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Practical programming competencies are critical to the success in computer science (CS) education and go-
to-market of fresh graduates. Acquiring the required level of skills is a long journey of discovery, trial and
error, and optimization seeking through a broad range of programming activities that learners must perform
themselves. It is not reasonable to consider that teachers could evaluate all attempts that the average learner
should develop multiplied by the number of students enrolled in a course, much less in a timely, deep, and fair
fashion. Unsurprisingly, exploring the formal structure of programs to automate the assessment of certain
features has long been a hot topic among CS education practitioners. Assessing a program is considerably
more complex than asserting its functional correctness, as the proliferation of tools and techniques in the
literature over the past decades indicates. Program efficiency, behavior, and readability, among many other
features, assessed either statically or dynamically, are now also relevant for automatic evaluation. The out-
come of an evaluation evolved from the primordial Boolean values to information about errors and tips on
how to advance, possibly taking into account similar solutions. This work surveys the state of the art in the
automated assessment of CS assignments, focusing on the supported types of exercises, security measures
adopted, testing techniques used, type of feedback produced, and the information they offer the teacher to
understand and optimize learning. A new era of automated assessment, capitalizing on static analysis tech-
niques and containerization, has been identified. Furthermore, this review presents several other findings
from the conducted review, discusses the current challenges of the field, and proposes some future research
directions.
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1 INTRODUCTION

Assessment involves the evaluation, measurement, and reporting of the academic readiness, learn-
ing progress, skill acquisition, and educational gaps of students. It constitutes an essential part
of learning, as it provides a two-way feedback channel. On the one hand, it guides students and
keeps them aware of whether they are achieving learning goals. On the other hand, it provides the
teacher with information about the learning process, from the level of a complete course down to a
single student in a specific topic. Furthermore, for many students, the amount and direction of their
efforts negatively correlates with the time left for the next assessment, and positively with what
is assessed, respectively [35, 128]. Hence, the assessment frequency and the quality of feedback it
delivers are the principal drivers of academic achievement.

Providing manual assessment in educational contexts, where there is not a one-to-one relation-
ship between the teacher and the learner, is rather challenging. Doing so in courses demanding
regular and intense practice with tasks having infinite pathways to correct (and not so correct but
acceptable) solutions, such as computer programming, becomes rather unfeasible. However, au-
tomated assessment can help to mitigate these issues, allowing instant and rigorous feedback on
students’ attempts without overloading the instructor. This enables learners to get enough practice
with at least some indication of the correctness of their solutions, freeing instructors to focus on
less repetitive tasks.

Automated assessment tools for computer science (CS) education have been there nearly for as
long as learners started being asked to develop software [107]. Currently, there is a wide variety of
such tools, and their value is well spread and accepted among practitioners. Research on this topic,
however, is far from reaching the peak, as a simple search for the string “automated assessment
programming” within the ACM Digital Library has returned more than 220,000 results for the past
10 years, with an increasing curve over the years. Many of these publications refer to tools created
for the specific needs of a course, either because instructors fail to identify or integrate an existing
suitable solution (e.g., difficulty in producing supported exercises or unavailability of the tool).
Nevertheless, it is noticeable that there is a growing interest in exploring automated assessment
of program features other than functionality, such as quality, behavior, readability, and security, as
well as novel assessment methods to improve feedback.

Numerous studies surveying the literature on automatic approaches for assessing program-
ming assignments exist [6, 68, 112, 204, 220]. However, part of them are already very out-
dated [6, 68, 112, 204], whereas the rest focus on comparing the characteristics of the tools [220]
rather than the various facets of automated assessment tools, exploring the methods and tech-
niques for each of them (except for Keuning et al. [130], who investigated several aspects of the
feedback provided). Moreover, there is no review on these tools, to the best of the authors’ knowl-
edge, that examines them concerning learning analytics. In this article, we survey the state of the
art on the automated assessment of CS assignments, focusing on five facets: supported exercise
domains, testing techniques utilized, security measures adopted, feedback produced, and the in-
formation they offer the instructor to understand and optimize learning. A brief overview of tools
providing automated assessment is also presented.

The rest of the article is organized as follows. Section 2 presents an overview of the history of
automated assessment from the earlier systems until the state of the art in the 2010s. Section 3
presents the most relevant past surveys on automated assessment. Section 4 introduces the re-
search questions and the methodology used to conduct this review. Section 5 describes the state-
of-the-art review carried out, creating a panoramic view on supported exercise domains, methods
used in the assessment, feedback provided to learners, and provided learning reporting and an-
alytics. Finally, Section 6 discusses the results and presents the threats to the validity and main
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conclusions of this review, advocates some future research directions, and indicates our expecta-
tions related to future trends in automatic assessment of CS assignments.

2 BACKGROUND

Tools and techniques to assist instructors in assessing CS assignments, particularly those involving
programming, have been designed and built for more than 60 years. In the earliest known auto-
mated assessment system [107], students “submitted” their assembly programs on punched cards,
which were then run along with the grader program and a deck of cards with exercise data. If the
program terminates normally, the grader punches “problem complete”; otherwise, “wrong answer”
is punched into the card (it can also punch the cause of the error, but it requires manual entry as
the computer stops). Such a simple system, with several limitations and requiring machine opera-
tors, made it possible to more than double the class size, without degrading the learning outcome,
and even teaching programming by mail [107].

Following the advances in the field of programming, automated assessment systems have also
evolved. First, new grader systems emerged that could grade programs written in a programming
language rather than machine language [31, 79, 161]. These systems use a grader program that
(1) injects learners’ code into the grader as procedures, (2) calls these procedures with test data
(also part of the program) one at a time, (3) optionally keeps track of the running time, and
(4) marks tests as accepted or wrong by comparing results of a learner’s procedure with the re-
sults of the solution. The evident limitations of this approach include the need for recompilation
of the grader program for each specific problem, test data, and the set of learners’ procedures, as
well as the complexity of developing a grader (a plausible explanation to why all consider the same
problem: finding the root of a given function to a given accuracy in a prescribed interval).

With a new and more versatile programming language (PL/1), Temperly and Smith [234] intro-
duced in 1968 a method that called the grader as a precompiled library subroutine, eliminating the
need to recompile the grader program. As this greatly simplified grading programs, learners were
allowed to test their attempts against a subset of test data before submitting the final program.
All runs were recorded along with the student’s identification and execution time, which helped
to limit the attempts they could perform. With even more relevance were the contributes of Hext
and Winings [103] in the following year, who modified the operating system and developed a se-
ries of language processors to be able to run submitted programs in any programming language
as batch-processed jobs. The program assessment consisted of comparing the stored test with the
one obtained by executing the submitted program, storing a detailed report of the test results for
later consultation.

As programming languages became more humanized and software more manageable during
the 1980s, the complexity of automated assessment systems also decreased from complex and diffi-
cult to maintain systems to command-line scripts many times part of an installable tool [116]. For
instance, Isaacson and Scott [116] present a command-line utility that takes as input a directory
with one folder per student (where they place the program) and a predefined set of input/output
test files to access, compile, and execute student programs, reporting the results by email. Interest-
ingly, the work of Isaacson and Scott also addresses a known issue of this kind of system—security,
previously “guaranteed” manually, relying on users and permissions of the operative system to
deny access of the students to other directories. Running the submitted program as an instructor,
however, exposes the instructor’s account to a malicious student’s program (e.g., an instruction to
wipe the disk), as noticed by Reek [198]. Having that in mind, TRY [198] arranges for a wrapping
directory to appear to the program as the root of the file system, blocking access to directories
outside. In addition to that, the tool makes significant contributions in the students’ perspective,
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enabling them to perform a few tests before sending the final program and alleviating the tradi-
tional character-by-character output comparison with a white space cleaning script.

At the same time, the static features of the source code, particularly readability and complex-
ity, started catching research attention as important evaluation metrics beyond correctness and
execution time [199, 240]. Nevertheless, the following decade was marked by the proliferation of
automated assessment tools, on the line of the previous ones. Kassandra [245] was the first of
its kind to support programming languages designed for scientific computing, also innovating in
how it provides isolation through socket connections to exchange test data during the evaluation.
ASSYST [118] incorporates additional metrics in the assessment, such as the amount of CPU time,
code complexity, and code style, while allowing instructors to define weights for each test (and
aspect) and consult a full report of the evaluation through a graphical user interface (GUI).
BOSS [124], which was very similar to ASSYST in its initial specification, later evolved to support
Java (a novelty to date) and included a GUI to submit the attempts. Ceilidh [29] gained immense
popularity, as it not only granted automated assessment but was also a full course management
software, supporting course administration, content delivery, grade weighting, monitoring and
recording grades, and typographic (i.e., count of a character or a sequence of characters in the
source code) and complexity analysis.

With the rise of the global Internet, the adoption of web-based architectures on new automated
assessment systems marks the beginning of the 21st century [47, 75, 104, 123, 141, 158]. Such archi-
tecture is characterized by having a client application running on a browser that communicates
with an external server containing the functionality and data. The previous existing tools were
either adapted, such as Ceilidh (which was even renamed to CourseMarker) [104] and BOSS [123],
or were slowly left behind, whereas the proliferation of tools continues to grow [47, 141, 158]. Fur-
thermore, what is assessed and how it is assessed continued to change until 2010 (i.e., before the
scope of this review) [112]. Regarding the former, the most popular languages supported were Java,
C/C++, Python, and Pascal, and most of the systems were language-agnostic, as their assessment
relied on output comparison. Developing traditional programs invoked from the command line,
however, is clearly not the common task of a fresh graduate today, and much effort has been de-
voted to the automated assessment of other works such as GUI development [76, 93, 235], database
management [64, 126], assembly programming [147], web development [82, 111, 231], concurrent
programming [165], automated testing [9, 72], and diagramming [105, 250]. From the perspective
of the teachers, automated assessment tools have also improved. In addition to evaluation reports
providing a summary of the assessment, some tools also offer teachers a dashboard with statistical
displays about the students’ activity (mainly submission results) [75, 141].

