
Monitoring for a Decidable Fragment of MTL-
∫

André de Matos Pedro1(B), David Pereira1, Lúıs Miguel Pinho1,
and Jorge Sousa Pinto2

1 CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal
{anmap,dmrpe}@isep.ipp.pt

2 HASLab/INESC TEC & Universidade do Minho, Braga, Portugal

Abstract. Temporal logics targeting real-time systems are traditionally
undecidable. Based on a restricted fragment of MTL-

∫
, we propose a new

approach for the runtime verification of hard real-time systems. The
novelty of our technique is that it is based on incremental evaluation,
allowing us to effectively treat duration properties (which play a crucial
role in real-time systems). We describe the two levels of operation of
our approach: offline simplification by quantifier removal techniques; and
online evaluation of a three-valued interpretation for formulas of our
fragment. Our experiments show the applicability of this mechanism as
well as the validity of the provided complexity results.

1 Introduction

Temporal logics are widely used formalisms in the field of specification and veri-
fication of reactive systems [17], since they provide a natural and abstract tech-
nique for the analysis of safety and liveness properties. Linear Temporal Logic
(LTL) describes properties concerning the temporal order of the input model,
and is well studied in terms of expressiveness, decidability and complexity. Timed
temporal logics are extensions of temporal logics with quantitative constraints to
handle temporal logic specifications [2]. Metric Temporal Logic (MTL) [10,15]
is an undecidable real-time extension of LTL, describing the temporal order
constrained by quantitative intervals on the temporal operators.

These formalisms have been used for formal verification, either by deductive
or by algorithmic methods [9]. However, real-time logics are notably less well-
behaved than traditional temporal logics. In particular, the model checking prob-
lem for MTL is known to be undecidable [15]. Decidable real-time formalisms
that can be used as alternatives are currently the focus of much attention.

A diversity of MTL fragments reveal that the undecidable results of MTL
are due to the excessive precision of the timing constraints (i.e., punctuality [1]),
the presence of unbounded temporal operators (unboundedness), the presence of
unsafe formulas, and the excessive richness of the semantic model [15]. Metric
Interval Temporal Logic (MITL) is a fragment that avoids punctuality by con-
straining any interval on the temporal operators to be non-singular; Bounded
MTL (BMTL) is another fragment that, instead of avoiding punctual intervals,

c© Springer International Publishing Switzerland 2015
E. Bartocci and R. Majumdar (Eds.): RV 2015, LNCS 9333, pp. 169–184, 2015.
DOI: 10.1007/978-3-319-23820-3 11

170 A. de Matos Pedro et al.

bounds intervals that are infinitely large. Both are decidable fragments. Syntac-
tic restrictions on temporal logic operators of MTL may also result in decidable
fragments. Ouaknine and Worrell [14] describe a fragment of MTL named Safety
MTL (SMTL), that does not allow expressing invariant formulas, and Bouyer
et al. [5] have introduced the term flatness for MTL.

In addition to being undecidable, the previous logics also fail to capture
the notion of duration. This notion, however, is of paramount importance when
specifying and developing real-time systems, mainly because the fundamental
results about the reliability of this class of systems are related to ensuring that
the execution time of the involved components does not miss some predetermined
deadline. Lakhnech and Hooman [11] came up with Metric temporal logic with
durations (MTL-

∫
) and Chaochen and colleagues [8] with Duration Calculus,

which provide expressive power to specify and reason about durations within
real intervals. By applying syntactic and semantic restrictions it is possible to
derive decidable fragments for duration properties.

The motivation for this work is that of providing an expressive formal lan-
guage that fits the timing requirements of real-time systems, from the point of
view of runtime verification (RV). RV is concerned with the problem of gener-
ating monitors from formal specifications, and adding these monitors into the
target code as a safety-net that is able to detect abnormal behaviors and, possi-
bly, respond to them via the release of counter-measures. As such, RV methods
can be applied to systems where the source code is not available due to intel-
lectual property, or in those cases where we have access to the code but the
complexity of the system’s requirements is too high to be addressed via any of
the known static verification approaches.

The major contribution of this paper is a new mechanism for runtime verifi-
cation of hard real-time systems regarding duration properties, based on a decid-
able fragment of MTL-

∫
and a three-valued abstraction of this fragment. The

fragment allows for expressing quantified formulae, and is adequate for quantifier
elimination: we give an algorithm for the simplification of formulas containing
quantifiers and free logic variables. Intuitively, we abstract our fragment into
first order logic of real numbers (FOLR) to obtain quantifier-free formulas.

One particular application scenario for RV is in scheduling theory of hard
real-time systems. Rigorous calculation of the worst case execution time (WCET)
is commonly difficult, and the known approximation methods based on statis-
tical abstractions degrade the dependability of the systems, since the available
schedulability theory tends to assume the WCET. Application of monitors in
this case will make the system more reliable. We will show through an appli-
cation example (based on resource models, which are mechanisms that ensure
time isolation for execution units) the interest of allowing formal specifications
to express existential quantification over durations, for real applications.

The paper is organized as follows: in Sect. 2 we introduce suitable restrictions
over MTL-

∫
; Sect. 3 describes the three-valued semantics of restricted MTL-

∫
,

and Sect. 4 describes an algorithm for inequality abstraction. In Sect. 5 we then
introduce an evaluation algorithm for the restricted MTL-

∫
with three-valued

semantics. Section 6 describes our experimental work and finally Sect. 7 discusses
related work and concludes the paper.

