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José P. Sousa†, Bruno M. Ferreira∗, Nuno A. Cruz∗†
∗INESC TEC, †Faculty of Engineering, University of Porto

Rua Dr. Roberto Frias

4200-465 Porto, Portugal

up201303822@fe.up.pt

Abstract—Unmanned Underwater Vehicles (UUVs), such as
Autonomous Underwater Vehicles (AUVs) and Remotely Op-
erated Vehicles (ROVs) are versatile tools, suitable for many
activities in different fields, and have seen an increase in usage,
making them an area of interest in the study of robotics. The
performance of any underwater vehicle in any given task is deeply
affected by the precision of its localization system. The main
challenge in underwater localization is the significant attenuation
of any Radio Frequency (RF) signal underwater, which prevents
the use of many common location methods such as the Global
Positioning System (GPS). Many methods have been studied for
the localization of UUVs, including the use of acoustic beacons.
One of these methods is the use of a single moving beacon
to obtain acoustic ranges, as opposed to a stationary single
beacon, which restricts the UUV’s trajectory or multiple beacons,
involving more hardware, complicating missions’ logistics and
increasing costs.

In this paper, a guidance algorithm based on the Fisher
Information Matrix is proposed for an Autonomous Surface
Vehicle to serve as a beacon vehicle and aid in the navigation
of a UUV. The approach performances are assessed by means of
simulations of the complete system under realistic conditions.

I. INTRODUCTION

Unmanned Underwater Vehicles (UUVs), such as Au-

tonomous Underwater Vehicles (AUVs) and Remotely Oper-

ated Vehicles (ROVs) are versatile tools, suitable for many

activities in different fields, from monitoring underwater

pipelines and communication lines to military purposes. The

performance of any underwater vehicle in any given task is

deeply affected by the accuracy of its localization system. The

main challenge in underwater localization is the significant

attenuation of any Radio Frequency (RF) signal underwater,

which prevents the use of many common localization methods

such as the Global Positioning System (GPS)[1]. In order to

overcome this difficulty, multiple localization techniques have

been developed, based on different technologies, as reviewed

in [2]. Cooperative Navigation (CN) is one of these techniques.

In CN, a UUV determines its position relatively to one or

more vehicles that can determine their own positions with

less uncertainty. These vehicles are commonly referred to as

Communication and Navigation Aid (CNA) vehicles.

CN localization methods using only one support vehicle

are appealing, to lower costs and logistics, but they require

good positioning of the CNA vehicle to maintain observability

and achieve good performances [3], [4]. This paper studies

metrics based on the Fisher Information Matrix (FIM) to guide

a support Autonomous Surface Vehicle (ASV) acting as a CNA

in order to improve the localization estimate of an ROV and

proposes a guidance algorithm based on the studied metrics.

II. CONCEPT

The idea of using only one ASV for underwater localization

is not new. The use of one surface craft as a CNA vehicle

for a UUV has been studied in [5], and path planning for

target tracking using only acoustic range measurements from

an ASV has been studied in [6]. This paper proposes a metric

for real-time guidance of the surface vehicle.

Figure 1: Illustration of the studied concept.

We aim at developing a guidance system for a CNA surface

vehicle. In the studied CN localization system, the UUV

estimates its own pose with Dead Reckoning (DR) techniques

and periodically obtains ranges from CNA vehicles to improve

this estimate, as shown in figure 1, where the red dashed line

represents the acoustic ranges. The direction of the obtained

ranges is particularly important, hence the need to adapt the

surface vehicle’s trajectory to the requirements of the UUV.

The navigation system developed should be able to determine

in real time the trajectory of the CNA that minimizes the

position uncertainty of the UUV.

A. Vehicle Overview

Regarding the ASV, the existence of a localization module

is assumed, giving it the ability to determine its position

with a small uncertainty (in practice, in the same order of
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magnitude as GPS and IMU devices). It is also assumed that a

control module for the vehicle’s actuators is also implemented,

meaning that the only input needed to move the ASV are the

desired linear and angular velocities.

Figure 2: Model for the surface vehicle.

