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Abstract

The modern digital era is characterized by a plethora of emerging technologies, methodologies and techniques that are employed in the
manufacturing industries with intent to improve productivity, to optimize processes and to reduce operational costs. Yet, algorithms and
methodological approaches for improvement of energy consumption and environmental impact are not integrated with the current operational
and planning tools used by manufacturing companies. One possible reason for this is the difficulty in bridging the gap between the most advanced
energy related ICT tools, developed within the scope of the industry 4.0 era, and the legacy systems that support most manufacturing operational
and planning processes. Consequently, this paper proposes a conceptual architecture model for a digital energy management platform, which is
comprised of an IToT-based platform. strongly supported by energy digital twin for interoperability and integrated with Al-based energy data-
driven services. This conceptual architecture model enables companies to analyse their energy consumption behaviour, which allows for the
understanding of the synergies among the variables that affect the energy demand, and to integrate this energy intelligence with their legacy
systems in order to achieve a more sustainable energy demand.
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reduction of EC by 2020 and 32.5% reduction by 2030
compared to 2007 baseline projections [3]. To achieve such
scenario, the European Commission has launched the “Energy

1. Introduction

Climate change urges nations worldwide to take strong and

assertive actions towards the mitigation of global warming and
its impact in citizens. The current trends in energy consumption
(EC) and related emissions will lead us to a bleak future.
especially when considering the recent data regarding historic
levels of emissions, 1e. the rise of energy-related CO2
emissions to reach the all-time high levels of 33.1Gt in 2018
[1]. On this note, the European Union (EU) is undertaking an
ambitious roadmap, called “European Green Deal”, to become
the first climate-neutral continent by 2050, as well as to slow
down global warming and mitigate its effects [2]. Within this
mitiative, the EU has made the commitment of achieving a 20%
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Efficiency Plan”, seeking to promote industrial energy
efficiency by establishing strict energy requirements for
industrial machinery and equipment [3].

The manufacturing industry is amongst the biggest
consumers of primary energy, representing 31% of the primary
EC, as well as amongst the largest CO2 emitters [4]. This
industrial sector 1s capable of increasing the energy efficiency
from 18% to 26%, and of reducing CO2 emissions from 19%
to 32% [4]. with long-term  1mprovement
capabilities of up to 60% energy-efficiency ratings in the long-

unrealized
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term due to its extensive size and meaningful impact in the
global energy efficiency [5].

The use of digital technologies and operations research
methodologies for improving industrial efficiency has had
mcreasing efforts since the advent of the industry 4.0 paradigm.
born from the German Plattform Industrie 4.0 set out in 2013
[6]. The mdustry 4.0 (14.0) paradigm presents a set of
contemporary technological advances that integrate physical
objects, virtual models and services, as well as coordination
efforts [7], that present three major benefits to the
manufacturing industry: reduction of operational costs;
merease in production efficiency; and additional revenues from
the servitisation of products [8]. In what concerns ICTs used
for energy-efficiency purposes, the EU Strategic Energy
Technology Plan (SET) aims both to propose an mteroperable
reference architecture, significantly improving the electricity
consumption management and reduction of costs while
mereasing the penetration of user-friendly tools [9], as well as
to promote changes in the energy mix towards increasing use
of renewable and sustainable alternatives following the efforts
put forward since the Paris Agreement [10].

Clearly, there 1s a need for stronger efforts to integrate all
the developed digital solutions to achieve a smart, holistic,
scalable and green manufacturing industry environment based
on energy efficiency and cleaner environmental footprint.
Therefore, this paper proposes a conceptual architecture model
for an interoperable and holistic energy management digital
platform for manufacturing plants. This conceptual architecture
model will leverage energy data interoperability. capable of
enriching existing legacy systems with intelligent energy
perspective, thus, covering the gaps previously identified.
Moreover, it will promote flexibility. interoperability and
secure communication, in order to be the supporting ground for
virtual and real-time simulation & optimization of industrial
processes towards leapfrog improvements i energy efficiency.
Its modularity perspective allows for numerous combinations
of services regarding the manufacturing sector context and the
mdividual characteristics of the industrial units.

2. Literature Review

The conceptual architecture model proposed in this research
1s an abstract framework for multi-case istances, based on
multiple combinations of implementation configurations, and
designed for empirical applications and solutions of
manufacturing companies [11]. In the reference models’
literature there are multiple instances targeting energy-related
aspects, such as those pertaming electrical energy systems in
Smart Grid environments [12], green buildings’ construction
[13], and cross-flow turbines [14]. Most of these reference
models present sufficiently complete frameworks to address
specific problematics in energy manufacturing domains.
Additionally, there are multiple reference models for the digital
technologies, such as the digital twin architecture reference
model for cloud-based cyber-physical systems [15], Internet-
of-Things (IoT) middleware [16], and hybrid reference model
matching with virtual reference feedback among smart
controllers [17]. Yet, it is clear that there 1s a lack of a
conceptual reference architecture model for a combined

approach of Industrial Internet-of-Things (IToT), Digital Twin
and 14.0 enabling technologies, with energy data driven services
and data ubiquity, on an mteroperable digital platform targeting
energy management and efficiency. Each of these aspects is
further described on the following subsections.

