,

confirm the good performance of the Dynamic Louvain. In

the first steps, the Dynamic Louvain drops the size of the

network significantly when compared to the networks

maintained by LabelRankT, GANXiSw and AFOCS. This

allows the Dynamic Louvain to have lower increment

duration times and final cumulative execution time than

their counterparts (aprox. 10x lower than LabelRankT and

AFOCS, 20x lower than GANXiSw). Cumulative execu-

tion times presented in Tables 4, 5, 6, Figs. 12, 13 and 14

allow to conclude that the original Louvain algorithm

performs almost equally independently of the size of the

increments. When using increments of 1 edge (k ¼ 1)

results indicate that it is possible to have better run times

with the Dynamic Louvain than with the other algorithms.

It is also notorious the effect of increasing the increment

size in the overall duration of the community detection.

Increments of k[ 1 edges per step present worse perfor-

mance than the baseline Louvain algorithm, but still indi-

cate better execution time than LabelRank, LabelRankT,

GANXiSw and AFOCS.

5.4 Results for quality of the communities

Figure 12 indicates that the quality of communities

obtained by the Dynamic Louvain in the incremental net-

work scenario had a slightly higher variance in modularity

compared to the original Louvain. While the dynamic

algorithm uses local modularity optimization in the affec-

ted communities, the original makes a global optimization

by running the algorithm in each increment from scratch.

Table 4 exhibits, for k ¼ f1; 2; 5g, that the best modularity

values were obtained using Dynamic Louvain. No

significant penalty was noticed when moving from the

global modularity optimization of the original Louvain to

the local version of the Dynamic Louvain. In the Times-

tamped incremental network and Dynamic network results,

apart from the modularity (Q) are presented values for

modularity with split penalty (Qs) and modularity density

(Qds). Using the high-energy physics theory citation net-

work, the Dynamic Louvain algorithm results presented in

Fig. 13 and Table 5 show similar values for modularity and

modularity density when compared with LabelRankT and

GANXiSw while superior values where obtained when

compared with AFOCS. Results for modularity and mod-

ularity density for the Autonomous Systems AS-733

dataset, Fig. 14 and Table 6, show always better values

when compared with all the others algorithms. In both

incremental network setup (Fig. 12, Table 4) and dynamic

network setup (Fig. 14, Table 6), the Dynamic Louvain

results shown better values for the total number of com-

munities and lower unassigned nodes when comparing with

all the other four algorithms. This fact in conjunction with

values obtained for modularity density leads us to conclude

that Dynamic Louvain have a good compromise between

number of communities their quality while keeping the

number of unassigned nodes to communities very low.

5.5 Results for stability of the communities

In this section are presented the results for the stability of

communities for both incremental and dynamic network

setups. The stability measure used in the present work was

based on the similarity between different communities of

two consecutive snapshots. Widely adopted Jaccard coef-

ficient for binary sets were calculated between pairs of

communities of consecutive snapshots. This measure was

used to track the evolution of communities in dynamic

social networks [7]. The Jaccard coefficient between two

snapshot communities equal to 1 mean that both commu-

nities kept the same nodes and can be marked as being the

same dynamic community. In our stability measure, instead

of identifying and track the dynamic communities, we only

want to define a measure that describes how detected

communities share the same node ids between consecutive

snapshots (i.e. stability). Therefore, for each one of the

detected communities in a snapshot (Si), we searched for

the community with maximum Jaccard coefficient in the

following snapshot (Siþ1). A Jaccard coefficient close to 1

means that the two communities are very similar. The sum

of all maximum Jaccard coefficients (one per detected

community in the snapshot) gives the measure of stability

for the current snapshot. Higher values for this measure

mean that communities between two consecutive snapshots

share the same node ids, on the other hand, lower values

mean that most ids of nodes belonging to the detected
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communities changed between snapshots. Based on this,

other three measures were introduced: the Average Jaccard

coefficient, that is the ratio between the sum of maximum

Jaccard coefficients and the number of identified commu-

nities in the next snapshot (communities with Jaccard

coefficient higher than 0); the Average �Q and the

Average �Qds, that plots the Average Jaccard coefficients

against respective modularity (Q) and modularity density

(Qds) values for each pair of snapshots. Calculating the

Jaccard coefficients for all communities of two snapshots

requires jCSi j � jCSiþ1
j calculations, where jCSi j and jCSiþ1

j
are the total number of detected communities for snapshot

Si and Siþ1 respectively. To simplify calculation of the

stability measure only the top-20 communities were con-

sidered (i.e. the 20 biggest communities). The number of

snapshots pairs under analysis was also reduced to the first

25.

In Fig. 15 are presented the results of stability for the

high-energy physics theory citation network dataset [9] and

for the Autonomous Systems AS-733 dataset [9]. Label-

Rank and LabelRankT present the best values regarding

stability. This is somehow expected once that both algo-

rithms are deterministic. Nevertheless for the high-energy

physics theory citation network dataset Dynamic Louvain

presents equivalent stability behavior. When compared to

GANXiSw, the Dynamic Louvain algorithm shows

equivalent Sum and Average stability performance and

superior performance regarding stability versus modularity

and stability versus modularity density (Average �Q and

Average �Qds respectively). Finally it can be observed that

Dynamic Louvain outperforms static Louvain in all sta-

bility measures. This means that communities detected by

Dynamic Louvain are more stable between snapshots than

the ones calculated with static Louvain. This might be

justified by the fact that community ids change between

snapshots and also due the fact that Louvain is non-deter-

ministic (i.e. provides distinct solutions for different runs).

6 Conclusions

This paper presents a modularity-based dynamic commu-

nity detection algorithm. The algorithm is a modification of

the original Louvain method where dynamically added and

removed nodes and edges only affect their related com-

munities. In each iteration, the algorithm maintains

unchanged all the communities that were not affected by

modifications to the network. By reusing community

structure obtained by previous iterations, the local modu-

larity optimization step operates in smaller networks where

only affected communities are disbanded to their origin.

The stability of communities is also an improvement over

the original algorithm. Given that only parts of the network

change during iterations, the non-determinism of the

algorithm will have reduced effect on the community

assignment. Most node community assignments remain

unchanged between snapshots, providing better community

stability than its static counterpart. In the evaluation per-

formed, the algorithm had significant performance

improvements in terms of execution times and size of the
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Fig. 15 Results for stability of communities for the high-energy

physics theory citation network dataset (top) and Autonomous

Systems AS-733 dataset (bottom). The curves present the sum and

average of the Jaccard similarity coefficients when calculating the

similarity from communities of successive snapshots. Comparison of

Average of the Jaccard similarity coefficients against modularity (Q)

and modularity density (Qds) are also included. X-axis show values

for each one of the 25 increments
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network in direct comparison with the original Louvain

executed in network snapshots. The size of the upper level

network was always maintained at the minimum size,

reducing the computation cost of both steps 1 and 2 of the

Louvain method. In terms of the community structure

quality, the results indicated that there was no penalty on

the calculated global modularity when considering the

locally modularity optimization only for the regions where

the network suffered addition or removal of nodes or edges.

As expected, the results also demonstrate that the number

of edges that are being added or removed should be tailored

taking into account the size of the network. The probability

of disbanding communities increases proportionally to the

number of edges being changed at each iteration.
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