As a result, the scope of this work regarding the ASV,

as highlighted in figure 2, is solely the development of a

guidance algorithm that determines the position where the

acoustic ranges contribute to minimize the uncertainty of the

UUV’s position estimate. The inputs for this algorithm are

the current position estimate of the ASV, the current position

estimate of the UUV and estimates of the future UUV position.

The first assumption made about the underwater vehicle is

that it is remotely operated. The scope of this work regarding

the ROV is the development of a localization module, as shown

in figure 3.

Figure 3: Model of the underwater vehicle.

A control module is assumed to be implemented as was the

case with the ASV. Since the vehicle is remotely operated,

the guidance is carried out by a human. The inputs for the

localization module are the current ROV position estimate,

the current ROV speed estimate, current position information

(from on board sensors, such as a gyroscope and/or compass)

and ranges to the ASV.

III. PROPOSED SOLUTION

This section presents a method for the ROV self-localization

built from a standard filter, then proposes ASV guidance ap-

proaches to decrease the uncertainty of the ROV localization.

A. Underwater Vehicle Localization

In order to estimate the position of the ROV, an Extended

Kalman Filter was used. The information used in this estima-

tion was the following:

• the vehicle’s previous position estimate;

• previous estimate of the vehicle’s angular and linear

speed;

• measurements of the vehicle’s attitude and depth given

by onboard sensors;

• range measurements to the ASV.

The transition model used in the prediction step is the one

in (1), where Δt is the time step.

X(k + 1) = f(X(k), ν(k)) +N (0, Q(k))
f(X(k), ν(k)) = Δt ∗ J(X(k)) · ν(k) (1)

Based on this transition model the next state, X̂(k + 1|k),
alongside the pose’s covariance, P (k+1|k) can be predicted.

The next step is the inclusion of measurements given by the

onboard sensors, which include measurements of the attitude

and depth of the vehicle in order to update the state prediction.

Whenever a range measurement is available it must also be

incorporated into the state prediction. To accomplish this a

second update is made where the expected value and covari-

ance for the next state considering the range measurement are

calculated.

B. Surface Vehicle Guidance

The trajectory of the surface vehicle is waypoint based, that

is, waypoints are defined for each moment when an acoustic

signal is to be sent. The computation of these waypoints is an

iterative process, meaning that these are calculated in real time

during the mission. After the surface vehicle sends an acoustic

signal, its reaching set is calculated using the amount of time

until the next range and its maximum velocity. It is assumed

that the surface vehicle is holonomic. In this work, the target

point is chosen from the reaching set, according to the metrics

described ahead, based on the analysis of the FIM. The use

of the FIM as a metric for sensor placement is explored in

[7] and [8]. From this point, the subscripts ’ASV’ and ’ROV’

are used in variables to refer to the surface and underwater

vehicle, respectively.

Considering p = [NROV , EROV ] as the parameters to esti-

mate, the amount of information that the measurement carries

about p can be quantified using the FIM. Assuming Gaussian

and independent measurement errors, the information matrix

is given by (2). [7]

I(p) = ∇pZ(p)TQ−1∇pZ(p) (2)

The assumption that the ROV is stationary between consec-

utive range measurements to the ASV in different positions

creates a synthetic baseline scenario. The information carried

by these measurements about the parameters to be estimated

is given by the summation of the information matrices of each

measurement. For this equation to be valid, the variance of the

measurement errors has to be considered equal for both of the

ranges.

I(p) =
1

δ2

N∑
i=1

[
(NROV −NASV i)

2

Z2
i

(NROV −NASV i)(EROV −EASV i)
Z2

i

(NROV −NASV i)(EROV −EASV i)
Z2

i
(EROV −EASV i)

2

Z2
i

]
(3)

Using the FIM, the minimum uncertainty of the estimate p̂ of

the parameter p based on this measurement can be determined,

since the Cramer-Rao Lower Bound (C) is equal to the inverse
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of the FIM (I). C defines an uncertainty ellipsoid, the volume

of which is a measurement of the uncertainty of p̂. The

determinant of the information matrix is used as a measure of

the volume of the uncertainty ellipse, meaning that maximizing

the determinant det(I(p)) minimizes the uncertainty of p̂. [7].

With these premises, two metrics were constructed to use

in the choice of the waypoints.