The methods of assessing the learners’ attempts keep shaping toward long-desired goals, includ-
ing alleviating the strict assessment of results (e.g., a learner with complete and correct code who
only fails to print the result gets 0, if the assessment method used is output comparison), improving
feedback, and keeping security during the evaluation (e.g., malicious or wrong code may damage
the system). Although the de facto approach to assess correctness is compile, run, and compare
output (either by printed output or return value), its drawbacks are known and some approaches
try to mitigate them by matching through regular expressions rather than direct matching [6].
Nevertheless, the problems remain, as what dictates the grade is only the output, whereas the feed-
back is also limited to the differences between the expected and the obtained (possibly with some
instructor-defined hint rules based on them). Automated testing frameworks typically used in the
industry, such as xUnit-based frameworks, are a possible remedy, as (in addition to familiarizing
learners with tools they are likely to use in the future) they offer more granularity of assessment
and thus are gaining some attention [12, 221]. Notwithstanding, static analysis, which consists
of the assessment of a program without its execution and is typically responsible for gathering
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numerous metrics from source code [5, 197, 236] and detecting plagiarism [3, 191], also seems a
promising approach to assess functionality, particularly through some experimental approaches
using graph similarity to compare the learner’s attempts (dependency graph and abstract syntax
tree) to a pool of known solutions [248].

3 RELATED WORK

Several studies have been conducted to review the literature and existing tools for automated as-
sessment of programming assignments. Two studies with particular relevance were published in
2005. First, Ala-Mutka [6] surveyed the features of programming assignments that were automat-
ically assessed up to 2005, including the different techniques and approaches to assess them. Ala-
Mutka makes a clear separation between dynamic analysis, which involves the execution of the
program, and static analysis, in which the assessment does not execute the program. Moreover, the
former is often used to assess functionality, efficiency (e.g., CPU time), and testing skill, whereas
the latter is used to check style, syntax errors, software metrics (e.g., X lines of code or O (n)
complexity), structural requirements, keyword presence, and plagiarism. Then, Douce et al. [68]
reviewed numerous influential systems since the first known automated assessment system in the
1960s to 2005, detailing the earliest systems and introducing recent developments with a focus on
tools providing automated assessment of programming assignments. Their work identifies three
distinct generations of automated assessment systems: the first, representing initial attempts to
automate assessment; the second, encompassing systems managed through a command-line or
local GUI; and the third, consisting of web-based tools. Even though the way authors conducted
the reviews is distinct, both conclude that automated assessment tools (1) are just support and not
a replacement for teachers, (2) pose many restrictions on what is automatically assessable, and
(3) have accurate feedback although it is insufficient for pedagogical purposes.

Ihantola et al. [112] conducted a systematic literature review on the research advances on auto-
mated assessment tools for programming exercises from the survey of Ala-Mutka to 2010. Sim-
ilarly to Ala-Mutka [6], it discusses the features and approaches supported by the tools, both
technically and pedagogically, rather than specific tools. The features explored include supported
programming languages, interoperability with learning management systems (LMSs), tests (i.e.,
how tests are defined), resubmissions (i.e., how resubmissions are handled), possibility for manual
assessment (i.e., after automated assessment, the teacher can perform a type of manual verifica-
tion), sandboxing (i.e., how security is guaranteed when running students’ code), distribution and
availability (i.e., if systems are open-source or otherwise available), and specialty (i.e., systems
that assess a special type of programming assignments). The authors conclude that (1) security
should not rely on teachers’ skills (i.e., default security settings should guarantee enough security);
(2) tools should be made available even if only partially developed; (3) the most notable advances
relate to testing methods, resubmissions, and security; and (4) emerging research would probably
aim the integration of automated assessment with LMSs, security during assessment, and assess-
ment of assignments for exploiting security vulnerabilities in web applications.

Another relevant systematic literature review, performed by Souza et al. [220] in 2016, collects
and evaluates evidence on tools that support programming assignments. Unlike the previous re-
views, this one focuses mainly on the tools, carrying out an initial survey and selection of 30 assess-
ment tools for programming assignments and categorizing them according to three dimensions:
assessment type (e.g., manual, semiautomatic, and automatic), approach (i.e., how to trigger the
assessment process), and specialty (e.g., contests, quizzes, and software testing). The main contri-
bution of this work is a “guide” for instructors to identify which of the 30 assessment tools best fits
their needs, even though there are a few incongruences such as duplicate tools (T13 and T29) with
distinct classifications in diverse categories. Furthermore, there are some significant intermediate
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remarks such as the importance of maintaining a repository of problems, storing submissions’ his-
tory, reporting statistics to the instructor, and coping with an LMS as a means to reduce the effort
required from instructors.

Keuning et al. [130] present another systematic literature review, but exploring a specific
feature—automated feedback, which arguably is the most significant one. It surveys tools to sup-
port programming learning that give automated feedback, not only automated assessment tools,
aiming to discover what kind of feedback they provided, which techniques they use to generate
feedback, how adaptable their feedback is, and how these tools are evaluated. The study analyzed
and categorized the feedback generation in 101 tools, concluding that the feedback generated is
narrow and mainly consists of identifying mistakes. Moreover, the feedback either misses “knowl-
edge on how to proceed” or does not recognize alternative strategies. However, we should also
notice that “the upcoming trend of data-driven tutors shows promising results.”

This review follows a similar approach to that of Ala-Mutka [6] and Ihantola et al. [112] for
the recent (2010–2020) developments of automated assessment. It also distinguishes itself from
the mentioned reviews by the features it covers, including exercise types, methods for assessment,
security in code execution, feedback, and learning analytics, and offering new perspectives for
further research.

4 SCOPE AND METHODOLOGY

From Section 3, we can conclude that for the past decade, the trending features and approaches for
automated assessment in CS have not been reviewed widely, except for the existing tools (Souza
et al. [220] in 2016) and automated feedback (Keuning et al. [130] in 2019). Hence, there is a research
gap concerning the latest proposed techniques, the more effective proposals to implement, and
remaining challenges requiring research effort. This review intends to fulfill this gap, answering
the next questions about the literature on automated assessment from 2010 to the first half of 2021:

RQ1: Which CS domains beyond traditional programming have exercises assessed
automatically?

RQ2: Which testing techniques have been proposed?
RQ3: How secure is code execution?
RQ4: Which techniques to generate feedback from automated assessment to learners have been

proposed?
RQ5: Which learning reporting and analytics have been included in these tools?
RQ6: Are the presented techniques and tools effective?
RQ7 : What are the expectations for the new decade?

To this end, we have carried out a state-of-the-art review. This type of review, not necessarily
exhaustive when compared to a systematic literature review, aims to provide a critical analysis of
the extensive literature produced recently (e.g., in the past decade), possibly giving new perspec-
tives on an issue or pointing out topics requiring further research [67]. Hence, we have decided
to collect data from conference proceedings and journals indexed by three of the largest biblio-
graphic databases and meta-search engines of scientific publications in the area of CS, namely
ACM Digital Library, IEEE Xplore, and ScienceDirect, using a keyword-based search on the full-
text. Listing 1 presents the constructed search query. Initially, the search query included the term
computer science in the last disjunction. However, many entries related to automated assessment
of non-CS assignments were included in top results, as the automated assessment itself is a CS
field. We have noticed that not including this term results in more accurate entries (i.e., according
to our knowledge of publications on the field), including publications on automated assessment
of other CS assignments than programming. Hence, the term was excluded. Additional filters to
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Fig. 1. Identified set of relevant publications by year and indexing database.

limit publication year to values ≥ 2010, publication type to research/review articles in journals
and proceedings, and subject area to CS (only applicable in ScienceDirect) have been added.

( " a u t o m a t i c " OR " automated " ) AND ( " a s s e s s m e n t " OR " e v a l u a t i o n " OR
" g r a d i n g " OR " t e s t i n g " ) AND ( " programming " OR " program " OR "

code " )

Listing 1. Search string used to query electronic databases

The total results obtained from the conducted keyword-based search include 46,344, 6,738, and
58,786 publications from ACM Digital Library, IEEE Xplore, and ScienceDirect, respectively. Of
these, the top 200 publications by relevance (i.e., a measure that considers the amount of citations,
cited works, among other facets of a publication) were extracted from each database. From the
600 results collected, 15 duplicates were removed, and the remaining were subject to a pre-
processing phase, aiming to identify the relevant publications for analysis. For this phase, we have
read the titles and abstracts of the papers and, in a few cases of doubt, performed a fast scanning
through their contents to apply the following inclusion/exclusion criteria:

IN if it presents either an automated assessment system or tool for CS education.
IN if it presents either an automated assessment technique or method for CS education.
IN if it presents an experience on the use of automated assessment for CS education.
IN if it presents a review on the use of automated assessment for CS education.
OUT if the automated assessment approach described is only applicable in the industry
(based on authors’ opinion, if in doubt).
OUT if it is a tutoring system or other system that does not automatically assess CS tasks
other than quiz-based tasks.
OUT if it describes a general-purpose automated assessment approach, such as typical
quizzes.
OUT if not written in English.
OUT if only abstract is available.

The outcome of this preselection phase encompasses 178 relevant publications (out of 585 pub-
lications), which were selected for further analysis. Figure 1 shows the distribution of the relevant
publications by year and indexing database.

Unfortunately, this set of publications lacks notable works. In fact, the ineffectiveness
of keyword-based literature search in capturing relevant publications has already been
demonstrated [113]. To solve this problem, we have conducted a thorough two-way snowballing
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Table 1. Results of the Snowballing Process

Iteration Samples

BASE 178
1st 732 (+554)
2nd 889 (+157)
3rd 899 (+10)

Fig. 2. Final set of publications by year (with the trend line).

process (i.e., including both reference and citation tracking), starting from the previously identi-
fied set of 178 relevant publications. To this end, we have adapted a Python script for using the
Semantic Scholar RESTful API to fetch citations and references and present their title and abstract,
one by one, for us to apply our previously described inclusion/exclusion criteria. Table 1 shows
the number of papers found by each iteration of the snowballing process.

The resulting set consists of 899 publications from more than 2,100 distinct authors from all over
the world. The composition of this set emphasizes the increasing interest in automated assessment
over the years, as depicted in Figure 2, which shows the number of publications per year as well
as the trend line.