Monitoring for a Decidable Fragment of MTL-
∫

171

2 Specification Language RMTL-
∫

MTL-
∫

is more expressive than DC [11], but is undecidable since the relation
over terms or the term function may themselves be undecidable. Let us begin
by briefly reviewing MTL-

∫
.

Definition 1. Let P be a set of propositions and V a set of logic variables. The
syntax of MTL-

∫
terms η and formulas ϕ is defined inductively as follows:

η ::= α | x | f(η1, . . . , ηn) |
∫ η

ϕ

ϕ ::= p | R(η1, . . . , ηn) | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 U∼γ ϕ2 | ϕ1 S∼γ ϕ2 | ∃x ϕ

where α ∈ R, x ∈ V is a logic variable, f a function symbol of arity n,
∫ η

ϕ is
the duration of the formula ϕ in an interval, p ∈ P is an atomic proposition,
U and S are temporal operators with ∼∈ {<,=}, γ ∈ R≥0, and the meaning of
R(η1, . . . , ηn), ϕ1 ∨ ϕ2,¬ϕ,∃xϕ is defined as usual.

We will use the following abbreviations: ϕ∧ψ for ¬(¬ϕ∨¬ψ), ϕ → ψ for ¬ϕ∨ψ,
tt for ϕ ∨ ¬ϕ, ff for ϕ ∧ ¬ϕ, ♦∼γ ϕ for tt U∼γ ϕ, and �∼γ ϕ for ¬(tt U∼γ ¬ϕ).

An observation function σ of length δ ∈ R≥0 ∪ {∞} over P is a function
from P into the set of functions from interval [0, δ) into {tt,ff}. The length of σ
is denoted by #σ. A logical environment is any function υ : V → R≥0. For any
such υ, x ∈ V and r ∈ R, we will denote by υ[x
→ r] the logical environment
that maps x to r and every other variable y to υ(y). The following auxiliary
definition will be used in the interpretation of the duration of a formula.

Definition 2 (MTL-
∫

Semantics). The truth value of a formula ϕ will be
defined relative to a model (σ, υ, t) consisting of an observation σ, a logical envi-
ronment υ, and a time instant t ∈ R≥0. We will write (σ, υ, t) |= ϕ when ϕ is
interpreted as true in the model (σ, υ, t). Terms and formulas will be interpreted
in a mutual recursive way. First of all, for each formula ϕ, observation σ and
logical environment υ, the auxiliary indicator function 1ϕ(σ,υ) : R≥0 → R≥0 is
defined as follows, making use of the satisfaction relation:

1ϕ(σ,υ)(t) =

{
1 if (σ, υ, t) |= ϕ,

0 otherwise.

The value T [[η]](σ, υ) t of a term η relative to a model can then be defined. A
Riemann integral [7] of 1ϕ(σ,υ) is used for the case of a duration

∫ η
ϕ:

T [[α]](σ, υ) t = α

T [[x]](σ, υ) t = υ(x)

T [[f(η1, . . . , ηn)]] = f (T [[η1]](σ, υ) t, . . . , T [[ηn]](σ, υ) t)

T

[[∫ η

ϕ

]]
=

{∫ t+T [[η]](σ,υ) t

t
1ϕ(σ,υ)(t∗) dt∗ if (∗)

0 otherwise

172 A. de Matos Pedro et al.

where (∗) means that 1ϕ(σ,υ) satisfies the Dirichlet condition [11, p.7] and the
sub-term T [[η]](σ, υ) t is non-negative, otherwise the function is non Riemann
integrable. The satisfaction relation in turn is defined as:

(σ, υ, t) |= p iff σ(p)(t) = tt and t < #σ

(σ, υ, t) |= R(η1, . . . , ηn) iff R(T [[η1]](σ, υ) t, . . . , T [[ηn]](σ, υ) t)

(σ, υ, t) |= ϕ1 ∨ ϕ2 iff (σ, υ, t) |= ϕ1 or (σ, υ, t) |= ϕ2

(σ, υ, t) |= ¬ϕ iff (σ, υ, t) �|= ϕ

(σ, υ, t) |= ϕ1 U∼γ ϕ2 iff there exists t′ such that t < t′ ∼ t + γ, (σ, υ, t′) |= ϕ2,

and for all t′′, t < t′′ < t′, (σ, υ, t′′) |= ϕ1

(σ, υ, t) |= ϕ1 S∼γ ϕ2 iff there exists t′ such that t − γ ∼ t′ < t, (σ, υ, t′) |= ϕ2,

and for all t′′, t′ < t′′ < t, (σ, υ, t′′) |= ϕ1

(σ, υ, t) |= ∃x ϕ iff there exists an r ∈ R such that (σ, υ[x �→ r], t) |= ϕ

Note that the semantics of the until operator is strict and non-matching [4].