2.1. Interoperable Digital Platforms for Energy Efficiency

In technical terms, digital platforms are presented in a multi-
layer setup that ranges from web portal and business
mteractions to the software tools and data management layers,
as well as the communication layer that intertwines the entire
ecosystem [18]. The foundation is usually constituted of a
semantic infrastructure, with ontologies and mference rules,
which is combined with a database to enable ecosystem data
management capabilities and interoperability among different
assets. The services are applied 1 a plug-and-play fashion into
the ecosystem data manager, and further mtegrated mto the web
portal through a gateway orchestrator [19].

Digital plattorms have notorious mmplications for the
economy given their mmherent separation between physical &
virtual assets and the value created by them [20]. In order to
enhance the collaborative potential and the widespread
dissemination of mformation & data, a holistic value network
perspective must be adopted, which expands from the simple
matchmaking of manufacturing resources to a manufacturing
ecosystem network. With such approach, the digital platform
can combine tools and ecosystems, through which sustainable
use of resources may be achieved [20]. The drivers to the
development and implementation of digital platforms for the
manufacturing industries. also known as digital platform
atfordances, usually pertain the bridge between technological
availability & maturity. and the human-machine interaction
capabilities. They have been identified as follows [20]:

e The need for enabling flexibility (from modular-driven
services and sharing economy to user-IO and role changing
capabilities) [21];

e Matchmaking between different attributes [22];

o Scalability capabilities and cross-sectoral reach extensions
[23]:

e Management of all transactions in the ecosystem [24];

¢ Building trust through high-security measurements and full
mformation transparency among players [18]:

e Support the engagement of the network with the aim of
establishing a strong community [25].

Despite conceptual developments and the availability of
solutions, a flexible, secure and interoperable digital platform
has not yet been developed with the clear purpose to assess the
energy-efficiency of industrial complexes through smart
sensoring and simulation & optimization capabilities.

2.2. Energy Related Data Ubiguity

In order to achieve decreased EC, energy efficiency and
carbon footprint reduction, companies can implement changes
on manufacturing processes, which can range from renewable
energy generation, energy transformation techniques and



Pedlro P. Senna et al. / Procedia Manufacturing 51 (2020) 1117-1124 1119

ubiquitous sensing, to smart machinery control and
development of energy/comfort systems (light, air, heating and
cooling, windows and doors) [26]. One way of reducing the EC
1s by increasing the efficiency of existing machinery, 1.e. belt
conveyors energy efficiency mereased through variable speed
control [27]. Another way is reusing the wasted energy nside
the plant. Heat waste energy can be transformed mto another
form of energy, generally electricity. These techniques deal
with the reduction of EC in individual plants separately, but a
collective approach targeting multiple industrial units can be
achieved through the deployment of industrial symbiotic
techniques, which mvolve the exchange of materials, energy.
water and by-products [28].

Due to the powerful embedded devices available today, the
computing power is being brought closer to sensors and many
tasks previously executed on desktop computers, SCADA
(Supervisory Control and Data Acquisition) systems or cloud
are being moved to smarter Internet-of-Things (IoT) devices.
This strategy allows data pre-processing and filtering, reducing
the amount of storage needed for applications, which 1s very
important due to the huge amounts of data generated by IoT
devices and the data transmission through the network [29]. In
addition. this strategy reduces the response time in control
applications, enabling real-time control, converting the IToT
sensing devices into smarter components usually referred as
edge computing devices [30]. These devices are commonly
connected to the cloud for data storage and updating of the
machine learning algorithms used to forecast and control. Most
modern architectures allow for online update of the models
while the ToT device 1s in operation.

Energy measurement and forecasting opens up the
possibility to apply smart control to energy and production
systems. Production line measurements and forecasts are
combined m the literature with other data to reduce the EC and
CO2 footprint of the manufacturing process. Nevertheless.
seldom research has attempted to combine all the different
approaches. Energy forecasting of complete manufacturing
lines or buildings have much greater potential. as it allows for
a global optimization that includes not only the EC or the cost,
but also other variables. Although several works in commercial
areas and energy systems in buildings in general are available,
there are few works that tackle energy reduction at an industrial
level.

2.3. Energy Data Driven Services

Most industrial facilities are increasing their energy
etficiency by implementing ISO 50001 approved methods [31].
aiming to decrease energy costs and greenhouse gas emissions.
This standardized practice provides monitoring and awareness
of EC to human decision-makers, but does not provide
prescriptive analysis and/or autonomous process control.
Moreover, basic descriptive analytics (e.g., linear regression)
might lead to inadequate and simplified models of energy
efficiency monitoring [32], since they do not consider different
factors, such as financial costs, size of the installation,
consumption of different raw materials, implementation of
other energy efficiency actions, etc. It is also important to
underline that the level of awareness regarding EC remains low

in several manufacturing processes mainly due to difficulties in
obtaining shop floor calibrated measurements [33]. The state-
of-the-art data-driven services are mainly limited to:
product/key parts EC information monitoring and forecasting
to estimate indicators (e.g.. EC proportion of each key part) and
integrate them in green material selection [34]: evaluate daily,
week and yearly trends of EC [35]; and, cloud-based services
for EC estimation in machining operations, including
information from human operators and process plan [36]. In
terms of process control and energy optimization, different
studies explored model-driven energy optimization techniques,
such as integer programming for peak load reduction n steel-
plants [37] and robust optimization for real-time control of a
steel powder manufacturing process under varying prices [38].