The selected publications were then subject to a three-round analysis. The first round consisted
of the identification and cataloging of the main contribution of each publication. To this end, we
re-examined their titles, abstracts, references, and, in a few cases, the contents, assigning tags
according to the subjects. Tags range from Tool, Experiment/Validation, Feedback, Special, Learn-

ing Analytics, Assessment Technique, and Security, which identify the research question, to tags
characterizing the novelty presented such as Open-Source, Static Analysis, Unit Testing, and Con-

tainerization, among many others. This round excluded 121 publications due to poor quality (e.g.,
incomprehensible sentences or lacking description of the methods/novelty), having no citations
and three or fewer references within the collected set simultaneously, or only because the pre-
vious rounds failed to apply the criteria. The second round involved a thorough review of the
remaining publications (778), summarizing their main contributions and organizing the papers in
order of time, according to their developments. Finally, the third round was a verification round
to validate the results of the previous rounds. The verification consists of two phases: (1) checking
the removed publications for possible exclusion errors and (2) random-sampling the tagged set of
publications to validate assigned tags.

5 CURRENT STATE OF AUTOMATED ASSESSMENT IN CS

During the past decade, automated assessment in CS continued as a topic of great interest among
researchers. Several approaches have been introduced to assess new types of exercises, new testing
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techniques were proposed, new possibilities opened to facilitate the execution of untrusted code
safely, feedback improved, and, simultaneously, learning analytics is consolidating its importance
in CS education. This section introduces the most notable developments reported in the literature
review.

5.1 Special CS Domains (RQ1)

Traditional programming exercises that run through the command line are fundamental for novice
programmers to acquire practical programming competencies. However, they cannot accommo-
date every practical skill that a CS graduate must learn. Today, the final product of a development
project is often a program tailored to be deployed on the cloud or called through a web or mobile
user interface, or a desktop GUI. These products are the result of a long pipeline involving architec-
tural decisions, development, testing (e.g., effectiveness, efficiency, and security), and deployment.
A CS graduate must be able to participate in any of these tasks in environments where a small
mistake in the solution can cause losses of millions [224]. Hence, the interest in evaluating these
skills automatically is often the trigger for a completely new automated assessment approach or
tool.

There are several works published in the recent literature that specialize in assessing other
CS skills than traditional programming. The ones identified in this review are presented in the
following, according to the skills of CS that they cover.

Visual programming. Visual programming has proven to be an effective means to introduce pro-
gramming at different educational levels [127]. Hence, the interest in assessing it automatically
is evident. The proposals have emerged in two categories: static analysis and dynamic analysis.
Static analysis approaches either check command usage or compare the student’s program with
a model solution [37, 146, 157, 169, 232, 246] aiming to assess mostly the computational thinking,
whereas dynamic analysis approaches are applied when the problem has a single solution and thus
they compare the final program state to the expected output [63, 122].

Programming assignments (alternative). Programming exercises are not limited to blank sheet
exercises, where the student is challenged to solve, from scratch, a presented problem statement.
An alternative type of activity can foster new competencies, such as understanding the code devel-
oped by others and debugging, or be more suitable at different phases of students’ learning path.
For instance, Kramer et al. [134, 135] proposed the task of highlighting elements in a given source
code and investigate several measurements that could be used to evaluate a response to this task
automatically. Hakulinen and Malmi [96] presented a method that applies QR (quick response)
codes (i.e., tasks are formulated so that the correct output is a QR code, which can be tested by
scanning with the mobile). Jin [121] reports on a web-based system based on pythontutor.com,
an open-source code visualization system that graphically illustrates the execution flow and state
changes of a full program, which allows instructors to set up full tracing exercises with automatic
grading.

System administration. Tasks of a system administrator comprise the maintenance, configura-
tion, and reliable operation of computer systems. Whereas traditional automated assessment of
programming assignments involves a single file (or folder), assessing a system administration task
may require checking the complete operating system. However, some solutions have been pre-
sented, such as an online grading system to grade and provide feedback on assignments using live
virtual machines (VMs) [24] and a framework for automatic evaluation of Linux-based operating
system exercises, named LINSIM [42].
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Formal languages and automata. Formal languages and automata are core components of the
undergraduate CS curriculum, and many simulation tools [46] have been developed to make their
learning more engaging. One of such tools is JFLAP [92], which has been enhanced recently to
automatically test and give feedback to students’ answers to some generated problems [209]. In
a similar line of research, Alur et al. [11] presented a technique for automatically grading and
providing meaningful feedback to deterministic finite automata (DFA) constructions. More on
formal languages, two web-based tools to automatically mark and give feedback on conversions
from natural language to first-order logic [175] and first-order logic to clause form [94] have been
proposed.

Software modeling. Models are forms of description with which we can abstract details to rep-
resent and communicate what is important about a complex system. Visual models are commonly
used in software development not only to plan and visualize different aspects of the software be-
fore (during and after) it is implemented, but also as programming languages, which are becoming
increasingly popular to introduce novice programmers [162]. The automated assessment of soft-
ware modeling and visual programming is, thus, a research focus empowered by the existence of
multiple correct solutions. On the software modeling side, the proposed solutions are mainly for
UML (unified modeling language), such as class diagrams [34], activity diagrams [228], use-case
diagrams [239], general purpose [57, 200], and extensions to UML class diagrams [38], but there
are also solutions for Entity-Relationship (ER) diagrams [57, 211]. The evaluation is typically done
by graph similarity between a model solution or a set of model solutions.

Software testing. Students might develop wrong programming behaviors, such as (1) adopting
trial-and-error approaches without thinking between attempts, (2) assuming that a program that
compiles without complaining has no errors, and (3) rashly considering a program producing the
expected output on a few tests as correct [19]. To mitigate these issues, a few studies have suggested
the introduction of testing into CS curriculum [22, 73]. Testing activities challenge the students
to demonstrate the correctness of a program by developing tests and then assess how well they
achieve this goal. Hence, teachers have to evaluate not only the developed program but also the
test suite. Fortunately, there are already automated assessment tools to handle this task. For in-
stance, ProgTest [65] incorporates coverage testing tools as a support for applying test criteria
and evaluating the coverage of the test suite. Prof. CI [155] uses continuous integration services
to automatically assess the progress of participants and incrementally assign the next small task
to foster test-driven development.

Database. Querying and manipulating databases is a daily task for many developers, and the
source of major performance bottlenecks and security concerns [49, 222]. Therefore, it is impor-
tant to offer learners sufficient practice in using them. Common automated assessment systems
relying on output comparison can use custom scripts to send the query to an SQL server, receive its
results, and compare to the expected output. However, that involves much configuration and lacks
adequate security and feedback. Kleiner et al. [133] presented a plugin—aSQLg—for automated
assessment and feedback of student-submitted SQL queries that can be used in conjunction with
Web-CAT [75], as well as any proprietary course management system. Panni and Hoque [171] in-
troduced a model that compares an SQL answer with the reference solution and calculates a score
based on the syntactic similarity between the two.

Web development. The interest in the automatic assessment of web-based assignments is not
new, as it is part of the curriculum of CS (at least as an optional subject), as well as hundreds of
courses available online almost since the Web 2.0 era. However, assessing a web project involves
not only the validation of the source code but also functional user interface testing in the browser,
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simulating actions on the content, and checking the respective changes to the browser state. More-
over, assignments may use several different services from web servers to databases, running con-
currently and possibly exposing ports for external access. Hence, diverse solutions continue to be
proposed. The WebWolf framework [214] allows instructors to write JUnit-like methods simulating
user actions and to do assertions on the browser state to test websites, leveraging on the Selenium
automation framework to drive a headless web browser. Similarly, Peveler et al. [179] presented
a system that only differs from WebWolf in that it utilizes Docker and its concept of containers
to run the student’s code and required services (providing isolation) and allows the instructor to
grade manually.

Parallelism and concurrency. Parallel and concurrent programming are hard to assess manually,
as two or more processes run simultaneously (or in an interleaved fashion through context switch-
ing), and thus multiple execution flows need to be considered when looking at the source code
and the used resources. Hence, it is even more demanding to support automated assessment on
these tasks. Aziz et al. [20] presented a plugin for Web-CAT [75] to assess and generate feedback
on parallel programming assignments. Another proposed alternative is SAUCE [110], a web-based
tool for automated assessment of programming assignments with specific features designed for the
teaching and evaluation of parallel programming using C++11 threads, OpenMP, MPI, and CUDA
programming models.

Mobile development. The availability of mobile devices (e.g., smartphones, tablets, and smart-
watches) and their prevalence in routine Internet-based activities increases the market demand
for mobile development skills and thus the need to teach them in CS education [43]. Unfortu-
nately, mobile applications are also challenging to develop due to their commonly complex GUI
and advanced functionality, including reading data from sensors and communicating with remote
services. These are difficulties passed on to their evaluation, which is usually done manually in
educational contexts [230]. To the best of the authors’ knowledge, RoboLIFT [8]—a library to fa-
cilitate unit testing of Android applications—was the first attempt to automatically assess mobile-
based applications submitted by students. Recently, a few tools resulting from joint efforts with
companies have been proposed to assess mobile applications automatically [41, 153]. First, Madeja
and Poruban [153, 154] reported on a testing environment for Android applications based on three
types of tests: unit, integration, and user interface tests. Later, Bruzual et al. [41] presented a system
for automated assessment of Android exercises with cloud-native technologies, which leverages on
a mobile app testing framework largely used in the industry instead of custom testing libraries. In
a separate branch, the popularization of MIT App Inventor in CS education motivated some work
on the assessment of the interface design of Android applications developed with it [217, 218].