To overcome the undecidability results of MTL-
∫

, we apply restrictions over
MTL-

∫
. Restricted metric temporal logic with durations (RMTL-

∫
) is a syntac-

tically and semantically restricted fragment of MTL-
∫

; the syntactic restrictions
over MTL-

∫
include the use of bounded formulas, of a single relation < over the

real numbers, the restriction of the n-ary function terms to use one of the + or ×
operators, and a restriction of α constants to the set or rationals Q. Tarski’s the-
orem [19] states that the first-order theory of reals with +, ×, and < allows for
quantifiers to be eliminated. Algorithmic quantifier elimination leads to decid-
ability, assuming that the truth values of sentences involving only constants can
be computed. We will denote by Φ the set of RMTL-

∫
formulas.

The semantic restrictions on the other hand include the conversion of the con-
tinuous semantics of MTL-

∫
into an interval-based semantics, where models are

timed state sequences and formulas are evaluated in a given logical environment
at a time t ∈ R≥0. A timed state sequence κ is an infinite sequence of the form
(p0, [i0, i′0[), (p1, [i1, i′1[) . . . , where pj ∈ P, i′j = ij+1 and ij , i

′
j ∈ R≥0 such that

ij < i′j and j ≥ 0. Let κ(t) be defined as {pj} if there exists a tuple (pj , [ij , i′j [)
such that t ∈ [ij , i′j [, and as ∅ otherwise. Note that there exists at most one such
tuple. The replacement rule for propositions is (κ, υ, t) |= p iff p ∈ κ(t), and σ
is globally replaced by κ. In particular the indicator function 1ϕ(κ,υ) is defined
as 1 if (σ, υ, t) |= ϕ, and 0 otherwise. An important property of our restriction
is that RMTL-

∫
satisfies by construction the Dirichlet conditions implying the

Riemann property:

Lemma 1. For any formula ϕ in RMTL-
∫
, timed state sequence κ, and logical

environment υ, the indicator function 1ϕ(κ,υ) is Riemann integrable.

Example 1 (Application of Durations). Let us now consider an example using
the duration term where the evolution of a real-time system formed by tasks
depends entirely on the occurrence of events, the evaluation of the propositions
is performed over these events, and all of its tasks have an associated fixed set

Monitoring for a Decidable Fragment of MTL-
∫

173

of events. Let φm be a formula that specifies the periodic release of a renewal
event for a timed resource in the system, and let ψm be a formula specifying
every event triggered by tasks belonging to that resource. To monitor utilization
and the release of timed resources, we employ the formula,

�<∞ φm →
∫ t

ψm ≤ β,

where t is the budget renewal period, and β is the allowed budget (i.e., the exe-
cution time of tasks belonging to the timed resource). However, the incremental
evaluation as t evolves is inconsistent in the two-valued setting since we could
have a false verdict at t = 0 and a true verdict at t = 10 (different from the
solution that will be presented in the next section).

3 Three-Valued Abstraction of RMTL-
∫

The three-valued logic abstraction of RMTL-
∫

, which we will call three-valued
restricted metric temporal logic with durations (RMTL-

∫
3
), is syntactically defined

as before, but contains two new terms. These terms allow variables to be maxi-
mized and minimized in certain intervals, subject to a constraint given as a
formula. The terms must be introduced here due to the situation in which no mini-
mum or maximum exists (the formula is not satisfied in the interval), since we need
to define an infeasible value instead of assigning a real number to these terms. The
language of terms of RMTL-

∫
3

is defined as follows:

η ::= α | x | min
x∈I

ϕ | max
x∈I

ϕ | η1 ◦ η2 |
∫ η

ϕ

where x ∈ I
min

ϕ and x ∈ I
max

ϕ, with I = [Imin, Imax] and Imin, Imax ∈ R, and

◦ ∈ {+,×}. All other formulas and terms are as in RMTL-
∫

. We will denote by
Φ3 the set of RMTL-

∫
3

formulas, and by Γ the set of RMTL-
∫
3

terms.

Definition 3 (RMTL-
∫
3

Semantics). The truth value of a formula ϕ will
again be defined relative to a model (κ, υ, t) consisting of a timed state sequence
k, a logical environment υ, and a time instant t ∈ R≥0. The auxiliary indicator
function 1ϕ(κ,υ) : R≥0 → {0, 1} ∪ {−1} is defined as follows:

1ϕ(κ,υ)(t) =

⎧
⎪⎨

⎪⎩

1 if [[ϕ]](κ, υ, t) = tt,

0 if [[ϕ]](κ, υ, t) = ff,

−1 if [[ϕ]](κ, υ, t) = ⊥

The interpretation of the term η will be given by T [[η]](σ, υ) t ∈ R ∪ {⊥R}, as
defined by the following rules. Whenever T [[η]](σ, υ) t = ⊥R, this means that the
term η is infeasible.

Rigid Terms:

– T [[η1]](σ, υ) t is defined as α if η1 = α, and as υ(x) if η1 = x

174 A. de Matos Pedro et al.

Minimum and Maximum Terms:

– If η1 = min
x∈I

ϕ (resp. max
x∈I

ϕ), then T [[η1]](σ, υ) t = is defined as:

{
I = m{r | r ∈ I and (κ, υ[x �→ r], t) |=3 ϕ} if I �= ∅
⊥R otherwise

where m is one of the operators min or max as appropriate.

