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ABSTRACT

The privacy of information is an increasing concern of soft-
ware applications users. This concern was caused by attacks
to cloud services over the last few years, that have leaked
confidential information such as passwords, emails and even
private pictures. Once the information is leaked, the users
and software applications are powerless to contain the spread
of information and its misuse.

With databases as a central component of applications
that store almost all of their data, they are one of the most
common targets of attacks. However, typical deployments
of databases do not leverage security mechanisms to stop
attacks and do not apply cryptographic schemes to pro-
tect data. This issue has been tackled by multiple secure
databases that provide trade-offs between security, query
capabilities and performance. Despite providing stronger se-
curity guarantees, the proposed solutions still entrust their
data to a single entity that can be corrupted or hacked.
Secret sharing can solve this problem by dividing data in
multiple secrets and storing each secret at a different loca-
tion. The division is done in such a way that if one location
is hacked, no information can be leaked. Depending on the
protocols used to divide data, functions can be computed
over this data through secure protocols that do not disclose
information or actually know which values are being calcu-
lated.

We propose a SQL database prototype capable of offering
a trade-off between security and query latency by using a
different secure protocol. An evaluation of the protocols is
also performed, showing that our most relaxed protocol has
an improvement of 5% on the query latency time over the
original protocol.
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1. INTRODUCTION

Cloud services are one of the best commodities of the mod-
ern age, with an increasing interest by not only the general
population but also from private and governmental sectors.
From the vast myriad of providers, an interesting set of op-
portunities are open to outsource storage and computation
to services that have different degrees of scalability, availabil-
ity, and reliability at an optimal benefit-cost ratio. On the
act of outsourcing personal information to an external entity,
one must be aware that this information most likely is not
kept private and secure from prying eyes. In fact recent me-
dia scandals, regarding governmental surveillance programs,
arose some trust issues regarding these cloud-based services.

This concern on cloud security is one of the main con-
tributing factors that inhibits most enterprises from moving
their databases to a cloud service despite the many ben-
efits they would gain. In fact, bringing data privacy and
secure query execution to databases is an open challenge
proposed to the database community [1]. The challenge is
being tackled by multiple solutions that apply different en-
cryption techniques to ensure the security of the database.
Considering only solutions based on software, the existing
work can be divided into two main groups. The first group
leverages multiple encryption techniques, where the secu-
rity of these techniques is provided by computational hard
problems. This same group, can for a subset of the SQL
language provide secure queries. However to do so, all the
data is stored on a single location and the encryption tech-
niques used have different security guarantees [9} [L0]. The
other group of solutions is based on secret sharing schemes
that provide data privacy by dividing data in multiple se-
crets stored at different locations and by using multi-party
protocols to perform secure query computation [8,[11]. The
main advantage of this group of techniques is the use of a
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single encryption scheme that can be used to compute any
function over the distributed data. Even when one site is at-
tacked, the privacy of data is not broken. However, this se-
curity comes at a performance cost, with multiple messages
being exchanged amongst the locations when computing a
multi-party protocol [4].

We propose the first prototype of a Derby SQL database
that leverages secret sharing and multi-party protocols to
provide a more secure database capable of executing a sub-
set of SQL queries. Furthermore, we offer a new trade-off
between security and performance. Our protocol enables to
fit the database performance to the users needs by slightly
relaxing the security guarantees for this purpose. When re-
laxing the security guarantees of the protocols, security is
only lowered when queries are executed, as the security of
the stored data always remains the same.

1.1 Outline

Section [2| provides an overview on work developed not
only on Secure Multi-Party Computation but also other ap-
proaches that intended to keep the data secure but still per-
mit to carry out some sort of computation with it. In Section
the fundamental ideas of the Secure Multi-Party Compu-
tation and the Sharemind protocols are introduced. Section
[ presents our trade-off between security and performance
El Section [5| presents the architecture and implementation
details of a multi-party Derby database. Afterwards, in Sec-
tion @, there is an experimental setup, protocol evaluation
and the discussion of the results. Section [7] concludes our
work and provides prospects for future work.