Computer graphics. Computer graphics assignments pose a novel challenge to automated assess-
ment. Instead of receiving a text-based output that can be compared to the expected output, the
output is an image or animation often having numerous correct variants. Notwithstanding, there
are a few works addressing this challenge. Sanna et al. [208] proposed a method to assess 3D mod-
els by using three metrics to measure the closeness of an attempt to a given reference solution: (1)
the mesh complexity (i.e., number of polygons); (2) mesh similarity (e.g., using a method designed
for image retrieval); and (3) material similarity by computing the differences in the hue, saturation,
and value (HSV). This work was later extended to animated 3D models [138]. Regarding OpenGL,
Hodgkinson et al. [106] presented a new tool for the automatic assessment of assignments—
glGetFeedback—that uses invariants and intermediate data obtained from the OpenGL state ma-
chine and the rendering pipeline, whereas Wünsche et al. [251] introduced a new type of question
for CodeRunner [151] that handles the automatic assessment of OpenGL programs.
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5.2 Testing Techniques (RQ2)

The testing technique is the core of an automated assessment approach, as it defines the boundaries
of what is assessed, how feedback is produced, and which are the necessary security measures. The
single requirement of a testing technique is that a type of measurement value can be extracted
from the submitted program and compared to the assignment requirements or given solutions [6].
In this review, the gathered testing techniques and tools have been categorized by the program
feature they evaluate. The results are presented in the following.

Functionality (outcome). Testing whether a program functions according to the given require-
ments is the most common approach to grade programs. Traditionally, these tests consist of run-
ning the program on a set of test cases, having the input to feed the program and the expected
output to which the obtained is compared to [6, 61, 77, 241]. This is called the output comparison

(OC) method. However, the comparison strictness is not adequate to learning settings because a
single white-space character causes a completely wrong submission. This has motivated several
attempts to alleviate it, such as partial grading with pattern matching to assign a grade even in
the presence of printing formatting issues (e.g., trailing and excess spaces, letter-case matching
issues, space/tab misuse, and incorrect sequence order) [148], regular expression matching [183],
and comparing output tokens instead of characters [255].

Industry-based testing tools, which are actively developed, robust, and cover almost any pro-
gramming language and application domain, are tailored for checking the functionality of pro-
grams, and thus their adoption in educational domains comes without surprise. Among the most
widespread, there are the language-specific xUnit family of testing frameworks (e.g., JUnit for
Java, CUnit for C, PyUnit for Python, and HUnit for Haskell), which derive their design from a
unitary testing framework for Smalltalk—SUnit [25]. Comparing to OC, unit testing (UT) offers
more granularity of evaluation, being able to assess classes, methods, and even statements [6].
Examples of automated assessment tools using xUnit testing frameworks include JPLAS [83] and
STAGE [172]. Web testing frameworks, such as Selenium [214] and Mocha [91], and mobile test-
ing frameworks, such as Appium [80], are also applied to check the functionality of students’ web
pages and mobile apps automatically.

Functionality (source code). Evaluating the functionality of a program only looking at the out-
come (i.e., through blackbox techniques) is not the best approach for pedagogical means. Recently,
whitebox techniques for automated assessment of functionality have been emerging. For instance,
JavAssess [115] is a Java testing library that makes use of reflection in combination with other
meta-programming features to analyze, mark, and manipulate the student’s source code at run-
time. However, this is a rare case of dynamic analysis using whitebox.

Static analysis has been gaining popularity in the assessment of program functionality. The
common approach is to parse the student program and construct an abstract syntax tree, transform
it into a graph representation, and calculate the graph similarity measure on a pool of model
graph representations. The closest model graph representation (or cluster) is used to compute
the differences, if any. For instance, Naudé et al. [160] followed this approach using a system
dependence graph for graph representation, whereas Zougari et al. [258] and the prototype tool
eGrader [10] applied it only after a xUnit-based testing step to guarantee that incorrect submissions
are not marked as correct, using a control flow graph and a combination of control and system
dependence graphs as the graph representations, respectively. LAV [247] combines this approach
based on the control flow graph representation with bug finding and traditional blackbox testing
techniques to estimate a composed grade.

The challenge of comparing through the structural similarity of programs is the multitude of
solutions available for the same programming assignment. Behavioral similarity obtained through
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symbolic execution can help mitigate this issue [18, 145]. Symbolic execution consists of analyzing
a program to determine what inputs trigger each part of the program, assuming symbols for the in-
puts rather than obtaining actual inputs as normal execution would [21]. Arifi et al. [18] proposed
a method to calculate the grade of the behavioral similarity value toward a reference program. Li
et al. [145] explored three different metrics—random sampling, single-program symbolic execu-
tion, and paired-program symbolic execution—to approximate the behavioral similarity between
programs and describe its application in automatic grading, students’ progress indication, and hint
generation. AutoGrader [149] searches for semantically different execution paths, captured using
the weakest preconditions and symbolic execution, between a student’s submission and a reference
implementation returning a counterexample, if it exists.

Furthermore, symbolic execution has other relevant applications for functionality checking, par-
ticularly to furnish a test suite that adequately covers most edge cases of a programming assign-
ment. For instance, Song et al. [219] combine symbolic execution and enumerative search to detect
logical errors efficiently in functional programs, generating a counterexample if a bug is found. The
authors compare the technique against property-based testing, a well-known approach for test-
ing functional programs, achieving improvements in detection and efficiency. Another example
is GRASA (GRAding-based test Suite Augmentation) [168], which detects and clusters incorrect
submissions through paired-program symbolic execution behavioral equivalence, then generates
a minimal set of additional tests exposing the issue to augment the existing test suite.

Code quality. Most of the development costs of a software product are incurred during the main-
tenance phase, which is where code quality gets more evidence [132]. Hence, it is important to
educate students with knowledge about code quality. There are several tools used in software de-
velopment that are frequently integrated into automated assessment tools to measure code quality,
such as Checkstyle [101, 117, 150], PMD [101, 185], FindBugs [101, 150, 166] or SpotBugs [101, 223],
and SonarQube [150, 207]. These tools are designed to find common programming flaws including
unused variables, empty catch blocks, and unnecessary object creation, in the main programming
languages.

Nevertheless, there are specific issues that affect mainly novice programmers and better ways to
report them in learning contexts. Hence, some tools have been developed. WebTA [238] can iden-
tify and flag certain types of antipatterns, allowing for customizable critique triggers and messages.
A different perspective is followed by Gerdes et al. [89], who used a language to describe strate-
gies [102] in combination with programming transformations to recognize the strategy utilized in
different student programs by comparing with the strategies of a limited set of model solutions.
As these strategies encode the expected good programming practices, the student program should
match with at least one of them, as otherwise she is likely to be following bad practices.

Software metrics. Software metrics encompass other general but relevant measurements of a
program, such as requiring a program to have an algorithmic complexity lower than or equal
to O (n). Tools generally permit the creation of custom scripts for these purposes without ex-
plicitly providing support to assess them [180, 203, 227]. Notwithstanding, JavAssess [115] can
check (using reflection) the cyclomatic complexity and the number of usages of a certain construct,
among others. Benac Earle et al. [27] used algorithmic complexity (computed using property-based
testing), the number of noncommenting source statements, and McCabe’s cyclomatic complexity
as weights of the grade assigned to a program.

Test development. Modern software development practices promote test-first approaches, as
they help to reveal design flaws early in the development process and ensure (by warning)
core functionality persists between releases [71]. Traditional automated assessment approaches
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discourage the development of tests, as the tools already verify the correctness of the program.
However, students should learn how to design and test their programs [72, 225]. Hence, a few au-
tomated assessment tools evaluate the quality of the test suites produced by students, particularly
through test coverage (i.e., the amount of code executed when it runs). External tools are typically
integrated to measure coverage such as CodeCover [172, 174] and Emma [180, 205].

Since test coverage is not a reliable metric (i.e., executing a statement does not mean checking
if it is correct), Aaltonen et al. [1] proposed mutation analysis as a replacement of test coverage.
Mutation analysis consists of seeding simple programming errors into a correct program, creating
mutants, and running the test suite on each mutant. The test suite that recognizes more defects is
better. In the same line of using the concept of mutation analysis, Clegg et al. [54] developed a tool
to help instructors prepare more accurate and fair test suites to cover students’ misconceptions and
grade them appropriately (although intended for functionality testing, the technique harnesses test
suite quality through coverage of mistakes). Dewey et al. [66] presented a technique for evaluat-
ing a test suite by weighing its ability to discover defects with that of a test suite automatically
generated using constraint logic programming.

Plagiarism. Automated assessment and plagiarism have been connected since the early days
for obvious reasons [6]. Therefore, most of the recent tools already provide it out-of-the-box [50,
164, 255] or are able to integrate one of the existing specialized tools [163]. The methods used by
these tools for detecting plagiarism in source code can be broadly classified into three categories,
according to what aspect of source code they compare: structure, semantic, and behavior.

Structural approaches compute similarity by matching identical structures in source code be-
tween plagiarism-suspected pairs. These structures can range from token sequences extracted
from source code [4, 16, 114] to advanced data structures representing the structure of source
code (e.g., trees) [81, 257]. The most common kind of this approach consists of measuring the sim-
ilarity between lexical token sequences through techniques such as cosine similarity [114, 167],
token edit distance [16], Running-Karp-Rabin Greedy-String-Tiling [26, 125, 186, 229, 259], Win-
nowing [69, 259] (introduced in MOSS [4]), and local alignment [196]. Other approaches use
the programming language grammar to devise parse trees or abstract syntax trees for compari-
son [81, 244, 257].

Semantic approaches measure how similar the meaning of plagiarism-suspected source codes
are. These methods work similarly to structure-based ones in that they start by extracting a rep-
resentation of the source codes and then compare them. However, they use semantic information
that is not denoted through the grammar of programming languages. Thus, they typically encode
information using graphs, such as program dependence graphs [52, 210], control flow graphs [45],
and call graphs [187], rather than tokens and trees. Other semantic approaches involve analyzing
the similarity of relationships between terms through latent semantic analysis [23, 58, 237].

Behavioral approaches are based on the assumption that the runtime behavior of a program can
uniquely identify it, and thus similar programs have identical behaviors. Therefore, this kind of ap-
proach requires dynamic analysis of the programs. Several distinct techniques exist for comparing
programs’ behavior, differing in which dynamic aspect they observe. For instance, there are tech-
niques analyzing data at runtime [48, 120], interactions with the execution environment [14, 48],
functionality [145], and logic [152, 256].