Duration Term:

– If η1 =
∫ η2 φ, then T [[η1]](σ, υ) t is defined as:

⎧
⎨

⎩

∫ t+T [[η2]](σ,υ) t

t
1φ(κ,υ)(t

′) dt′ if
T [[η2]](σ, υ) t ≥ 0 and for all t′′,

t′′ ∈ [t, t+T [[η2]](σ, υ) t], 1φ(κ,υ)(t
′′) ∈ {0, 1}

⊥R otherwise

Turning to the interpretation of formulas, we define [[ϕ]](κ,υ,t) to be one of the
three values in {tt,ff,⊥}, according to the following rules.

Basic Formulae:

– If φ = p, then [[φ]](κ,υ,t) is tt if p ∈ κ(t), ff if p �∈ κ(t) and κ(t) �= ∅, and
⊥ if κ(t) = ∅.

Relation Operator:

– If φ = η1 < η2, then [[φ]](κ,υ,t) is defined as:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tt if T [[η1]](σ, υ) t < T [[η2]](σ, υ) t, and

T [[η1]](σ, υ) t, T [[η2]](σ, υ) t ∈ R
ff if T [[η1]](σ, υ) t ≥ T [[η2]](σ, υ) t, and

T [[η1]](σ, υ) t, T [[η2]](σ, υ) t ∈ R
⊥ otherwise

Boolean Operators:

– If φ = ¬ϕ, then [[φ]](κ,υ,t) is tt if [[ϕ]](κ,υ,t) = ff, ff if [[ϕ]](κ,υ,t) = tt, and
⊥ otherwise.

– If φ = ϕ1 ∨ ϕ2, then [[φ]](κ,υ,t) is tt if [[ϕ1]](κ,υ,t) = tt ∨ [[ϕ2]](κ,υ,t) = tt, ff if
[[ϕ1]](κ,υ,t) = ff ∧ [[ϕ2]](κ,υ,t) = ff, and ⊥otherwise.

Temporal Operators:

– If φ = ϕ1 U∼γ ϕ2, then [[φ]](κ,υ,t) is defined as:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tt if ∃t′, t < t′ ∼ t + γ such that [[ϕ2]](κ,υ,t′) = tt, and

∀t′′, t < t′′ < t′, [[ϕ1]](κ,υ,t′′) = tt

ff if ∀t′, t < t′ ∼ t + γ such that

[[ϕ1]](κ,υ,t′) = ff → ∃t′′, t < t′′ < t′, [[ϕ1]](κ,υ,t′′) = ff

⊥ otherwise

Monitoring for a Decidable Fragment of MTL-
∫

175

– If φ = ϕ1 S∼γ ϕ2, then [[φ]](κ,υ,t) is defined as:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tt if ∃t′, t − γ ∼ t′ < t such that [[ϕ2]](κ,υ,t′) = tt, and

∀t′′, t′ < t′′ < t, [[ϕ1]](κ,υ,t′′) = tt

ff if ∀t′, t − γ ∼ t′ < t such that

[[ϕ1]](κ,υ,t′) = ff → ∃t′′, t′ < t′′ < t, [[ϕ1]](κ,υ,t′′) = ff

⊥ otherwise

Existential Operator:

– If φ = ∃x ϕ, then [[φ]](κ,υ,t) is defined as:

⎧
⎨

⎩

tt if there exists a value r ∈ R such that [[ϕ]](κ,υ[x �→r],t) = tt

ff if for all r ∈ R such that [[ϕ]](κ,υ[x �→r],t) = ff

⊥ otherwise

We will write (κ, υ, t) |=3 ϕ when [[ϕ]](κ,υ,t) = tt, and (κ, υ, t) �|=3 ϕ when
[[ϕ]](κ,υ,t) = ff. In what follows we will often write x ∈ I as an abbreviated
form for Imin < x ∧ x < Imax, and η1 = η2 for ¬(η1 < η2) ∧ ¬(η1 > η2).

Preservation of RMTL-
∫

Semantics. An immediate motivation for the choice of
defining a three-valued semantics for our logic fragment comes from the nature of
runtime verification, which evaluates timed sequences where it is not possible to
determine a definitive true or false value without analyzing the complete trace.
For instance, considering a prefix κp of a timed sequence κ, we have that the
evaluation of the same formula in the models (κ, υ, t) and (κp, υ, t) produces
different truth values. Classic semantics cannot provide a common truth value
to make consistent incremental evaluations of the model, which is an important
feature for RV.

The semantic preservation of both truth and falsity for the three-valued logic
is defined using the following two relations: a partial relation ≺ on {tt,ff,⊥}
defined by ⊥ ≺ tt, ⊥ ≺ ff, ⊥ ≺ ⊥, tt ≺ tt, and ff ≺ ff; and a partial relation

 : R×R ∪ {⊥R} defined by 0
 ⊥R, and n
 m, for all n,m ∈ R, which gives a
distinct treatment to duration terms that evaluate to 0 in the standard semantics.

Definition 4. Let (κ, υ, t) be a model. The three-valued semantics is said to
preserve the two-valued semantics iff the following rules hold:

1. For basic formulas containing the relation operator, for all terms η1 ∈
RMTL-

∫
and η2 ∈ RMTL-

∫
3

excluding minimum and maximum terms,
T [[η1]](σ, υ) t
 T [[η2]](σ, υ) t holds and it implies that 0
 ⊥R if η1 has the
form

∫ η3 φ and T [[η3]](σ, υ) t < 0; and 0
 0 otherwise.
2. For each basic formula φ containing Boolean, temporal, and existential oper-

ators, [(κ, υ, t) |=3 γ] ≺ [(κ, υ, t) |= γ] holds.