The advent of ToT technology offers technical conditions for
data-driven approaches for energy optimization, where, for
instance, each process can be represented by a process
nput/output matrix [39] or a virtual battery [40]. This approach
does not require a full modelling of the process equations since
its understanding 1s made 1in real-time through data and can be
combmed with a digital twin manufacturing system that
performs simulations and decisions for different energy-saving
purposes 1 a virtual space, e.g. event-driven energy-saving
decision method that switch machines to sleep mode with
minimum etfect on the system throughputs [41].

Recent advances in machine and deep learning techniques,
combined with the increasing monitoring and simulation
capability offers by the 14.0 paradigm, enables different use
cases for data-driven services, namely:

e Detection of abnormal consumption patterns and root-cause
analysis to find energy efficiency actions.

e Benchmarking either between similar manufacturing
industries or between “perfect” (in terms of energy
consumption) digital twin and real factory.

e Data-driven modelling of industrial processes (including
energy consumption) and inclusion in digital twin
simulation as proxies to produce recommendations for
optimal tuning scenarios.

e Estimate process flexibility for power system ancillary
services provision (see [42] for taxonomy and more details
about flexibility and ancillary services products). e.g.
predictive consumption curtailment to offer peak load
reduction to transmission system operators.

o Predictive control for energy optimization of continuous and
energy-intensive processes.

For the last two services, some promising techniques from
the state-of-the-art can be exploited. For flexibility modelling,
the representation proposed in O’Connell et al. [43] for
flexibility (1.e., power versus duration curves), and modelled
with  ARMAX (Auto-Regressive Moving Average with
eXogeneous Input) models, can be extended to heat or coal
based industrial processes. With this modelling approach, the
industrial consumer can estimate the power flexibility and
present offers in the electricity market (direct participation or
represented by a market aggregator). For predictive energy
optimization of continuous processes, a promising approach is
to combine supervised learning (development of functional
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relations between state and control variables for different types
of processes and forecast demand in energy mtensive flows)
and reinforcement learning (self-learning — e.g. through
Proximal Policy Optimization methodology) for emulating the
physical environment from data. This approach was applied to
control the variable-speed pump operation in wastewater tanks
(see Filipe et al. [44.,45] for more details), and can be extended
to other industrial processes if data from sensors that
characterize the system state are available.

2.4. Digital Twin for Predictive Energy Management

Usually, IoT solutions applied to the energy domain can be
structured in three logical layers [46]:

o Wireless sensor networks, which detect the signal coming
from the production line;

e Registers (accumulators), where the energy consumption is
measured and stored separately for process:

e External servers and software to monitor the energy
consumption i the factory.

An example of such solutions are the distributed real-time
energy monitoring system, build upon the wireless sensor
network. aimed at supporting machine scheme selection and
energy quota allocation in the shop floor [47]. On the top of the
data acquisition layer, a digital twin (DT) can be applied to
model the characteristics of the real networked system. This
concept 1s further extended to the shop-floor, thus achieving the
digital twin shop-floor (DTS) [48], which aims at merging the
physical and virtual spaces to optimize the current production
activities. In DTS, every element m Physical Shop-tloor
(human, the equipment, the material and the environment) has
its digital representation [49]. A DTS allows the mtegration of
data provided by both the physical and the virtual space to
optimise performances of the system and manage energy
consumption. These technologies allow the management of
varlous system parameters concurrently, making them suitable
for managing complex systems. Applications i this field
allowed to address energy consumption monitoring, data
analysis, energy efficlency improvement, environmental
impact reduction, productivity merease and cost reduction [50].

3. Architecture Model for a Digital Energy Management
Platform

The conceptual architecture model for Digital Energy
Management Platform was designed through a combination of
literature review and non-structured interviews. The literature
review considered both scientific and grey literature, and aimed
at understanding the current state-of-the-art of architectures for
digital platforms targeting energy outcomes by combining ICT
techniques and tools into legacy systems and smart machinery
within ~ manufacturing companies. The non-structured
mterviews were conducted with manufacturing companies
from five European countries (Germany, Spain, Portugal, Ttaly
and Sweden), and among different manufacturing sectors:
testing and experimentation facilities, automotive parts, iron
foundry, textile and chemical. These interviews sought to

comprehend the requirements of manufacturing companies
across industrial sectors regarding energetic aspects of
production lines. Based on this research methodology, a
conceptual architecture model for Digital Energy Management
Platform was developed, grounded on six main perspectives,
towards bringing energy efficiency into the manufacturing
industry. These perspectives are further defined:

s Support a digital continuity paradigm towards an optimal
energy management in a holistic way along the entire value
chain.

¢ Provide a holistic and ubiquitous energetic information for
full energy demand and consumption characterization
amidst the different levels of granularity of complex
manufacturing systems. This is achieved through an open,
standardized and interoperable energy management
tramework, which is fully synchronized with real industrial
environments.

¢ Enable energy data interoperability with manufacturing
legacy system to include the energy and sustainable
perspectives within the regular planning and optimization
tools. Enriching manufacturing and enterprise legacy
systems with energy intelligence will enable manufacturing
companies to take decision also considermmg energy
efficiency, maximization of energy use from RES and
reduce costs with energy.