5.3 Code Execution (RQ3)

Dynamic analysis is the most common and effective form of assessing the functionality of a pro-
gram. However, the execution of code written by learners (or any other external user) demands
strong security measures, as it may provoke service outages or even damage the underlying system.
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Table 2. Characteristics of the Different Security Models (Table Extended from Sims [212])

Resource Limitation Security Misc

CPU File System Memory Processes Network Access Control SU Required Idempotency Dependencies Overhead

User Permissions YES YES YES YES YES YES YES YES NO LOW
Process Jails NO NO NO NO ? YES YES NO NO LOW
MACs ? ? ? ? ? YES YES NO NO LOW
JVM NO YES YES YES YES YES NO NO NO LOW
VM YES YES YES YES YES YES NO YES YES HIGH
Containers YES YES YES YES YES YES NO YES YES MEDIUM

A question mark (?) indicates that the limitation depends on the implementation.

The numerous possible ways in which either a malicious or an erroneous program may harm the
system [78] make it a risk even for closed institutional tools. Therefore, some solutions have opted
for either running the code in the client, which has obvious assessment flaws (e.g., tampering with
the result before sending to the server), or excluding keywords/statements from the source code
using a type of blacklist, which is also flawed (i.e., there is no such limited list) [83, 112]. A secure
test environment must at least do the following:

• Prevent access to sensible test data, such as output data;
• Block any attempt to leak test data to the outside;
• Guarantee the idempotency of different test runs—that is, two or more runs of the same test

must execute under the same conditions, independently of the order;
• Limit access to the system resources, mainly CPU time, the amount of system memory,

filesystem, number of child processes, and network connections.

There are three generic security models for addressing these requirements: user-level re-
strictions (i.e., using Unix user and group access controls and resource limitation mechanisms),
process-level restrictions using process jails and mandatory access controls (MACs), and virtu-
alization (i.e., running a virtual system in a layer abstracted from the actual hardware). The latter
has three common types: the Java virtual machine (JVM), a virtual stack machine provided by
the Java runtime that executes Java bytecode, confining Java processes to a limited virtual environ-
ment; the “standard” VM, which refers to an entire operating system hosted as a guest application;
and containers, which are a lightweight form of handling virtualization that leverages features of
the operating system to isolate processes and control their access to system resources. All models
offer unique ways to isolate the compilation and execution of unknown code, and each has its
(dis-)advantages over the others. Table 2 presents a summary of the characteristics of the different
security models, including the resource limitations they can constrain, whether they provide
access control, whether they need superuser privileges, whether the tests are idempotent, whether
dependencies (compilers’ versions, packages, etc.) are also isolated, and the amount of overhead
they imply.

Furthermore, the weaknesses of each model must also be considered. Even though user per-
missions seem to fulfill the mentioned requirements while having a simple configuration, this
model trusts the whole underlying codebase, including dependencies, requirements of program-
ming languages, and system packages. Any vulnerability in this chain that permits the program to
escalate privileges would completely break the security of the system. A similar situation happens
with process jails. Regarding MACs, the main disadvantage is that they have a highly complex
configuration whose failures may have severe repercussions. On the virtualization side, the main
drawbacks per type are JVM, which targets Java-specific projects; VM, which has a high startup
cost; and containers, which are less secure than VM and more costly than others (except VM).

Although most tools still rely on user permissions [2, 60], jails [40, 164, 203], and JVM [115,
172, 242] security mechanisms, several new tools [156, 180, 226] are adopting containerization,
particularly through Docker containers, to perform the dynamic analysis of students’ programs.
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Docker reduces the entry barrier to using containers, which enables their fast-growing popular-
ization lately, as containers also offer a similar level of isolation to that of a VM while keeping a
much lower overhead, slightly above other solutions depending on the image [178]. In addition
to that, being able to run the code in a clean environment with only the specific version of the
language compiler and libraries needed allows great flexibility and reduces compatibility issues.
Although there is no declared use of MACs as the primary security layer for untrusted code execu-
tion, which is reasonable due to their high setup cost, VMs have only a few known uses [194, 201]
due to their initialization cost. Notwithstanding, VMs and other real machines are usually applied
as a secondary security measure for running the students’ programs separately from the rest of
the system for additional security [40, 70].

5.4 Feedback (RQ4)

Feedback provides learners with information on the quality of the produced work, compared either
to the expectations or adequate standards of the mentioned work [39]. While summative feedback,
either in the form of nominal classifications, numeric grades, or binary results, is adequate and
useful for assessment, formative feedback aims to correct learners’ understanding of the problem
to improve their solution and thus demands more information. Hence, feedback yields a strong
impact on learning progress and achievement, but its influence can either be positive or negative
depending on its type and the way it is delivered [99].

According to Keuning et al. [130], there are five types of feedback in learning tools for program-
ming that focus on generating improved work. They are described as follows:

• Knowledge about task constraints (KTC), which includes information about the task, such as
requirements or general processing rules.
• Knowledge about concepts (KC), which encompasses explanations as well as illustrations

about the concepts being taught, generated while a student is working on an exercise.
• Knowledge about mistakes (KM), which contains details about the mistakes, including failed

tests (TF), compiler errors (CE), solution errors (SE), style issues (SI), and performance issues
(PI).
• Knowledge about how to proceed (KH), which provides learners with instructions on how to

address their mistakes and take the next step toward a solution.
• Knowledge about meta-cognition (KMC), which consists of feedback to check if a student

knows why an answer is correct.

Although giving KTC and KC feedback can be important in automated assessment tools for CS
assignments, these feedback types are too dependent on the tasks’ definition, being more a matter
of configuration, either to the instructor or exercise author, than a research need. Furthermore, as
most of the assignments considered are open-answer, these tools are not commonplace to incorpo-
rate KMC feedback, even though a few recent attempts exist [142, 188, 189]. Hence, research has
concentrated efforts on KM and KH types of feedback. Nevertheless, the results summarized here
are related to the advances on KH, as Keuning et al. [130] already covered automated assessment
tools for programming assignments, concluding that they mostly offer test-based feedback while
very few give KH feedback.

Feedback on how to proceed should consider the current state of the learner’s attempt to gen-
erate personalized guidance to help them overcome the next barrier toward a solution. It involves
either of the following:

(1) Recommending a possible correction when the learner encounters a bug in the code,
(2) Giving a hint on the next step to take when the learner is lost, or
(3) Suggesting an improvement if the solution could be better, regardless of the correctness.
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Regarding the guidance of type 1, novel approaches commonly suggest the application of tech-
niques such as semantic representation, program synthesis, and symbolic execution in combina-
tion with error models, fault-localization techniques, and automated program repair (APR). As
an example, Singh et al. [213] introduce a tool that reasons about the semantic equivalence of stu-
dent programs with reference implementations to derive an error model describing the potential
corrections and then combines that model with Sketch-based constraint-based synthesis [215] to
compute minimal corrections to incorrect programs. This work assumes the existence of (at least)
one correct solution to apply techniques relying on code similarity measurements and the pre-
dictability of students’ errors to narrow the search-space for a fix. Other approaches build on these
assumptions [55, 131], with distinct methods (e.g., plagiarism-based clustering [55] and symbolic-
and dynamic-based clustering [131]), to cluster incorrect programs by their “error class” and send
feedback to the resulting clusters instead of all incorrect programs separately. Even though these
last techniques do not recommend a correction directly, they have been considered KH feedback
because they pinpoint the potential fault locations and provide suggestions that are sufficient, in
the authors’ opinion, for a novice programmer to address them.

APR, an emerging technology that fixes software bugs automatically, is a growing trend among
researchers. APR, formerly designed to correct large-scale industry software, only requires a test
suite to conduct the repair process, which consists of changing the original program to make
failing tests pass. This technique, however, requires several adaptations for formative settings as
programs from a student are often severely incorrect leading to lower repair rates and providing
a fully correct solution is not proper formative feedback [254]. For instance, Bhatia et al. [33] pro-
posed a two-step approach that, given a student program, first, uses a set of submissions without
syntax errors to construct a recurrent neural network (RNN) model of token sequences to hypoth-
esize possible fixes to existing syntax errors. After all syntax errors are resolved, the second step
uses constraint-based program synthesis [216] to find the set of minimal changes to the program
that make it functionally equivalent to a reference implementation (search-based correction tech-
niques are only applicable because the programs are tiny, i.e., lines of code ≤ 20). Another example
is LoopFix [249], an APR for loop bugs that leverages existing bug localization techniques to rank
buggy statements and then exploits a component-based program synthesis [119] approach to syn-
thesize a patch based on the runtime information obtained through symbolic execution.

The previous APR-based approaches limit the search space of edits to be navigated, the for-
mer [33] by considering only tiny programs with less than 20 lines of code and the latter by fo-
cusing on loops. Hu et al. [109] proposed an APR method that limits the search-space by match-
ing with a similar correct solution. First, each solution of a pool of available correct solutions (at
least one) is refactored to a semantically equivalent solution. Then, given an incorrect program,
it matches the program with the closest matching refactored solution based on their control flow
structure, infers the input-output specifications of the incorrect program’s basic blocks from the
execution of the correct program’s aligned basic blocks, and uses them to modify the blocks of
the incorrect program via search-based synthesis. Similarly, Clara [95] clusters the existing cor-
rect student solutions by control flow similarity, matches a given incorrect attempt to one of the
clusters, and generates a minimal repair of the differences. Nevertheless, fixes generated by APR
do not address the underlying misconceptions (i.e., provide a bug correction but not much more
information) and may not be stylistically correct [100]. Head et al. [100] presents an approach to
send teacher-produced feedback to verified corrections rather than just the bug correction. First,
it applies a data-driven program synthesis technique that learns code transformations (i.e., se-
quences of rewrite rules applied to the abstract syntax tree of a program) from examples of bug
fixes. Then, it clusters incorrect submissions by necessary transformations and asks the teacher

ACM Transactions on Computing Education, Vol. 22, No. 3, Article 34. Publication date: June 2022.



34:18 J. C. Paiva et al.

(semi-automatic) to validate them and give feedback. Finally, it propagates the resulting feedback
to all incorrect submissions that are fixed by the same transformation.

Guidance of type 2 is more common in programming tutors, yet similar approaches may fit au-
tomated assessment tools. For instance, AutoTeach [15], an incremental hint system for automated
programming assignments, displays a series of incrementally revealing suggestions and details of
the expected solution upon request from the student, while providing automated assessment based
on a set of unit tests. Hints are written by teachers within the solution code through annotations
with special processing directives. Numerous techniques for generating hints to support the learn-
ing of programming have been developed, ranging from those leveraging on feedback previously
added by instructors [97, 100] to those extracting patterns from peer data [139, 140], generating
personalized paths to solutions [129, 202], and combining a few of these [181, 192].