176 A. de Matos Pedro et al.

We will now formulate two auxiliary results required to prove the semantic
preservation of RMTL-

∫
in RMTL-

∫
3
. From a close examination of the minimum

and maximum term semantics, we have that these terms are indeed quantified
formulas, interpreted as a minimum or a maximum value that satisfies the quan-
tification, or as ⊥R when this minimum or maximum is nonexistent. First of all
we observe that the following axioms [19, p. 205] extend to our present setting:

A 1. η1 ◦ min
x∈I

φ ∼ η2 implies that there exists an x such that η1 ◦ x ∼ η2, x ∈ I, and

φ implies that for all y, y < x and ¬φ.

A 2. η1 ◦ max
x∈I

φ ∼ η2 implies that there exists an x such that η1 ◦ x ∼ η2, x ∈ I, and

φ implies that for all y, y > x and ¬φ.

Theorem 1. Let (κ, υ, t) be a model, φ3 a formula in RMTL-
∫
3
, and

ft : Φ3 → Φ a mapping of formulas. Then [(κ, υ, t) |=3 φ3] ≺ [(κ, υ, t) |= ft(φ3)].

4 Inequality Abstraction Using a Theory of Reals

A close examination of the semantics of RMTL-
∫
3

reveals that the timed state
sequence κ and the logic environment υ are not directly related as parameters
for evaluating the truth value of formulas. This property allows us to define a
mechanism for introducing isolation by splitting formulas and/or abstract them
into inequality conditions. Conditions are discarded prior to execution, and the
resulting formula is then suitable for runtime monitoring.

The axiom system for the arithmetic of real numbers provided by Tarski [19]
can be used as an abstraction of inequalities in RMTL-

∫
3
. Several properties

provided by this well-known fragment will be used to facilitate the removal
of quantifiers, when properties expressed as quantified formulas are monitored
at execution time. From the Tarski–Seidenberg theorem [19] we have that for
any formula in FOLR (R, <,+,×) there is an equivalent one not containing
any existential quantifiers. Thus there exists a decision procedure for quantifier
elimination over FOLR. One of the most efficient algorithms, with complexity
2-EXPTIME, is cylindrical algebraic decomposition (CAD), later proposed by
Collins [3,6]. To use it we require a set of axioms for isolation of temporal
operators and duration terms, and a mechanism to abstract formulas with free
variables.

Let us now describe the constraint required for an RMTL-
∫
3

formula to be
interpreted as a formula of FOLR.

Definition 5 (Inequality Abstraction Constraint). Let φ3 be a formula
in RMTL-

∫
3
. φ3 is a formula in FOLR if it is free of duration terms, mini-

mum/maximum terms, temporal operators, and propositions.

Let φi
< be a formula in FOLR; φi a formula in RMTL-

∫
3

without quantifiers
and free variables; opi one of the operators ∧ or ∨, and i ∈ N an index for
operators/formulas. Axioms A3 and A4 below describe how formulas φi

< can be
isolated outside the scope of the temporal operator. Axiom A5 replaces a formula
containing a duration constrained in an interval by a duration term constrained
by a logic variable. Axiom A6 isolates inequalities inside duration terms.

Monitoring for a Decidable Fragment of MTL-
∫

177

A 3.
((

φ1
< op1 φ1

)
U
(
φ2

< op2 φ2

))→ (φ2
< op2

(¬(φ2
<) → ((φ1

< op1 φ1

)
U φ2

)))

A 4. ((φ< op1 φ1) U φ2) → ((φ< → true U φ2) op1 φ1 U φ2)

A 5.
∫ ηx φ1 ◦ η1 ∼ η2 → ∃x

(
x = ηx ∧ ¬(x < 0) ∧ ∫ x

φ1 ◦ η1 ∼ η2

)

A 6.
∫ η

φ ∨ ψ =
∫ η

φ +
∫ η

ψ − ∫ η
φ ∧ ψ

These axioms can be used to provide isolation of formulas only for certain
patterns, due to the changing nature of temporal operators and the duration
terms over the model parameter t. To abstract any formula in RMTL-

∫
3

into
a formula in FOLR compliant with Definition 5, we require an algorithm for
generating weaker inequality conditions. Algorithm 1 can be used to replace
duration terms with new free variables constrained by the nature of those terms,
and propositions with fixed valued logic variables (e.g., p = 1 means that the
proposition P is true in a certain interval). It begins by testing if a formula
contains free logic variables and existential quantifiers. If the formula can be
simplified we proceed, otherwise we return the input formula φ3 (Line 2). Next,
the duration terms are recursively replaced by new fresh variables in υ, minimum
and maximum terms are transformed into quantified inequalities, and weaker
inequality conditions are generated (Line 3). The function Reduce MinMax Terms

applies min/max term substitutions as provided by Axioms A1, A2, and A5;
and the auxiliary function Map RMTLD3 into FOLR abstracts formulas in RMTL-∫
3

into FOLR formulas. It begins by replacing duration terms with new free
variables (Line 7), and for each replaced term the same function is recursively
applied (Line 12). The function Gen Weaker Inequality Conditions generates
the inequality conditions for temporal operators and duration terms using axioms
A3, A4, A5, and A6. Let us now see an illustration of its functionality.