¢ Understand synergies between endogenous and exogenous
variables and its mmpact on energy consumption. Using
Artificial Intelligence as a tool to 1dentify patterns on energy
demand and generate intelligence on energy consumption
behavior, 1t 1s expected to support manufacturing companies
in understanding multi-variable cause-effect relations with
impact on energy demand and consumption

¢ Expand Human worker cognitive capabilities to take the
most sustamable option i their decision-making process.
Using proper human centric technologies, it 1s possible to
provide humans with energy ntelligence that can rule the
decision-making along the entire value chain.

¢ Optimize energy demand and promote reduction of costs
and of environmental impact through smart idustrial
processes’ configuration and parametrization. The key to
fulfill this purpose 1s a set of innovative data-driven energy
services, capable to prescribe mdustrial processes
configuration and assets parameterization towards energy
efficiency, environmental impact mitigation and energy cost
reduction.
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In order to improve their energy efficiency. companies may
apply managing and monitoring activities on their factory,
product and process designs in an integrated way. Typically,
this incurs in optimizing the parameterization and configuration
according to the specificities of the task in production, such as
the product composition and the environmental characteristics
(e.g. weather conditions). Furthermore, it looks to put forward
the simulation tools to explore and validate potential industrial
and internal processes’ symbiosis, while aiming to prioritize
retrofitting options, which focus on decreasing waste,
leveraging the energy circular economy and maximizing the
return on investment (ROI) when updating or replacing the
assets and machines.

On this note, Al based data-driven services, which are fully
available and accessible to employees, provide richer
mformation on energy demand patterns and potential root
causes, as well as prescribe improvement actions. In this way,
it will be possible to make effective and sustainable data-driven
decisions, as well as to anticipate the future impact of these
decisions, especially in foreseeing potential energy savings and
energy costs. The conceptual reference architecture model for a
digital energy management platform will bridge two main
concepts: (1) the supporting information & communication
technologies (ICTs) emerging within the 14.0 context; and, (i1)
the enterprise/manufacturing systems and external systems
specific from the energy industty (Fig. 1). On a broad
perspective, the conceptual reference architecture model aims
to integrate these perspectives to propose a holistic and
distributed Energy Management Expert
mplemented n SMEs & mid-caps, in big companies and n
multinationals.

suitable to be

3.1. Pillar 1 — Factory Driver 10

The main idea of the Factory Driver 10 is to create an
abstraction layer that makes mteraction with the production
system easier from high-level applications. Considering the
huge quantity of energy-related data that 1s expected to be
generated, 1t becomes critical to use emergent data management
and data fusion techniques capable of pre-processing them and
guaranteeing its accuracy and quality, which 1s achieved
through edge computing techniques. A set of edge devices,
based on Graphic Processing Unit (GPU) System-on-Chip
(SoC) will be used given their seamless development, increased
reliability and reduced costs & power consumption. These use
mdustrial protocols to connect to sensors, actuators, robots and
other machines, and the rest of applications, generating a
unified interface. The edge devices will be installed in the
production line, being capable of supporting most common
industrial protocols such as Profibus, Profinet and Modbus. The
architecture supports different field bus protocol in each edge
device and even more than one protocol per edge device,
providing flexible and hybrid communication networks. All
low-level configurations are encapsulated in the edge device,
which provides access to the production system always with the
same data type and units, regardless of the type of sensor or
communication protocol used at shop floor level. Thus, it
becomes possible to distribute the data processing while
keeping local control of processes and machines according to

strict guidelines, mitigate the data flow with the platform,
reduce data latency and guarantee stronger capacity for agile
detection of bad behaviours with quick reaction. This approach
will tremendously ease the development of high-level
algorithms, like energy forecasting or digital twins, which do
not need to deal with low-level details.

3.2. Pillar 2 — Human-Machine Interaction

An mmportant perspective of 14.0 1s the empowerment of
employee’s cognitive capabilities towards a more intelligent
and complex decision-making process, taking advantage of
enabling technologies explored and developed within the scope
of the 14.0. Thus, the main objective of this pillar is to study and
assess enabling technologies, such as Augmented and Virtual
reality, 3D simulation environments and other technologies
capable of: (1) presenting relevant energy-related information at
the r1ight moment to decision makers in a more human-centric
way and (i1) enabling the power of data driven services (Pillar
4) for humans and guaranteeing that these services can be used
mteractively by decision makers according to their needs.
These will take advantage of the green and energy efficient
framework, which will be explored m Pillar 3, mn order to
exploit a complete and mnovative way of presenting
mformation for different decision makers along the complex
manufacturig system levels (from the shop floor to the factory
and supply chain perspectives). It seeks to build rich, modular
and 1nteroperable energy imformation models, capable of
mtegrating and empowering existing digital twin models (e.g.
production, product and building models) to support the
creation of immersive environments. In these immersive
environments, decision makers can enhance their awareness
about real-time EC, efficiency and quality, comparisons with
their digital shadow behaviour, receive alerts of potential
problems and a prognosis about the root causes and pomts of
attention. Workers can also benefit from real-time data and
mformation exchange, which will enhance productivity, safety
and complexity. while providing security and reliable decision-
making strategies.