With regard to guidance of type 3, Araujo et al. [17] present a technique that measures code
quality by comparing the learner solution to a baseline solution provided by the teacher, according
to several metrics including logical lines of code, the Halstead volume [98], cyclomatic complexity,
and adherence to coding standards. These measurements are used to provide suggestions on what
could be improved (e.g., “your program has too many loops”).

5.5 Learning Analytics (RQ5)

The measurement, collection, analysis, and reporting of data about learners and their context for
understanding and optimizing learning, formally known as learning analytics, is a topic of great
interest among researchers, especially in CS education, due to inherent challenges in learning and
teaching programming [90]. Understanding students’ thinking, difficulties, study habits, and trajec-
tories throughout a learning activity can help instructors to identify better scaffolding strategies,
refine assessments, offer rich and tailored feedback to students in difficulty, and have some insight
into good and bad behavior patterns [36]. Early identification of learning issues has significant
impact on the learning progress, as it enables timely assistance [59] that would otherwise only
happen after assessment. Continuous assessment, which is facilitated thanks to automated assess-
ment tools, can help to mitigate this problem. Undeniably, there is a great amount of valuable infor-
mation not only in the final response of a student to an open-ended question, such as a traditional
programming assignment, but also in the whole development process of that response [182]. How-
ever, means to automate data collection and analysis are required to perform large-scale studies,
analyze such minor details of students’ behavior, and collect data from interactions outside of class.

Existing tools supporting automated assessment tend to overlook the instructor’s perspective,
only providing a few mechanisms to collect and visualize learners’ data, such as submissions’ his-
tory, evaluation reports, and completed activities [40, 85]. Other tools [151, 164, 203, 226] integrate
with an LMS to offer the instructor a familiar dashboard that, even though it has several analytical
and reporting tools for learning [253], has no means to work with the specific data produced in
computer programming. There are some tools, however, already investing high in learning ana-
lytics. CloudCoder [108] and TestMyCode [194] store keystrokes of the students during the de-
velopment of their solutions. This granularity level in the collection reduces the amount of lost
data, whereas its analysis reveals insights that submissions or even snapshots would not [243].
ProgEdu [50, 252] keeps a history of changes to the source code using Git and stores logging data
to provide instructors with various statistics charts from which they can comprehend whether
submissions are on time and meet requirements, the distribution of failure types, and the quality
of students’ code. PRogramming tUTOR (PRUTOR) [62] takes code snapshots at regular intervals
and provides visualizations of the code progression of students’ programs and how the students
approach the programming assignments. Edgar [156] provides a dashboard with multiple visual-
izations on learners’ behavior and assignments.
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Furthermore, the offline analysis of data collected by these systems already enabled some promis-
ing conclusions, making even more demanding the use of learning analytics in real time. For in-
stance, Chen et al. [51] used log data related to time, effort, and results on homework assignments,
captured with ProgEdu, to characterize the learning behavior of students engaged in a computer
programming course, leveraging on exploratory data analysis, clustering, classification, and data
visualization techniques. This study concluded that students who made more effort to complete
their homework early were likely to finish earlier and receive better results, learning motivation
was strongly correlated with final grades, and performance was positively correlated with coding
style. Moreover, they propose a prediction model for students at risk, which revealed encouraging
accuracy. Munson and Zitovsky [159] gathered a number of metrics, such as the number of hours
spent coding, number of days worked, ratio of syntax errors, dropout rate, normalized file size, and
time spent working at home, from 3-week log data to build prediction models that could explain
the major share of variance in final grades in a continuous scale. Leppänen et al. [144] analyzed
keystroke data from TestMyCode [194] and found that a number of short pauses of 10 seconds and
up to 4 minutes has a negative correlation with exam scores. Chow et al. [53] present an approach
for automating the generation of hints by applying a range of techniques such as filtering, cluster-
ing, and pattern mining on previous student submission data. This approach has been validated,
both quantitatively (i.e., it can generate hints for students 90% of the time from as little as data
from 10 past students) and qualitatively (i.e., experts rated positively the usefulness and relevance
of the hints), with data collected from the Grok Learning platform (submission-level granularity).
A wider overview of the body of knowledge regarding the use of learning analytics for the learning
of programming has been performed by the Working Group Report of the 2015 ITiCSE [113].

Recently, a standardized format for logging programming process data—ProgSnap2—arose from
the requirements, experiences, and datasets of a large working group of researchers in the field of
computing education [193]. This work addresses one of the most significant gaps in the learning
analytics of automated assessment data, which is the lack of a standard format to collect, share,
and analyze data produced in automated assessment tools.

5.6 Tools

The previous sections focused on the techniques and approaches reported in the literature. Nev-
ertheless, these techniques and approaches are mostly experimental, only implemented in a
closed prototype. This section inspects the most recent automated assessment tools of CS assign-
ments published in the literature regarding the features captured previously. The survey captured
128 automated assessments tools. For the sake of simplicity, 98 publications describing a tool have
been left out of this review. These include 60 publications that either focused on the same tool,
were missing the description of most of the features we aimed to capture, or were considered ir-
relevant, as no further link to them could be found online (i.e., they were only a prototype). From
the remaining 68, we selected 10 for their high and recent development activity (Submitty [180],
Edgar [156], CodeOcean [226], ProgEdu [50], CodeRunner [60], Aristotle [2], Jutge.org [176], Code-
Workout [74], TestMyCode [194], and VPL [203]), 5 for being active for a long period of time
(Kattis [77], JACK [30, 136], Mooshak [170], URI Online Judge [32], and Web-CAT [75]), and
15 picked in a random sampling step.

A total of 30 tools were included in this review, consisting of 21 web-based platforms (WP),
three Moodle plugins (PG), two web services (WS), two cloud-based services (CD), a toolkit (TK),
and a Java library (LB). Most of these tools support multiple programming languages, whereas
the rest target either C or Java. More than half of the tools are open-source (OS), whereas
half of the remaining are available (A) online for demonstration purposes. To better incorporate
e-learning systems, a few web-based platforms implement the Learning Tools Interoperability (LTI)
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Table 3. General Information about the Selected Tools

Tool/Reference Type Language Availability Interoperability URL

Web-CAT [75] WP Multi OS LTI + Eclipse + BlueJ https://web-cat.github.io/
PASS [255] WP C/C++, Java A https://www.cs.cityu.edu.hk/~passweb
Kattis [77] WP Multi A https://open.kattis.com
ECSpooler [13] WS Multi OS https://github.com/collective/ECSpooler
STAGE (CodeCover) [172] PG Java, COBOL OS Moodle plugin http://codecover.org
JACK [30, 136, 227] WP Multi A LTI + Eclipse https://jack-demo.s3.uni-due.de
URI Online Judge [32] WP Multi A https://www.urionlinejudge.com.br
CodeAssessor [241] WP C/C++
VPL [203] PG Multi OS Moodle plugin https://vpl.dis.ulpgc.es/
CloudCoder [108] WP C/C++, Java, Python, Ruby OS https://github.com/daveho/CloudCoder
CodeRunner [60] PG Multi OS Moodle plugin https://github.com/trampgeek/moodle-qtype_coderunner
JPLAS [83–85] WP1 Java Eclipse
LX [61] WS Multi Modified Moodle
Testovid within Protus [242] WP Java OS https://github.com/ivanpribela/testovid
TestMyCode [194] WP Multi OS NetBeans https://github.com/testmycode/tmc-server
CodeWorkout [74] WP C++, Java, Python, Ruby OS LTI https://github.com/web-cat/code-workout
Arena [184] WP Imp/OO Git
JavAssess (ASys) [115] LB Java OS http://personales.upv.es/josilga/ASys
CodeOcean [226] WP Multi OS LTI https://github.com/openHPI/codeocean
Jutge.org [176] WP Multi OS https://github.com/jutge-org
GradeIT (PrUTOR) [62, 173] CD C A https://prutor.ai
neoESPA [148, 150] WP C/C++, Java, Python A http://neoespa.pusan.ac.kr
Enki (Mooshak) [170] WP Multi OS LTI + Eclipse https://mooshak2.dcc.fc.up.pt
ProgEdu [50, 252] CD Java OS Git https://github.com/ProgEdu-Organization/ProgEdu
Aristotle [2] TK C/C++ OS Github Classroom https://github.com/mdadams/aristotle
Submitty [180] WP Multi OS https://github.com/Submitty/Submitty
Codeflex [40] WP Java, C#, Python, C++ OS https://github.com/miguelfbrito/codeflex
Dante [70] WP C A https://dante.iis.p.lodz.pl
Coderiu [28] WP Multi OS
Edgar [156] WP Multi OS https://gitlab.com/edgar-group

1Supports offline mode.
WP, web-based platform; PG, plugin; WS, web services; CD, cloud-based services; TK, toolkit; LB, library.
OS, open-source; A, available online.

specification to sign in students using the LMS and maintain an updated gradebook [195]. There
are also tools providing a plugin to integrate either with Eclipse or NetBeans IDE (Integrated
Development Environment) and relying on Git workflows. Table 3 presents general information
about the selected tools, including either the URL to their source code or homepage (if available).
Tools are sorted by their release year, according to all information we could gather online about
them.

Even though inadequate for learning contexts as they only verify the outcome, OC and UT are
the techniques upon which these tools typically rely, as functionality is widely the most looked up
measure and their accuracy for that is indisputable. New forms of assessing functionality through
the source code are still not mature enough, and thus they are applied only after checking that the
solution is not correct, to generate hints on how to correct the program (e.g., [173]) or assign a
partial grade (e.g., through Java Reflection (JR) [115]). Plagiarism, code quality, and other software
metrics are typically either handled by external tools, such as JPLAG [190] and CheckStyle [117],
or left for the tool manager to set up with custom scripts. The format of a custom script depends
on the tool, but it is generally a standard script with the single constraint that it returns a grade
and/or feedback. Table 4 presents the testing methods used in the selected tools.