178 A. de Matos Pedro et al.

Example 2. Consider the duration term 0 <
∫ 10

P ∨ φ<. The result of applying
the function Replace Duration Terms to this term is 0 < x. Applying axiom A6
over the formula, and knowing the sub-formula φ∫ := P ∨ φ< and the sub-term
η∫ := 10, results in x = b+ c−a and then 0+

∫ 10
P ∧φ< <

∫ 10
P +

∫ 10
φ<. Now

we are able to generate the weaker conditions. They are (φ< → (c = 10 ∧ a = b))
and (¬φ< → c = 0 ∧ a = 0 ∧ ((p = 0 → b = 0) ∧ (p = 1 → 0 < b))) with a, b, c ∈
[0, 10[and p ∈ {0, 1}.

After this step we have the inequality conditions ready to be simplified using
the CAD technique (Line 4). The formula that was decomposed can then be
reduced or recursively replaced with the terms initially found in the original
formula (Line 5). Note that the function Gen Weaker Inequality Conditions

is not formally described; we assume the existence of mechanisms for application
of the axioms and for calculating the weaker inequality conditions.

Example 3. Let us now see a practical application of the algorithm for a simple
formula. Consider the formula x <

∫ x+1 (P ∧ x < 10), with P a proposition
whose truth value depends on the model parameter t. Since the logic variable x is
used at the level of the relation operator of the formula and in the duration term,
finding a valuation of x that satisfies the formula is not trivial; we can use our
algorithm that generates inequality conditions and reduce the latter conditions
into an RMTL-

∫
3

formula. We begin by replacing
∫ x+1 (P ∧ x < 10) by y and

constraining it by the formula φs := x < y∧0 ≤ y ≤ x+1; replacing proposition
P by p = 1 we get: φs := φs ∧ (x < 10) →

(
p = 0 →

(
x <

∫ x+1
P ≤ x + 1

))
∧

¬(x < 10) → ff. After simplification of φs using CAD we have y = 0 ∧ (z =
0 ∨ (0 < z ≤ x + 1 ∧ p = 1))) ∨ (0 < y ≤ x + 1 ∧ 0 < z ≤ x + 1 ∧ p = 1) if
x ∈ [−1, 0[; and (x < y ≤ x + 1 ∧ x < z ≤ x + 1 ∧ p = 1) if x ∈ [0, 10[. After
applying the function Reduce Inequality Conditions into RMTLD3, the free
logic variables are recursively substituted following the structure of the formula,
with the exception of x that remains unchanged. In the case that x is substituted
by a duration term then we have a decision procedure to compute the truth value
of the term based on the outcome of the procedure; if x has not been replaced
by a duration term and x is not quantified then we need to quantify it explicitly,
otherwise the formula cannot be evaluated. Note that ∀x φs ↔ ff and ∃x φs ↔ tt.

5 Computation of RMTL-
∫
3

Formulae

Given the definition of RMTL-
∫
3
, we can derive an evaluation algorithm for

monitor synthesis. In what follows we will present the algorithm and study the
time complexity of the computation with respect to both trace and formula size.

We begin with a set of preliminary definitions. The set of timed sequences
is denoted by K, the duration of the timed state sequence κ ∈ K is denoted
by d(κ), and the set of logic environments is denoted by Υ. Let B4 be the set
{tt4,ff4,⊥4} ∪ {r} where r is a new symbol that will be used only for purposes
of formulae evaluation, and D the set R≥0 ∪ {⊥R}. The function subK : (K ×

Monitoring for a Decidable Fragment of MTL-
∫

179

Υ×R≥0) → R≥0 → K defines a timed sub-sequence constrained by the interval
]t, t + γ], where t and γ are real numbers to be used as parameters in subK.
The function mapB4 : B3 → B4 maps tt to tt4, ff to ff4 and ⊥ to ⊥4; mapB3 :
B×B4 → B3 maps (tt, r) to ⊥; (ff, r), (ff,ff4), and (tt,ff4) to ff; and (ff, tt4) and
(tt, tt4) to tt. We will employ a left fold function defined in the usual way.

From close examination of the operators, the corresponding Compute(¬) and
Compute(∨) evaluation functions have time complexity constant in the number
of timed sequence symbols, and linear in the size of the formula. Let us consider
the functions Compute(η) :: (K×Υ) → R→ Γ → D and Computeϕ :: (K×Υ×
R≥0) → Φ3 → B3 for the evaluation of U< and <, and the term

∫
.

Fig. 1. Evaluation of the operators U< and <, and of duration terms

Operator U<. Given formulas φ1, φ2 and γ ∈ R≥0, the formula φ1 U<γ φ2

is evaluated in a model (κ, υ, t) by the function Compute(U<) : (K × Υ ×
R≥0) → R≥0 → Φ3 → Φ3 → B3, defined in Fig. 1. We report here only

180 A. de Matos Pedro et al.

on the computation function Compute(U<); the remaining functions would be
Compute(U=) for punctual until, Compute(S<) for the non-punctual dual opera-
tor, and Compute(S=) for the punctual dual operator. These operators have at
most two new branches. Given an input κ with size nκ, and m a measure of the
number of temporal operators in ϕ, we obtain from the structure of the computa-
tion the lower bound of time complexity 2(nκ)2 ·m(ϕ)−4(nκ)2+nκ ·m(ϕ)−2(nκ).