3.3. Pillar 3 — Energy Data Modelling & Standardization

Given its role in increasing energy-efficiency, the semantic
interoperability based on standardized ontologies brings a
significant value proposition for the complete integration of IoT
energy-related information in the manufacturing domain. This
evolution overcomes the limitations imposed by complex
solutions of existing systems architecture, where different
manufacturing systems already exist, as well as optimization
and planning tools, sometimes from different providers or
belonging to monolithic solutions. Yet, it requires more, and
better, energy information to achieve greater green- and energy-
efficient performances. The standardization of solutions and
data models, and the interoperability across IoT services and
datasets through reference ontologies (developed i the scope
of this pillar), are key concepts towards the effective adoption
of new ICT technologies and empowerment of existing ones for
energy management. This pillar 1s executed with the mam
objective of enabling standardization and acceptance of new
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data models, both in the research and mdustrial domains,
capable of leveraging new green- and energy-efficient
certifications, labelling and regulation procedures.

3.4. Pillar 4 — Data-driven Services

The main motivation behind data-driven services 1s that
physical modelling of different industrial processes might be
complex and/or expensive to obtain and it does not fully boost
the replication potential of the Energy Management Expert
System. Thus, the data collected from energy- and process-
related smart sensors, which 1s aggregated and pre-processed in
the IloT Platform, and potentially combined with data collected
from digital twin simulation models, 1s exploited to offer data-
driven energy services supported by: (i) big data solutions and
(1) state-of-the-art Al modelling framework from the AT4EU
platform. The following groups of services can be developed
and integrated with the Energy Management Expert System:

e Predictive analytics (or prognosis): Forecast optimized
process operations, such as finding functional relations
between state and control variables of industrial processes

energy Modelling

uncertainty (e.g.. unplanned events and other perturbations)

with influence 1in consumption.
will be a key requirement to assess feasibility of process
scheduling. These busmess-driven analytics can also
provide real-time analytics and simulation (e.g., embedded
m the digital twin) of KPIs related to energy consumption.

e Prescriptive analytics: Self-control of energy consumption
m continuous industrial processes that can operate with
minimum control and monitoring requirements and are
easily traceable and adaptive to process changes. Root cause
analysis of abnormal consumption partners and cause-effect
analysis for identification of energy-efficiency actions are
also envisioned services. These services can work both
centralized and decentralized decision-making frameworks.

The main challenge is to produce a modular framework for
energy services, which can be adjusted and scaled to model
systems that are contimuously changmg while covering
different end-user requirements. Moreover, a human-centred
perspective on the mterface design must be considered in order
to enable humans to best exploit the available data, make better
decisions, focus on core tasks and be able to perform better
an increasingly networked work environment, therefore being
mtegrated with the Factory Driver I/O of Pillar 1 and with the
Human-Machine Interaction of Pillar 2.

3.5. Energy Management Expert System

Considering the complexity of today’s manufacturing
systems, it 1s clear that decision makers at all levels of the
organization and value chain need expert systems for real-time
decision-making on a broader, holistic overview. Therefore, for
emergent topics with complex settings (i.e. high number of
variables, multiple trade-off scenarios, synergetic nature and
requirements, and impact on business drivers), such as the
energy efficiency m manufacturing, this represent a huge
advantage. Therefore, the conceptual reference architecture
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model explores the development of intelligence (pillar 4)
capable of enriching existing planning and management
enterprise tools, through a seamless interoperable mechanism
based on energy digital twin models (pillar 3), with a holistic
view on energy quality and demand (pillar 1), while exploring
human-centric technology to enhance human decision makers’
cognitive capabilities (pillar 2).

The mam challenge of the Energy Management Expert
System is related to the need to take advantage of intelligence
related to energy demand and quality, and integrate it with the
enterprise and manufacturing systems, towards a more efficient
EC profile. This will be achieved through four different
approaches:

e Energy Intelligence for Legacy Systems, which focuses on
energy-related  mformation imteroperability  through
different perspectives of the production system
management, aimed at achieving optumal energy saving
potentials, energy- and eco-efficiency (by using energy

mtelligence integrated mto scheduling tools — Green
Scheduling), while maintaining business targets (use of
ERP/MES, production planning tools, enterprise

management systems, product design & management tools).

o Life Cycle Assessment and Cost Analysis (LCA/LCC)
tools, which are mtegrated in the digital energy platform, to
support the assessment of the best energy management
decision considering past performances and forecasted
energy behaviour, all of which are obtained through the
industrial pilot cases. Having both a company-specific and
a value chain-oriented approach, this integration will
provide sustainability values enabling to compute the
different scenarios related to energy usage and provide
optimization capabilities.

¢ Simulation and Optimization mechanisms supported on the
energy digital twin models developed. Within 3D and
immersive environments, it will be possible to create and
validate hypothesis not only related to the company’s
layout, product characteristics and industrial processes
configuration, but alse to their synergies and impact on
different energy perspectives.

o Self-Automation and Control capabilities, achieved through
an energy control station, where managers from the
mdustrial pilot cases can define very simple business
guidelines, based on IF/THEN/ELSE logic capable to be
deploved in the edge computing mfrastructure for cyber-
physical systems (CPS) control towards a more energy-
efficient performance.