Evaluating the functionality based on the outcome requires the execution of students’ programs.
Therefore, the security model for untrusted code execution is one of the design decisions that
must be taken into account when considering such tool. The user permissions model is the most
usual approach, as it delivers sufficient security, particularly when the assessment happens in an
external machine, with a lower setup cost, whereas JVM is the model chosen for tools provid-
ing support only for Java. Notwithstanding, containers already make almost 25% of the security
models. Table 5 outlines the security mechanisms applied in the selected tools for untrusted code
execution.

ACM Transactions on Computing Education, Vol. 22, No. 3, Article 34. Publication date: June 2022.

https://web-cat.github.io/
https://www.cs.cityu.edu.hk/~passweb
https://open.kattis.com
https://github.com/collective/ECSpooler
http://codecover.org
https://jack-demo.s3.uni-due.de
https://www.urionlinejudge.com.br
https://vpl.dis.ulpgc.es
https://github.com/daveho/CloudCoder
https://github.com/trampgeek/moodle-qtype_coderunner
https://github.com/ivanpribela/testovid
https://github.com/testmycode/tmc-server
https://github.com/web-cat/code-workout
http://personales.upv.es/josilga/ASys
https://github.com/openHPI/codeocean
https://github.com/jutge-org
https://prutor.ai
http://neoespa.pusan.ac.kr
https://mooshak2.dcc.fc.up.pt
https://github.com/ProgEdu-Organization/ProgEdu
https://github.com/mdadams/aristotle
https://github.com/Submitty/Submitty
https://github.com/miguelfbrito/codeflex
https://dante.iis.p.lodz.pl
https://gitlab.com/edgar-group


Automated Assessment in Computer Science Education: A State-of-the-Art Review 34:21

Table 4. Summary of Testing Methods Used in the Selected Tools

Tool/Reference Compilation Plagiarism Code Quality Software Metrics Test Development Funct. (Outcome) Funct. (Source Code) Custom Scripts

Web-CAT [75] � � �(Checksttyle) �(Coverage) OC + UT �
PASS [255] � � OC1 �
Kattis [77] � � OC
ECSpooler [13] � OC + UT
STAGE (CodeCover) [172] � �(Coverage) UT
JACK [30, 136, 227] � � � OC �
URI Online Judge [32] � � OC �
CodeAssessor [241] � OC
VPL [203] � � OC �
CloudCoder [108] � OC
CodeRunner [60] � OC
JPLAS [83–85] � UT
LX [61] � OC + UT
Testovid within Protus [242] � �(Checkstyle) � UT
TestMyCode [194] � �(Checkstyle) UT �
CodeWorkout [74] � UT
Arena [184] � UT
JavAssess (ASys) [115] � JR OC JR �
CodeOcean [226] � OC + UT �
Jutge.org [176] � � OC2 �
GradeIT (PrUTOR) [62, 173] �(APR - Syntax) OC �
neoESPA [148, 150] � � �(SonarQube) OC
Enki (Mooshak) [170] � OC �
ProgEdu [50, 252] � � � UT �
Aristotle [2] � OC �
Submitty [180] � � � � �(Coverage) OC + UT �
Codeflex [40] � OC
Dante [70] � � � OC �
Coderiu [28] � UT �
Edgar [156] � OC �
1Token Pattern Approach.
2Several variants that are more tolerant.
JR, Java reflection; UT, unit testing; OC, output comparison.

Regarding feedback to the student, the selected tools have been surveyed according to the fol-
lowing features: failure info (information (or logs) about what failed); evaluation logs (the complete
log of the evaluation); failed tests (the failing test or an associated message); how to proceed (either
a fix or a hint on how to overcome an issue); report (a structured report of the evaluation includ-
ing several details, i.e., execution times, resource usage, and tests passed and failed); and manual
(messages written by the instructor about a submitted program). Table 6 overviews the feedback
elements applied in the selected tools.

Finally, tools have been evaluated on mechanisms for data collection, including the presence of
an embedded code editor and whether submissions, logging data (e.g., execution logs from sub-
mission execution), and code snapshots are stored, and learning reporting and analytics, including
the generation of an evaluation report (i.e., a structured summary of the evaluation including, e.g.,
the classification, execution logs, test results, and execution time), visualization of simple statis-
tics, and advanced analysis. Simple statistics comprises organizing, displaying, and summarizing
data from server interactions (login activity, submissions, obtained grades, and classifications, etc.).
In contrast, advanced analysis involves drawing conclusions about the data as well as collecting
and presenting information to enable deeper insights about students’ behavior during solution
development (e.g., code progression). Table 7 summarizes the results.

6 DISCUSSION AND CONCLUSION

Automated assessment in CS has been continuously developing over the past decade. This review
presented the most relevant developments of automated assessment for CS assignments, focus-
ing on programming tasks. Considering the most recent systematic literature reviews, the notable
advances reported in this review concentrate on five aspects: types of activities that can be auto-
matically assessable, testing techniques, untrusted code execution approaches, feedback on how
to overcome difficulties, and learning analytics from automated assessment data.
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Table 5. Security Models for Untrusted Code Execution Used in the Selected Tools

Tool/Reference Model External

Web-CAT [75] JVM (Java) YES
PASS [255] User permissions YES
Kattis [77] User permissions YES
ECSpooler [13] User permissions YES
STAGE (CodeCover) [172] JVM YES
JACK [30, 136, 227] JVM YES
URI Online Judge [32] User permissions YES
CodeAssessor [241] User permissions NO
VPL [203] Jail process YES
CloudCoder [108] JVM (Java) + Jail process YES
CodeRunner [60] User permissions YES
JPLAS [83–85] Blacklist + JVM NO
LX [61] User permissions NO
Testovid within Protus [242] JVM YES
TestMyCode [194] VM YES
CodeWorkout [74] JVM (Java) + User permissions NO
Arena [184] Container YES
JavAssess (ASys) [115] JVM NO
CodeOcean [226] Container YES
Jutge.org [176] Jail process YES
GradeIT (PrUTOR) [62, 173] Container YES
neoESPA [148, 150] User permissions NO
Enki (Mooshak) [170] User permissions NO
ProgEdu [50, 252] Container YES
Aristotle [2] User permissions NO
Submitty [180] Container YES
Codeflex [40] Jail process YES
Dante [70] User permissions YES
Coderiu [28] Container YES
Edgar [156] Container YES

Researchers have made efforts to extend automated assessment to almost all practical tasks of
the CS curriculum, which is not surprising, as the increasing number of enrollments and conse-
quent higher instructors’ workload demands automated assessment [56]. Moreover, the impact of
the industry in CS curriculum and the approximation of enterprise-level automated testing with
academic automated assessment has become more evident [41, 88, 91, 153, 214]. Even though feed-
back tends to be unsatisfactory, the robustness of industrial testing tools and the added benefit
of familiarizing students with the tools they are likely going to use in the near future can be a
compensating approach.

The past decade underwent a slight shift in what is considered to be a correct, partially cor-
rect, and incorrect solution by most practitioners. First, producing the expected output is not by
itself the only factor that weighs in the grade of the program [27]. The adopted strategy, quality
of the source code, algorithmic complexity, and many other aspects are also relevant indicators
and thus may affect grades [27] and originate feedback to improve learning and promote good
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Table 6. Feedback Elements Applied in the Selected Tools

Tool/Reference Failure Info Evaluation Logs Failed Tests How to Proceed Report Manual

Web-CAT [75] � � �
PASS [255] � �
Kattis [77] � �
ECSpooler [13] � �
STAGE (CodeCover) [172] � � �(Coverage)
JACK [30, 136, 227] � � � �
URI Online Judge [32] � �
CodeAssessor [241] � �
VPL [203] � �
CloudCoder [108] � �
CodeRunner [60] � �
JPLAS [83–85] � �
LX [61] � �
Testovid within Protus [242] � � �
TestMyCode [194] � � �
CodeWorkout [74] � �
Arena [184] � � �
JavAssess (ASys) [115] � � � � �
CodeOcean [226] � � �
Jutge.org [176] � � �
GradeIT (PrUTOR) [62, 173] � � �1

neoESPA [148, 150] � �(Quality)
Enki (Mooshak) [170] � � �
ProgEdu [50, 252] � � � �(Quality)
Aristotle [2]
Submitty [180] � � � � �
Codeflex [40] � �
Dante [70] � � � �
Coderiu [28] � � � �
Edgar [156] � � �

1Clustering with feedback rules + APR (syntax errors).

Table 7. Data Collection, Analytics, and Reporting Included in the Selected Tools

Tool/Reference
Data Collection Data Analytics and Reporting

Editor Submissions Logging Code Snapshots Evaluation Report Simple Statistics Advanced Analysis

Web-CAT [75] � � � � �1

PASS [255] � � � � �
Kattis [77] � � � �
ECSpooler [13] � �
STAGE (CodeCover) [172] � � �(Moodle)
JACK [30, 136, 227] � � � �
URI Online Judge [32] � � � �
CodeAssessor [241] � � �
VPL [203] � � � �(Moodle)
CloudCoder [108] � � � � � �
CodeRunner [60] � � � �(Moodle)
JPLAS [83–85] � � � �
LX [61] � � �(Moodle)
Testovid within Protus [242] � � � � �
TestMyCode [194] � � � � � �
CodeWorkout [74] � � � � �
Arena [184] � � � � �
JavAssess (ASys) [115] � �
CodeOcean [226] � � � � �
Jutge.org [176] � � � �
GradeIT (PrUTOR) [62, 173] � � � � � � �2

neoESPA [148, 150] � �
Enki (Mooshak) [170] � � � � �
ProgEdu [50, 252] � � � � �
Aristotle [2] � � �
Submitty [180] � � � �
Codeflex [40] � � � �
Dante [70] � � � � �
Coderiu [28] � � � � �
Edgar [156] � � � � � �3

1Learning progress graphs.
2Code size variation, code save progression, syntactic analytics, compilation error timeline, execution sequence.
3Student behavior and question analytics.
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practices [238]. Then, in the limit, a program with a syntax error might be closer to the solution
than a program failing a single test case. For instance, a correct Java program only missing a
semicolon would raise a syntax error during evaluation and be awarded an incorrect classification
without even being subject to further analysis in traditional testing approaches. Nevertheless, it is
arguably closer to the solution than a program that does not consider an edge case.