1) Approach A: In this approach the next position of the

ASV is determined using only the current positions of the

ASV and ROV.

det(I(p))= 1
δ2

∑N
i=1

(NROV −NASV i)
2

Z2
i

∗
∑N

i=1
(EROV −EASV i)

2

Z2
i

−

(
∑N

i=1
(NROV −NASV i)(EROV −EASV i)

Z2
i

)2

(4)

The determinant of the information matrix, shown in (4) is

then considered as a function of the next position of the surface

vehicle, which makes it possible to discover the position where

det(I(p)) is maximized and, consequently, the uncertainty of

p̂ is minimized. A surface plot of the determinant in function

of the ASV’s next waypoint is shown in figure 4. In this case,

the ROV is considered to be in position (0, 0, -20) and the

ASV’s coordinates are (20, 20).

Figure 4: Determinant of the information matrix in function

of the ASV’s next position.

An example of the behaviour of the guidance algorithm

using this metric is shown in figure 5. As previously ex-

plained, whenever the surface vehicle (black cross) reaches

a waypoint and sends an acoustic signal, the determinant of

the information matrix is calculated for all the points within

the surface vehicle’s reaching set (every point inside the black

circumference). The next waypoint is the point among these

that maximizes the determinant of the FIM.

2) Approach B: This approach was developed since the

assumption that the ROV is stationary is not always true. Since

the relative positioning of the ROV and ASV when ranges are

sent is a key factor in the uncertainty of p̂, the inclusion of an

estimate of XROV 2 in this metric may have a positive effect

in lowering said uncertainty. This effect is naturally limited

by the accuracy of the XROV 2 estimate. A new metric for

evaluation of the next ASV position was defined, taking into

account the change of the position of the ROV. For that, the

current and estimated future positions of the ROV are consid-

ered as separate parameters to estimate. These are referred to

as p1 = (NROV 1, EROV 1) and p2 = (NROV 2, EROV 2). To

Figure 5: Graphic example of the SV next position.

address this situation, two FIMs are defined. As was the case

in the previous approach, the determinant of both matrices

are a measurement of the uncertainty of the estimates. The

determinants of both matrices are shown in (5).

det(I(p1)) =
1
δ2

∑2
i

(NROV 1−NASV i)
2

Z2
i

∗
∑2

i
(EROV 1−EASV i)

2

Z2
i

−
(
∑2

i
(NROV 1−NASV i)(EROV 1−EASV i)

Z2
i

)2

det(I(p2)) =
1
δ2

∑2
i

(NROV 2−NASV i)
2

Z2
i

∗
∑2

i
(EROV 2−EASV i)

2

Z2
i

−
(
∑2

i
(NROV 2−NASV i)(EROV 2−EASV i)

Z2
i

)2

(5)

Since the global objective of this work is to minimize the

uncertainty of position of the ROV at all times, the metric

defined in this approach is the sum of the determinants, show

in (6).

m = det(I(p1)) + det(I(p2)) (6)

For a better understanding of how m varies according to the

next waypoint of the ASV, in figure 6 this metric is shown

in function of the surface vehicle’s next position, considering

that the ROV moves from position [0, 0 -20] to [20, 0, -20]

and that the current position of the ASV is [20, 0].

An example of the behaviour of the guidance algorithm

using this metric is shown in figure 7. Whenever the surface

vehicle (black cross) reaches a waypoint and sends an acoustic

signal, the metric is calculated for all the points within the

surface vehicle’s reaching set (every point inside the black

circumference). The next waypoint is the point among these

that maximizes the metric.
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Figure 6: Sum of the determinants in function of the ASV’s

next position.

Figure 7: Graphic example of the SV next position.

IV. SIMULATION RESULTS

The proposed solution was tested, considering all assump-

tions made in II, in a simulation environment with the ROV

stopped and moving in paths. The different ROV paths used

are shown in figure 8.

(a) Circular Path
(b) Spiral Path (c) Lawn mower path

Figure 8: Different paths of the ROV used to test the guidance

algorithms.

It is important to note that despite the paths being prede-

fined, the guidance of the ASV is performed without using

any knowledge of these paths.

The results of the simulations were analyzed in light of the

mean and variance of the position estimation error. Since the

parameters to estimate are the coordinates of the ROV in the

horizontal plane (NE), the estimation error is given by (7).