2. RELATED WORK

CryptDB [9] is the first secure database solution that pro-
vides a comprehensive set of SQL queries that can be com-
puted securely on an untrusted database. The main idea
behind CryptDB is the application of different encryption
schemes that provided trade-offs between security guaran-
tees and the computation that can be made with the en-
crypted data. Prior solutions to CryptDB either provide a
very small subset of SQL queries processed on the server
side |12} |2] or a more complete set of SQL queries that re-
quire computation on the client side |5} |6].

Monomi [10] improves on CryptDB by actually doing some
computation on the client side similar to previous solutions.
However, the computation on the client is not strictly re-
quired and is only made when there is a significant per-
formance improvement. The choice of the location for the
query execution is made by a query planner that balances
the execution of the query between the client and server.
The improved performance of Monomi also comes from a
designer component located at the client application that
determines the optimal encryption scheme for the database
tables based on samples of queries to be executed.

These solutions apply cryptographic schemes which secu-
rity is based on computational hard problems and in some
cases, they must relax the security guarantees to enable
query capabilities on databases. Not only security guaran-
tees have to be relaxed but data is often stored on a single
untrusted domain. An alternative approach is given by so-
lutions that employ secret sharing and secure multi-party
protocols on databases. SDB [11] is such a solution, it uses
two parties, where one party is the client and the other is a
SQL database. Even though data is still stored on a single

457

location, the database remains secure to an attacker that
has access to the data stored on the database. This secu-
rity guarantee comes from the use of secret sharing, where
the secrets stored on the database are useless without the
secrets kept by the client. SafeRegions [8] applies a differ-
ent set of multi-party protocols to a NoSQL database. The
protocols applied on SafeRegions are the same as the ones
proposed by Sharemind [4]. Unlike SDB, the Sharemind
protocols use three parties and do not require the client to
keep any information or to participate on the query com-
putation. Sharemind is also a data mining application that
enables independent databases to perform analytical queries
on data without having to disclose their private data [4]. Si-
miliar to SafeRegions, our solution leverages the benefits of
the Sharemind protocols and applies them to Derby, a SQL
database.

3. SECURE MULTI-PARTY PROTOCOLS

Consider a model composed of a dealer, n independent
players and an attacker. The dealer has sensitive informa-
tion that must be stored safely by the players but no single
player must know what information is being stored. The
attacker’s purpose is to steal sensitive information from the
players. This model actually considers two types of attack-
ers: an honest-but-curious attacker that can corrupt a single
player, thus having access to every message exchanged but
does not change any message; an active outsider attacker
that listens and modifies the messages being exchanged. The
system built from this model is secure against an honest-but-
curious attacker by using Secure Multi-Party Computation
and is secure against an active attacker by using secure com-
munication between the entities.

For the dealer to be able to store its sensitive information
securely, it can use secret sharing. Secret sharing is a cryp-
tographic technique capable of dividing a value s in n secrets
and assigns a secret to every player n. To restore the origi-
nal value s from the secrets, a subset of the secrets must be
sent back to the dealer. These schemes are secure as long as
the attacker is only capable of accessing a predefined subset
the secrets stored on the players.

While secret sharing can ensure the privacy of the stored
data, it does not enable computation to be performed. The
Secure Multi-Party Computation field of study aims to give
a set of players a tool to securely compute a function without
each player having to reveal information about their private
knowledge. In a more formal light, suppose there is a game
with n players, each one with its own private input z,, and
the objective of the game is to compute a function f such
that f(z1,...,2n) = (Y1,...,Yn). In this game every player
n can only know its own output y,, none of them should
be able to discover anything about the other players private
data.

Our proposal builds a top of the protocols developed in
Sharemind. As such the creation of secrets is done with
additively secret-shared values on a cluster of three homo-
geneous machines. Any value u € Zgn is divided in three
secrets such that u1 +u2 +us = u mod 2. A secret shared
value is denoted by [u] = (u1,u2,us). Many protocols on
the Sharemind framework use bitwise operations where a bit
vector is represented by w € (Z2)".