With respect to this and other similar situations, static analysis approaches are increasingly be-
coming the research trend in the topic of automated testing techniques [10, 115, 149, 160, 258], as
they “look” directly at the source code or its abstract representations, providing a more fair evalua-
tion. This assessment perspective enables, for instance, personalized feedback on how to proceed,
as it offers a better understanding of the student’s program, such as the followed strategy [15],
committed errors [249], and similarity (or missing steps) to a solution [95, 100].

Another major novelty is the containerization for untrusted code execution in isolation. Even
though one cannot guarantee complete isolation out-of-the-box as in common virtualization, the
lower overhead and all of the benefits of virtualization (e.g., consistent runs, increased portability,
and improved scalability) make it a tempting model even if some tinkering is required to achieve
“full security.” The rapid proliferation of this approach in the second half of the past decade [62, 156,
180, 226] clearly pinpoints the beginning of a transition phase to containerization. Considering the
eras of Douce et al. [68], after the era of web-based tools, we would say that we are currently facing
the “Era of Containerization.”

The rising of Big Data also impacted automated assessment, as data collection and learning an-
alytics are growing interest as features for tools providing automated assessment. As these tools
become more capable and feature rich, they are also conquering their space in different phases
of learning and being actively used throughout CS courses. Hence, the quantity and quality of
the data they produce increases significantly, enabling the extraction of unprecedented knowl-
edge about students, such as their behavioral patterns [36, 51] and learning flaws [59]. In this
sense, efforts to standardize the collection, sharing, and analysis of such data are under way [193].
Notwithstanding, there is still a large amount of wasted data (e.g., even though most of the
surveyed tools provide an embedded editor, only five capture code changes, of which only two
capture at keystroke granularity).

Furthermore, the actual implementation of recent advancements in automated assessment tools
is far from concluded. Typically, a prototype is developed, then tested with a group of students
under specific constraints, and the results are reported in the literature. As the constraints of the
experiment are hardly replicated in a real scenario, the prototypes are either not further developed
or remain closed. Nevertheless, unlike the previous reviews [6, 112, 220], more than half of the
selected tools are open-source, which is a long-expected milestone to intensify developments in
the field.

Figure 3 presents a bubble chart with the number of works done during the past decade in each of
the selected topics of development, namely (1) Tool (research works reporting the development of
an automated assessment tool); (2) OSS (from (1), those that are open-source); (3) Containerization
(from (1), those that use containers to run students’ programs); (4) Static Analysis (publications
describing assessment techniques, tools, reviews, or experiments capitalizing on static analyses);
(5) Clustering (new developments using clustering techniques); (6) Feedback (publications mostly
related with feedback); (7) APR (from (6), those relying on automatic program repair); (8) Hint
Generation (from (6), those involving the generation of hints); (9) Personalization (developments
on techniques that consider the users’ activity/progress); (10) Learning Analytics (papers report-
ing learning analytics developments); and (11) Students’ Behavior (from (11), those focusing on
analyzing students’ behavior). This confirms all of the previous conclusions, particularly regard-
ing the continuous development of new tools and the growing number of open-source software
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Fig. 3. Key topics of developments over the past decade.

among them. Moreover, the increasing interest in containerization of code execution, static analy-
sis, clustering techniques, automatic program repair, generation of hints, personalization, learning
analytics, and analyzing students’ behavior is noticeable.

6.1 Threats to Validity

The scope and methodology adopted for this review poses several threats to its validity. The main
concerns are the following.

Relevant tools missing. The conducted survey regarding tools could not cover each and every
tool reported in the literature, as it would be both too extensive and time consuming. We
have tried to select the 15 most relevant tools and then applied random sampling to pick
another 15 tools. However, we acknowledge that some notable tools may have been left out.
Misinterpretation in data analysis. The considerable amount of effort involved in this review,
and the consequent time it took to analyze the collected evidence, may have affected the
interpretation of the main contributions of some studies. In particular, some papers present
either multiple techniques for different phases of the assessment (e.g., testing and feedback)
or backup techniques (e.g., if the reported method fails), which makes the process quite dif-
ficult to parse and somewhat subjective. Moreover, tools are typically only briefly described
in the papers, without much detail. To address the former, one of the authors extracted the
characteristics from all of the studies, and the other authors validated them after. Concern-
ing the latter, we widened our investigation to related papers about the tools and explored
the web to find additional references to the tool.

6.2 Educational Effectiveness (RQ6)

There are only a few empirical studies on the educational effectiveness of automated assessment
in CS education. Nevertheless, there is sufficient research evidence to demonstrate its overall use-
fulness and educational benefits. In particular, it has been demonstrated that it (1) significantly
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reduces teachers’ workload [77, 172, 177], (2) improves student learning [177], (3) increases the
number of activities solved [70, 86], (4) is well-received by students [77, 86], and (5) engages stu-
dents with activities without teachers’ presence [87]. Moreover, some of these advantages are valid
not only for formative assessment but also for summative assessment [44, 60]. However, several of
these studies also indicate significant pedagogical gaps and deficiencies of automated assessment
compared to human evaluation, especially regarding the provided feedback information, evalua-
tion of partially correct programs, and critique of other code aspects [137, 143, 206]. This is in line
with the problems being addressed in recent research trends, as discussed previously.

Therefore, one question intrinsic to any novel educational technique/tool must be “how effec-
tive is it?” Measuring the educational effectiveness of an automated assessment approach is not
straightforward, as the multitude of approaches and aims adopted in the literature for such task
indicate. For instance, a common approach to judge the effectiveness of an assessment technique
is to compare offline (i.e., using previously collected data) its grading quality to that of a human
grader [18, 27, 149, 173], whereas evaluating the effectiveness of tools and feedback techniques
typically consists of analyzing the difference in students’ attitudes/results with and without the
“treatment” [13, 70, 143, 172]. The objective of the former is to approximate automated grading and
feedback to that of a human grader, considering the feedback of teachers as optimal in terms of
educational effectiveness. The latter compares the real effects of a new approach on the students.

From this perspective, there is some empirical evidence that endorses current research trends
on static analysis approaches to solve aforementioned gaps. For instance, static analysis based
techniques have proven success in grading assignments similarly to human graders [18, 149, 173]
while being more consistent [173]. In fact, automatically generated feedback on how to proceed
from techniques based on APR, semantic similarity, and symbolic execution is already promising
(i.e., useful to struggling students) [95, 131, 254] and supports the need for further investigation to
improve quality and time performance [95, 254]. Furthermore, these automated assessment tech-
niques also seem to be capable of promoting and enforcing code quality [17, 150].

Unfortunately, not many empirical studies have been conducted to evaluate the educational
effectiveness of developed works. Existing studies are mainly small experiments part of the papers
introducing the novelty, to validate an early version of the proposal. This prevents driving research
efforts with enough confidence and highlights the need for such studies.

6.3 Future Trends and Research Directions (RQ7)

The 2020 ITiCSE conference held online had a keynote on the history of CS education, by Matti
Tedre [233]. It originated a question on how the keynote speaker expects programming teaching
to be in a few decades. The answer was surprising: “Programming is a means to an end. The end is
to make the machine perform the operations we want. We want to teach kids how to control the
machines. In this perspective, programming, as we know, will not exist in the future.” After having
a moment of reflection, the signs of such evolution are present from the very beginning. The way
we develop programs has been constantly evolving, from the time when a machine operator was
needed for manually processing some parts of the program to the first programming languages that
established the different language paradigms and the recent popularization of visual programming.
Each time, we are adding another abstraction layer between the programmer and the machine.

There is certainly a long way to go until programming, as we know it, turns unnecessary to con-
trol a machine, if that ever happens. Nonetheless, it is of utmost importance to start prioritizing
meaning over syntax, as the latter is ephemeral and, above all, dependent on the chosen program-
ming language. This prioritization is also linked to judging how the student conceptualizes her
solution rather than the mere output of her program. That is the idea beyond most static analysis
approaches presented this past decade, but it also is a trend for the upcoming years, as there is still
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much room for improvement in the proposed techniques and novel approaches, such as reason-
ing on semantic graph representations of programs in large codebases to estimate the minimum
number of changes to achieve a semantically correct solution.

Similar approaches can be applied in learning analytics to study students’ behaviors, identify
learning gaps, and predict failures early to make the teacher aware so that she can both act timely
and deliver personalized feedback. The history of code modifications may give even better insights
into how students think and approach the problem over submissions. Furthermore, it enables the
analysis of students who either do not or rarely submit, whom the teachers would neglect since
they have no information about their attempts. Therefore, some research lines will likely explore
these opportunities, both for clusters of students and individuals. Figure 3 already provides a great
insight into the trending personalization of automated assessment.

Following the recent efforts to standardize data produced from automated assessment [193],
works adhering to the proposed format and even extending it are expected, such as adapting the
format to store subsequent code states of the same program as changes in the AST (or other in-
termediate representation of source-code) or reasoning on previous collected data to suggest fixes
to new students facing difficulties. Notwithstanding, it is important that such a format is widely
adopted by automated assessment tools, as much data produced from automated assessment is cur-
rently wasted. Furthermore, it opens up the possibility to share not only datasets but also analysis
tools, reducing the amount of work redone across different research groups.

Finally, there is a strong need for empirical studies examining the role and value of automated
assessment techniques in the teaching and learning of CS (see Section 6.2). Most of the proposed
works are only evaluated in a small and homogeneous group using an unfinished version of the
tool, which is insufficient to establish its educational effectiveness. Hopefully, the next decade will
also bring forward empirical research evidence on several techniques/tools.

Developments in the field of automated assessment are expected to maintain or even increase
the current growth rate in upcoming years (or decades) as the demand for a highly skilled technical
CS workforce continues its rise and online learning becomes even more part of the educational
ecosystem [7]. Therefore, we recommend reviews similar to this and others valuable in the past [6,
68, 112] every 5 years. This suggestion is based on how much the automated assessment evolved
between 2005 [6, 68] and 2010 [112], and the complexity of conducting a decade-long review similar
to this.
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