ε =

√
(NROV − N̂ROV )2 + (EROV − ÊROV )2 (7)

The first tests presented are two tests where the starting

position of the ROV is the same (0, 0, -5) but the path followed

is different. It can be clearly seen that when the ROV follows

a circular path (9a) the error is bounded, while in the case the

path performed is a spiral (9b), the positioning error increases.

Since the main difference between these paths is the increas-

ing depth in the spiral path, the increasing error implicates that

the depth of the ROV may have an effect on the positioning

error.

(a) Test with circular path

(b) Test with the spiral path

Figure 9: Comparison between two tests with the ROV fol-

lowing the circular and spiral paths.

The tests shown in figure 10, where the starting point of

the ASV is (0,20) and the ROV is stationary at two different

depths: (0, 0, -5) and (0, 0 , -20).

On the one hand, the fact that the error is greater in 10b

supports the previous statement that the depth of the ROV

has an effect on the estimation error. On the other hand, it

is noticeable that the horizontal distance the ASV keeps from

the ROV is also different in both scenarios.

The fact that in figure 10a the ASV approaches the ROV

until a certain distance and in figure 10b it keeps the original

distance indicates that the horizontal distance between the

ROV and ASV may also be a factor that influences the error

of the estimate.

To infer about the validity of the previous assessments about

the influence of the depth of the ROV in the estimation error,

an analysis of the metric defined in III-B1 is made.

As mentioned before, the determinant of the information

matrix quantifies the uncertainty of the estimation of the

horizontal position of the ROV (N and E coordinates) based

on two range measurements. After studying the determinant of

the information matrix in function of the depth of the ROV and

the horizontal distance between the vehicles, it was concluded

that the global maximum of determinant of the information

matrix decreases with the depth of the ROV and increases with
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(a) Test with the ROV stationary in (0,0,-5)

(b) Test with the ROV stationary in (0,0,-20)

Figure 10: Comparison between two tests with the ROV

stationary at different depths.

the horizontal distance between the ASV and ROV. However,

the global maximum determinant of the information matrix is

not an indicator of the uncertainty in the obtained estimation.

The direct measurement of the minimum uncertainty of the

estimate is the maximum determinant within the reaching set

of the ASV.

With this knowledge it is possible to conclude that there is

a relation between the uncertainty of the estimate in the first

pair of ranges, the depth of the ROV, the distance between the

ROV and ASV and the speed of the ASV.

Given the existence of this relation, for any given depth

of the ROV it is possible to determine a horizontal distance

between the vehicles that minimizes the uncertainty for the

first two ranges, as long as the reaching set of the ASV is

well defined, that is, as long as the time between the ranges

and speed of the ASV are known. This position is the one

where the determinant of the FIM within the range of the

ASV is maximum.

These distances were calculated for different speeds of the

ASV and are shown in figure 11. While most ASVs cannot

travel as fast as some of speeds shown in the graph, these are

presented as a hypothetical scenario.

The maximum determinant of the information matrix for the

first two measurements achievable in function of the ROV’s

depth for different speeds of the ASV is shown in figure 12.

This analysis not only provides an a priori notion of

the expected uncertainty for different conditions but also an

objective criteria for the initial positioning of the ASV relative

to the ROV that minimizes that uncertainty.

Figure 11: Horizontal distance in function of ROV depth for

different speeds of the ASV.

Figure 12: Maximum determinant of the FIM in function of

ROV depth for different speeds of the ASV.

A. Approach A

Using this information, the guidance algorithm was tested

with the ROV stopped and moving according to the three

different paths in figure 8 and the ASV in the optimal starting

position shown in figure 11. The ASV was assumed to have

a maximum velocity of 2 m/s.

The ROV’s starting point in the horizontal plane was always

(0, 0), and various initial depths were tested. The results

obtained are shown in table I.

B. Approach B

The tests made for approach A were also made for approach

B. It is considered that no information about the motion of
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Table I: Results of testing approach A with the 4 ROV paths

at different depths.