Operator <. Given two terms η1, η2 ∈ Γ, the formula η1 < η2 is evaluated
relative to a model (κ, υ, t) by the function Compute(<) : (K × Υ × R≥0) →
Γ → Γ → B3, also shown in Fig. 1. The time complexity of this computation is
constant, since any formula containing only the relation operator < cannot have
the size of the formula greater than one or consume any input symbols.

Term
∫
. The evaluation of a duration term

∫ a
φ in the model (κ, υ, t) is per-

formed by the function Compute(
∫

) : (K × Υ) → R≥0 → R → Φ3 → D, again
defined in Fig. 1. It has linear time complexity in the size of the timed sequence,
and constant time complexity in the formula size. + and × terms are directly
mapped into their respective computational operations. The complexity of those
operations is directly related to the number of terms. Given a formula ϕ and a
measure mη describing the number of operators + and × occurring in a formula
ϕ, we have a linear lower bound of time complexity in mη(ϕ).

Time Complexity of the Evaluation Algorithm. We are now in a position to
present the recursive top-level evaluation Algorithm 2 excluding punctual tem-
poral operators, using the previous definitions for auxiliary computations. Let
m be a measure for ∨, <, temporal operators, and non-rigid terms. Given the
complexity of these formulas and term operators, and knowing that all temporal
operators have the same complexity as the until operator, we have by semantic
definition that any combination of formulas has higher complexity. As such, the
complexity of Algorithm 2 is polynomial in the input size of the formula and the
timed state sequence, as given by the lower bound identified above.

Monitoring for a Decidable Fragment of MTL-
∫

181

6 Experiments

Our approach uses an offline algorithm for formula simplification, and an online
evaluation procedure that can be directly applied for the synthesis of runtime
monitors. We will now show an example of application of Algorithm 1 for mon-
itoring the budget of a set of resource model (RMs); then we will present the
empirical validation of the complexity results for Algorithm 2.

RMs are mechanisms to ensure time isolation between tasks. In the case of
periodic RMs [18], they are defined by a replenishment period and a budget
supply. The budget supply is available as time passes, and is replenished at each
period by the resource model. Elastic periodic RMs are resource models contain-
ing elastic coefficients (similar to spring coefficients in physics), describing how
a task can be compressed when the system is overloaded, allowing RV of impre-
cise computation. Naturally, the coefficients need to be constrained (linearly or
non-linearly) before execution. Intuitively, the idea is to check the coefficients
according to the polynomial constraints using our static phase, and provide the
simplified formulas for the further runtime evaluation phase.

Let us now extend Example 1 for multiple RMs, considering without loss of
generality the case of two RMs. We will use indexed formulas φmi

, ψmi
with

0 ≤ i < 2, and let αi, αai be pre-defined constants. For measuring their budgets
we could use the following invariant:

n−1∧

i=0

φmi ∧ �<∞∗

((
n−1∧

i=0

φmi

)

→
(

0 ≤
n−1∑

i=0

ci ×
∫ αi

ψmi < αb ∧ rm ∧ ♦=π

n−1∧

i=0

φmi

))

,

where ci are coefficients that have different weights for each RM, compliant with

the restrictions rm constrained in the interval [0, αb[, αb ∈ R≥0, and
n−1∧

i=0

φmi

corresponds to the periodic release of the RMs with period π. A more detailed
description can be found in [12]. The problem is then to find values for c1, c2

satisfying the constraints r1 := 1
250 (245− 444x+200c1

2) = c2, r2 := 1− c1 = c2,
or r3 := 1 − c1

2 = c2, as shown in Fig. 2, based on two duration observations
over ψmi

formulas.

Fig. 2. Inequality con-
straints

We will use Algorithm 1 for discarding possible
inconsistencies, and decompose the formulas into sub-
formulas that are free of quantifiers. Let us simplify
the previously defined invariant for two resource mod-
els where the coefficient c0 is existentially quantified
and constrained by r2. After some transformations on
the formula we obtain

φ1
	< := φm0∧φm1∧¬(tt U<∞∗ ((φm0∧φm1∧¬♦=π (φm0 ∧ φm1))∨(φm0∧φm1∧¬φ1

<))),

such that φ1
< := ∃c0 0 ≤ c0 ×a+ c1 × b < αb ∧1− c0 = c1 ∧ c0 ≥ 0∧ c1 ≥ 0 holds.

Duration terms have been replaced by the logic variables a and b. Since Axioms

182 A. de Matos Pedro et al.

A3 and A4 cannot be used here for isolation purposes, we have to substitute the
inequality formula by a constant Θ. We will then have an isolated formula, and
apply CAD to determine if φ1

< is satisfied. If it is, then we directly replace Θ
by tt, otherwise we have the bounds that satisfy φ1

<. For this case, we obtain
(a = 0 ∧ b ≥ 10 ∧ 0 ≤ c1 < 10

b) ∨ (a = 0 ∧ 0 ≤ b < 10 ∧ 0 ≤ c1 ≤ 1) ∨ (a ≥
10 ∧ a−10

a−b < c1 ≤ 1 ∧ 0 ≤ b < 10) ∨ (b ≥ 10 ∧ 0 < a ∧ a < 10 ∧ 0 ≤ c1 <
a−10
a−b)∨ (0 < a < 10∧0 ≤ b < 10∧0 ≤ c1 ≤ 1). This is applied recursively for all

the terms that have been substituted by fresh logic variables. In this particular
case there are no subsequent iterations. After these steps the simplified bounds
are ready to be evaluated by the online method.