4. Illustrative Use Case

To validate the proposed conceptual architecture model, a
theoretical case study was designed based on the case research
protocol from Yin [51]. For this purpose, a Portuguese iron
foundry manufacturing company was selected, which produces
rough and pre-machined parts in nodular and grey iron for the
automotive industry. This theoretical case study focuses in the
operational optimization of the brazing furnaces used for
welding, through real-time energy consumption prediction and
digital twin. The furnaces’ overheating processes demand a
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massive EC to achieve a temperature of 1500°C, on average, to
conduct their melting tasks. This temperature set point depends
on a set of variables, such as the final product characteristics
and the composition of the raw material used, and their correct
calculations are considered critical to achieve balance between
quality and EC. Tt is, therefore, a complex set of processes,
which is currently conducted by well-trained and experienced
workforce. Nevertheless, to achieve optimized energy
efficiency, it 1s necessary to implement intelligent systems to
monitor and control the furnaces by considering the
endogenous and exogenous variables of this complex system.

To overcome this limitation, a digital platform is to be
deployed, where endogenous and exogenous variables can be
collected and pre-processed in real-time to feed Al based data-
driven services. The result is grounded knowledge generation
to allow for controlled optimized decision-making, thus
enabling energy efficiency. Digital twins, each exclusive to a
separate furnace, are to be defined according to the machine’s
specifications, which will consider control mechanisms,
physical-, electro-magnetic- and thermal-curve/behavior, as
well as EC patterns. This digital model will be continuously
updated with rich information from the algorithms, which will
be pre-processing data from the furnaces, at the edge level, and
publishing information to the cloud in real-time. In parallel, AT
based data-driven services will be reading and correlating this
mformation to generate knowledge that can enrich even more
these digital models so that multivariable nonlinear control of
the overheating process can be performed.

By combining all this information within proper simulation
technologies, it 1s possible to provide decision-makers with the
capability to optimize production planning and configuration,
and the furnace parameterization, towards energy efficiency
while keeping production rate within quality parameters and
reducing environmental footprint. This considers all the
production perspectives (e.g. final product characteristics, raw
materials, furnace’s status and behavior, weather/temperature
conditions). A simulation engine will use this results to enable
operators to monitor the current status of the furnaces and plan
the overheating process considering the production scheduling.

5. Conclusions

In lLight of the challenges set forth by the European
Commission and the current global landscape regarding EC,
environmental 1mpact reduction and the role of the
manufacturing industry, this presented a
conceptual architecture model for a digital energy management
platform. Such conceptual architecture model 1s supported by
four well-designed concepts surrounding data ubiquity, data
driven services, digital interoperable platforms and digital twin
modelling for energy efficiency and environmental impact
reduction.

Moreover, the conceptual architecture model is comprised
of four pillars that promote an energy management expert
system that allows for modular applications of energy data
driven services considering human-machine interactions
through a factory driver 1/o, and with full documentation in
order to establish common framework. The proposed
conceptual framework can be further extended towards full-set

research has

applications and solutions for combined ICT and enterprise
systems’ approach towards enhancement of energy efficiency
in manufacturing industries. Thus, the proposed conceptual
architecture model 1s a scalable. interoperable and holistic
architecture model capable of collecting and pre-processing all
energy-related data, taking advantage of mnovative CPS
connected along the shop floor, enabling access to advanced
Al-based data driven services for generation of energy
intelligence, which can be integrated m manufacturing
companies’ legacy systems.

Future works to build on this research should focus on
validating the proposed conceptual architecture model through
an established multi-case research design, as well as on
developing solutions based on such architecture to be
implemented in manufacturing companies. The multi-case
studies are to be conducted within the manufacturing
companies already interviewed for this research. as depicted
section 3, with a cross-sectorial approach to ensure full
validation of the proposed conceptual architecture model. This
instantiation within industrial companies 1s expected to provide
energy etficiency gains, which lead to life cycle cost reductions
of production lmes and lower environmental impact.

From an academic perspective, the focus should be on
providing interoperability capabilities among enabling
technologies and legacy systems that easily integrate with this
reference architecture model.

Acknowledgements

This work 1s financed by National Funds through the
Portuguese funding agency, FCT - Fundagio para a Ciéncia e
a Tecnologia, within project UIDB/50014/2020.

References

[1] International Energy Agency (IEA. 2019). IEA @ COP25. Available at:
https://www.iea.org/reports/iea-cop25 Accessed on: 10.01.2020

[2] Von der Leyen (2019). The European Green Deal: EU’s Response to
Climate Change. European External Action Service. Available at:
https://eeas.europa.ew/headquarters/headquarters-
homepage/72184/european-green-deal-eus-response-climate-change en
Accessed on: 10.01.2020

[3] European Commission (2018). The Energy Efficiency Directive
(2012/27/EU) and The Amending Directive (2018/2002). Available at:
https://ec.europa.ew/energy/en/topics/energy-efficiency/targets-directive-
and-rules/energy-efficiency-directive#content-heading-0  Accessed on:
05.01.2020

[4] International Energy Agency (IEA). (2007). Tracking Industrial. Energy
Efficiency and co2 Emissions. Available at:
http://www.iea.org/textbase/nppdf/free/2007/tracking_emissions.pdf.
Accessed on: 05.01.2020

[5] International Energy Agency (IEA). (2012). World Energy Outlook 2012,
World energy outlook special report. International Energy Agency, Paris.
France.