Depth Stationary Lawn Mower Circular Spiral

1m ε̄ = 0.810
σ2
ε = 0.021

ε̄ = 0.689
σ2
ε = 0.016

ε̄ = 0.575
σ2
ε = 0.063

ε̄ = 1.970
σ2
ε = 1.102

5m ε̄ = 1, 720
σ2
ε = 0.034

ε̄ = 1.362
σ2
ε = 0.043

ε̄ = 1.255
σ2
ε = 0.193

ε̄ = 2.016
σ2
ε = 1.080

20m ε̄ = 1.820
σ2
ε = 0.124

ε̄ = 1.482
σ2
ε = 0.361

ε̄ = 1.488
σ2
ε = 0.407

ε̄ = 2.530
σ2
ε = 1.499

50m ε̄ = 1.78
σ2
ε = 1.213

ε̄ = 2.309
σ2
ε = 0.647

ε̄ = 2.135
σ2
ε = 0.945

ε̄ = 3.542
σ2
ε = 2.228

the ROV is available at the beginning of the mission, so

the method used for determining the initial position of the

ASV was the same as the one used for approach A, meaning

that the only difference between the tests was the guidance

algorithm used. As mentioned in section III-B2, this approach

includes the motion of the ROV in the guidance of the ASV,

by including the estimated position of the ROV at the time

the next signal will be sent. The estimated future position of

the ROV was calculated under the assumption that the ROV

keeps moving in the same direction until the next range. In

table II the results of all the tests made using this approach

for the guidance algorithm are shown.

Table II: Results of testing approach B with the 4 ROV paths

at different depths.

Depth Stationary Lawn Mower Circular Spiral

1m ε̄ = 0.690
σ2
ε = 0.102

ε̄ = 0.659
σ2
ε = 0.014

ε̄ = 0.537
σ2
ε = 0.050

ε̄ = 4.309
σ2
ε = 6.842

5m ε̄ = 1, 730
σ2
ε = 0.039

ε̄ = 1.415
σ2
ε = 0.043

ε̄ = 1.170
σ2
ε = 0.073

ε̄ = 4.933
σ2
ε = 6.907

20m ε̄ = 1.817
σ2
ε = 0.134

ε̄ = 1.479
σ2
ε = 0.207

ε̄ = 5.637
σ2
ε = 4.168

ε̄ = 5.041
σ2
ε = 4.883

50m ε̄ = 1.568
σ2
ε = 1.236

ε̄ = 2.150
σ2
ε = 0.478

ε̄ = 5.074
σ2
ε = 4.703

ε̄ = 5.375
σ2
ε = 3.726

As mentioned previously, the difference between the two

approaches is the inclusion of an estimate of the ROV’s future

position. It can be deduced that approach B performs better

than approach A when the estimation of the ROV’s next

position is accurate. Since the method used to predict the

ROV’s position in the next range assumes that the trajectory

is linear, it is expected that the estimation error is greater in

the circular and spiral paths than in the lawn mower pattern.

Table III was constructed based on this reasoning. In this

table, the expected performances of the algorithm using the

different approaches for the different paths are compared. The

plus sign indicates the approach that is expected to produce

the best performance for the path.

Table III: Expected performance of the approaches.

Approach Stationary Lawn Mower Circular Spiral
A = - + +
B = + - -

By analyzing the results on tables I and II, it can be verified

that the simulation results follow the expected trends, with

some variations that can be attributed to the measurement and

estimation uncertainties.

V. CONCLUSIONS

In this article, a guidance algorithm for an ASV to be

used as a navigation aid for a UUV was developed. This

work is based on treating the proposed guidance problem as

a sensor-target placement geometry, which was resolved with

two different metrics based on the analysis of the Fisher Infor-

mation Matrix. Furthermore, the metrics used for guidance of

the ASV also provide relevant information about the optimal

initial positioning of the ASV relatively to the ROV.

The results of the performed tests indicate that the estima-

tion error when estimating the position of an UUV using DR

and a single moving beacon depend on the operating depth of

the UUV and the maximum velocity of the ASV.

Analyzing the results of the performed tests, it can be

verified that the positioning errors are low when compared

to other similar works, such as [6] or [9]. However that

direct comparison should only be taken as an indicator of

the relevance of this approach to the problem, because of the

simplicity of the simulation environment and the assumptions

made about the reaching set of the surface vehicle.

Overall, it is possible to conclude that the the FIM is an

appropriate tool for use in the guidance of a CNA surface

vehicle.
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