Fig. 3. Experimental validation of the complexity results

Let us now discuss the complexity of Algorithm 2 and establish an empirical
comparison with the lower bounds presented previously. We observe that the
generation of nested durations is more critical on average than the nesting of
temporal operators. This result matches the semantics of both terms and formu-
las, since the duration terms can integrate any indicative function provided for
any trace, unlike the until operator that requires a successful trace to maximize
its search. Consider Fig. 3a, where the boxes i1 to i6 are respectively the intervals
]10j , 10j+1] for all j ∈ [1, 7[. They represent the number of cycles performed by
folding functions. The results confirm that as the number of until operators stabi-
lizes and the number of duration operators increases, the computation time also
increases at a higher rate due to the presence of durations. This occurs for gen-
erated uniform formulas and traces; deep nesting of until operators and nested
durations is unlikely to occur in hand-written specifications (it has not been
clearly confirmed whether they are useful for real-life applications). The experi-
ments confirm the theoretical complexity bounds obtained earlier (Fig. 3b). We
have performed the experiments on an Intel Core i3-3110M at 2.40 GHz CPU,

Monitoring for a Decidable Fragment of MTL-
∫

183

and 8 GB RAM running Fedora 21 X86’64; the source code is available from the
first author’s web page.

7 Discussion and Future Work

We have developed a new approach for the RV of hard real-time systems, where
duration properties play an important role, and incremental evaluation is
required. The closest approaches to ours are that of Nickovic and colleagues [13],
who provide synthesis algorithms for MTL specifications, and the work of Pike
and colleagues [16], who have developed a framework based on a formal stream
language, together with a synthesis mechanism that generates monitors. How-
ever, none of these previous approaches is sufficiently expressive to allow reason-
ing about duration properties, which is the novelty of our work.

The first level of operation of our approach consists of offline analysis for the
simplification of formulas by means of quantifier removal techniques; the second
is an online evaluation algorithm for RV purposes. We restrict syntactically and
semantically the two-valued MTL-

∫
logic, with a three-valued interpretation.

Incremental evaluation allows our technique to handle millions of samples, with
formulas containing hundreds of operators. It remains to be seen whether exten-
sions of LTL that are strictly more expressive than MTL, such as TPTL [4] could
be used as an alternative for dealing with durations.

Acknowledgments. This work was partially supported by National Funds through
FCT/MEC (Portuguese Foundation for Science and Technology), co-financed by ERDF
(European Regional Development Fund) under the PT2020 Partnership, within project
UID/CEC/04234/2013 (CISTER); by FCT/MEC and the EU ARTEMIS JU within
project ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).

References

1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

2. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: Huizing,
C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS,
vol. 600, pp. 74–106. Springer, Heidelberg (1992)

3. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algo-
rithms and Computation in Mathematics. Springer, Heidelberg (2006)

4. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL.
Inf. Comput. 208(2), 97–116 (2010)

5. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.B.: On expressiveness and com-
plexity in real-time model checking. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 124–135. Springer, Heidelberg (2008)

6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition: a synopsis. SIGSAM Bull. 10(1), 10–12 (1976)

184 A. de Matos Pedro et al.

7. Gordon, R.A.: The Integrals of Lebesgue. Denjoy, Perron, and Henstock. Graduate
studies in mathematics. American Mathematical Society, Providence (1994)

8. Hansen, M.R., Van Hung, D.: A theory of duration calculus with application. In:
George, C.W., Liu, Z., Woodcock, J. (eds.) Domaine Modeling. LNCS, vol. 4710,
pp. 119–176. Springer, Heidelberg (2007)

9. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About
Systems. Cambridge University Press, New York (2004)

10. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

11. Lakhneche, Y., Hooman, J.: Metric temporal logic with durations. Theor. Comput.
Sci. 138(1), 169–199 (1995)

12. Pedro, A.M., Pereira, D., Pinho, L.M., Pinto, J.S.: Logic-based schedulability
analysis for compositional hard real-time embedded systems. SIGBED Rev. 12(1),
56–64 (2015)

13. Ničković, D., Piterman, N.: From Mtl to deterministic timed automata. In: Chat-
terjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167.
Springer, Heidelberg (2010)

14. Ouaknine, J., Worrell, J.B.: Safety metric temporal logic is fully decidable. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425.
Springer, Heidelberg (2006)

15. Ouaknine, J., Worrell, J.B.: Some recent results in metric temporal logic. In:
Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer,
Heidelberg (2008)

16. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace,
G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–
359. Springer, Heidelberg (2010)

17. Pnueli, A.: The temporal logic of programs. SFCS 1977, pp. 46–57. IEEE Computer
Society, Washington (1977)

18. Shin, I., Lee, I.: Periodic resource model for compositional real-time guarantees.
RTSS 2003, pp. 2-13. IEEE Computer Society, Washington (2003)

19. Tarski, A.: Introduction to Logic and to the Methodology of Deductive Sciences.
Dover Books on Mathematics Series. Dover Publications, New York (1995)