[6] European Comumission (2017). Implementation of an Industry 4.0 Strategy
— The German Plattform Industrie 4.0. Digital Single Market. Available at:
https://ec.europa.ew/digital-single-market/en/blog/implementation-
industry-40-strategy-german-plattform-industrie-40 Accessed on:
10.05.2019.

[7] Drath. R.. & Horch. A. (2014). Industrie 4.0: Hit or hype?[industry forum].
IEEE industrial electronics magazine, 8(2). 56-58.

[8] Schumacher, A.. Erol. S.. & Sihn. W. (2016). A maturity model for
assessing Industry 4.0 readiness and maturity of manufacturing enterprises.
Procedia Curp, 52. 161-166.



1124 Pedlro P. Senna et al. / Procedia Manufacturing 51 (2020) 1117-1124

[9] European Commission (2018). SET Plan delivering results: The
implementaiton Plans - Research & Innovation enabling the EU's energy
transition. Publication prepared jointly by European Commission's
Directorates-General for Energy. Research & Innovation and Joint
Research Centre. Publications of the European Union - Project number
2018.5779. Available at:
https://setis.ec.europa.eu/sites/default/files/setis%20reports/setplan_delive
ring results 2018.pdf Accessed on: 05.01.2020.

[10] International Energy Agency (2020). Data and Statistics - Total Primary
Energy Supply by source. European Union - 28 1990-2017. Available at:
https://www.iea.org/data-and-
statistics?country=EU28 & fuel=Energy%20supply&indicator=Total%20pr
imary%?20energy%20supply%20(TPES)%20by%:20source

[11] MacKenzie. C. M., Laskey, K.. McCabe. F.. Brown. P. F., Metz. R., &
Hamilton, B. A. (2006). Reference model for service oriented architecture
1.0. OASIS standard, 12(S 18).

[12] Cespedes, R. (2012. September). A reference model for the electrical
energy system based on Smart Grids. In 2012 Sixth IEEE/PES
Transmission and Distribution: Latin America Conference and Exposition
(T&D-LA) (pp. 1-6). IEEE.

[13] Guo, W., Zhuang, Z.. Yao. J., & Yuan. P. F. (2019, July). Reference
Building Energy Modeling: A Case Study for Green Office Buildings in
Shanghai. In The International Conference on Computational Design and
Robotic Fabrication (pp. 136-144). Springer. Singapore.

[14] Bachant, P.. Wosnik. M.. Gunawan. B., & Neary. V. S. (2016).
Experimental study of a reference model vertical-axis cross-flow turbine.
PloS one. 11(9).

[15] Alam, K. M.. & El Saddik. A. (2017). C2PS: A digital twin architecture
reference model for the cloud-based cyber-physical systems. IEEE access.
5.2050-2062.

[16] da Cruz. M. A.. Rodrigues. I. J. P.. Al-Muhtadi. J.. Korotaev. V. V.. & de
Albuquerque, V. H. C. (2018). A reference model for internet of things
middleware. IEEE Intemet of Things Journal, 5(2). 871-883.

[17] Ling, JI.. Feng. Z.. Ming, M., & Xiao. X. (2018). Damping controller
design for nanopositioners: A hybrid reference model matching and virtual
reference feedback tuning approach. International Joumal of Precision
Engineering and Manufacturing, 19(1), 13-22.

[18] Lee, K., Webb. S.. & Ge, H. (2015). Characterizing and automatically
detecting crowdturfing in Fiverr and Twitter. Social Network Analysis and
Mining, 5(1). 2.

[19] Silva. H. D., Soares. A. L.. Bettoni. A.. Francesco, A. B.. & Albertario, S.
(2019, September). A Digital Platform Architecture to Support Multi-
dimensional Surplus Capacity Sharing. In Working Conference on Virtual
Enterprises (pp. 323-334). Springer. Cham.

[20] Parker, G. G.. Van Alstyne, M. W.. & Choudary. S. P. (2016). Platform
Revolution: How Networked Markets Are Transforming the Economy?
and How to Make Them Work for You. WW Norton & Company.

[21] Bauer. R. M.. & Gegenhuber, T. (2015). Crowdsourcing: Global search
and the twisted roles of consumers and producers. Organization. 22(5).
661-681.

[22] Benoit, S.. Baker, T. L.. Bolton. R. N., Gruber, T.. & Kandampully, I.
(2017). A triadic framework for collaborative consumption (CC): Motives,
activities and resources & capabilities of actors. Journal of Business
Research, 79. 219-227.

[23] Cohen, B.. & Kietzmann, J. (2014). Ride on! Mobility business models
for the sharing economy. Organization & Environment, 27(3), 279-296.
[24] Téuscher, K., & Laudien. S. M. (2018). Understanding platform business
models: A mixed methods study of marketplaces. European Management

Joumal, 36(3), 319-329.

[25] Bames, S. J.. & Mattsson, I. (2016). Building tribal communities in the
collaborative economy: an innovation framework. Prometheus. 34(2). 95-
113.

[26] Manic, M.. Amarasinghe, K., Rodriguez-Andina, I. I., & Rieger, C.
(2016). Intelligent buildings of the future: Cyberaware, deep learning
powered, and human interacting. IEEE Industrial Electronics Magazine,
10(4). 32-49.

[27] Mathaba. T.. & Xia, X. (2015). A parametric energy model for energy
management of long belt conveyors. Energies. 8(12), 13590-13608.

[28] Chertow. M. R. (2000). Industrial symbiosis: literature and taxonomy.
Annual review of energy and the environment. 25(1), 313-337.

[29] Molanes, R. F.. Amarasinghe, K., Rodriguez-Andina, J.. & Manic, M.
(2018). Deep learning and reconfigurable platforms in the Internet of
Things: Challenges and opportunities in algorithms and hardware. IEEE
industrial electronics magazine. 12(2). 36-49.

[30] Yu, W.. Liang. F., He. X., Hatcher. W. G.. Lu. C.. Lin, J.. & Yang, X.
(2017). A swrvey on the edge computing for the Internet of Things. IEEE
access, 6. 6900-6919.

[31] Kluczek, A.. Olszewski, P. (2017). Energy audits in industrial processes.
Journal of Cleaner Production. 142, 3437-3453.

[32] Nakhodov. V.. Baskys. A.. Skeie. N. O.. Pfeiffer, C. F.. Dmytro. L. (2016).
Selection methodology of energy consumption model based on data
envelopment analysis. Electrical. Control and Communication
Engineering, 11(1), 5-12.

[33] Owodunni. O. (2017). Awareness of energy consumption in
manufacturing processes. Procedia Manufacturing, 8. 152-159.

[34] Tao. F.. Bi. L. N.. Zuo. Y.. & Nee. A. Y. C. (2016). (Tao 2016). CIRP
Aummnals. 65(1). 9-12.

[35] Tao. F.. Qi. Q. Liu, A. Kusiak, A (2018). Data-driven smart
manufacturing. Journal of Manufacturing Systems, 48, 157-169.

[36] Mourtzis. D.., Vlachou. E.. Milas. N.. Dimitrakopoulos. G. (2016). Energy
consumption estimation for machining processes based on real-time shop
floor monitoring via wireless sensor networks. Procedia CIRP. 57, 637-
642.

[37] Ashok. S. (2006). Peak-load management in steel plants. Applied Energy.
83(5). 413-424.

[38] Yu, M.. Lu. R., & Hong. S. H. (2016). A real-time decision model for
industrial load management in a smart grid. Applied energy, 183, 1488-
1497.

[39] Paudyal. S.. Caiizares, C. A., Bhattacharya. K. (2014). Optimal operation
of industrial energy hubs in smart grids. IEEE Transactions on Smart Grid,
6(2). 684-694.

[40] Geysen. D., et al. (2016). Simplified assessment methodology for optimal
valorization of flexible industrial electricity demand. EU Project IndustRE.
deliverable D3.3.

[41] Wang. I.. Huang. Y.. Chang. Q.. Li. S. (2019). Event-Driven Online
Machine State Decision for Energy-Efficient Manufacturing System Based
on Digital Twin Using Max-Plus Algebra. Sustainability. 11(18), 5036.

[42] Villar, J., Bessa, R.. Matos, M. (2018). Flexibility products and markets:
Literature review. Electric Power Systems Research, 154, 329-340.

[43] O'Connell. N., Madsen. H.. Pinson. P., O'Malley. M., Green. T. (2014,
October). Regulating power from supermarket refrigeration. In IEEE PES
Innovative Smart Grid Technologies. Europe (pp. 1-6). IEEE.

[44] Filipe, ., Bessa, R. I., Reis, M.. Alves, R., Povoa, P. (2019). Data-driven
predictive energy optimization in a wastewater pumping station. Applied
Energy. 252, 113423.

[45] Schulman. I.. Wolski. F.. Dhariwal, P.. Radford. A.. Klimov, O. (2017).
Proximal  policy  optimization  algorithms.  arXiv ~ preprint
arXiv:1707.06347.

[46] del Campo, G., Calatrava, S., Cafiada. G., Olloqui, J.. Martinez, R.. &
Santamaria, A. (2018. June). IoT Solution for Energy Optimization in
Industry 4.0: Issues of a Real-life Implementation. In 2018 Global Internet
of Things Summit (GIoTS) (pp. 1-6). IEEE.

[47] Verma, N. K.. Dev, R.. Dhar, N. K.. Singh, D. J., & Salour. A. (2017,
June). Real-time remote monitoring of an air compressor using MTConnect
standard protocol. In 2017 IEEE International Conference on Prognostics
and Health Management (ICPHM) (pp. 109-116). IEEE.

[48] Tao. F.. Zhang, M., Cheng. J.. & Qi. Q. (2017). Digital twin workshop: a
new paradigm for future workshop. Computer Integrated Manufacturing
Systems, 23(1). 1-9.

[49] Zhang. M., Zuo, Y., & Tao. F. (2018, March). Equipment energy
consumption management in digital twin shop-floor: A framework and
potential applications. In 2018 IEEE 15th International Conference on
Networking. Sensing and Control (ICNSC) (pp. 1-5). IEEE.

[50] Karanjkar, N., Joglekar. A.. Mohanty, S.. Prabhu. V., Raghunath. D., &
Sundaresan. R. (2018, November). Digital twin for energy optimization in
an SMT-PCB assembly line. In 2018 IEEE International Conference on
Internet of Things and Intelligence System (IOTAIS) (pp. 85-89).

[51] Yin, D. R. K. (2009). Case Study Research: Design and Methods. Sage
Publications (CA).