The Sharemind computational model divides the interac-
tive entities in three groups. One set of groups are the Input
parties where each one generates the three shares for each of
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Figure 1: Sharemind architecture

its own input and sends them to the Computing parties. Af-
ter the data has been stored in the Computing parties there
is another group, the Result parties that require some com-
putation to be performed and to be notified of the result.

From the many Sharemind protocols our work is focused
on the Equal(u,v) and the GreaterThan(u,v) protocol,
as they are fundamental operations in any Database engine.
The protocols intricacies are not explained here in detail,
instead we expose the main ideas and explain the security
versus performance trade-off offered by our implementation.
To give the reader some context on how the protocols work,
we explain the addition protocol.

3.1 Addition Protocol

The addition protocol, adds two secret shared values with-
out having to exchange any message between the parties. As
presented in the Algorithm [I] each player holds two secrets,
one secret from each value. The actual addition of the pro-
tocol is made by a local addition of each players’ secrets.
Afterwards, the protocol Reshare is used to ensure that
the output shares are independent from the input shares.
While the addition protocol does not require communica-
tion between the players, the Reshare protocol does.

Every Sharemind protocol follows this flow: the shares
for the inputs are subject to local processing, possibly inter-
leaved with secure communication with other parties. The
final results of a computation are sent to the client by re-
turning the individual shares via secure channels.

Algorithm 1 Protocol [w] < Add([u],[v]) for adding two
secret shared values.

Require: Shared values [u] and [v].

Ensure: Shared value [w'] such that w' = u + v
P; computes w; = (u; + v;) (i = 2, 3)
Return [w'] < Reshare([w]).

3.2 Original full security protocols

The two Sharemind protocols, Equal(u,v) described on
Algorithm [2[ and Greater Than(u,v) described on Algo-
rithm [3]| also follow a similar execution to the addition pro-
tocol. The main difference is each computing party’s output
bit. If the two satisfy the condition computed by the proto-
col, then the return value is one. Otherwise it is zero. Both
protocols have local steps in the computing parties to calcu-
late the difference between the values, but they also securely
exchange messages between each other. The messages ex-
changed never reveal enough information for any computing
party to independently figure out the inputs to the compu-
tation, nor its result. When applying these protocols to a
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database system they create a problem. If no computing
party can figure out which values are indeed equal, or if u is
greater than v, then the database is forced to securely com-
pute and return the output bits for each row to the client.
After the client receives every record of the database, it has
to reconstruct the original values and discard the values that
are not valid.

Algorithm 2 Protocol [w] < Equal([u],[v]) for evaluating
the equality predicate.

Require: Shared values [u] and [v].
Ensure: Shared value [w] such that w=1 if w=v, and 0
otherwise.
P1 generates random rg <— Zon.
‘P1 computes 73 < (u1 — v1) — ra.
P1 sends r; to P; (i=2,3).
P; computes e; = (u; — v;) + 7:(i = 2, 3).
Prsets Py + 2" —1=111...1.
P1 sets Py + ea.
P1 sets Ps «+ (0 — e2).
Return[w] « BitConj([p]

D-

Algorithm 3 Protocol [w] + GreaterThan([u],[v]) for
evaluating the inequality predicate.

Require: Shared values [u] and [v].
Ensure: Shared value [w] such that w=1 if « > v, and 0
otherwise.
P; calculates d; < u; — v;
[w'] < ShiftRight([p],31)
Return [w] < Reshare([W]).

Figure [2] draws the scenario just described. The comput-
ing parties exchange messages and in the end they have to
return every row and the output bits. In this figure the valid
rows are represented by the green lines.

This strong security measure of not allowing the comput-
ing party to know which values are valid not only imposes
an overhead on the messages sent to the client but also goes
against the behavior expected from a database engine.

According to D. Bogdanov , the protocols, communica-
tion and round complexities are determined by the number
of bits n of the data. The equal protocols requires up to
22n+6 data bits and the GreaterThan uses 12(I+4) X n+16
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data bits. Note that these values represent messages ex-
changed between the computing parties, and not the com-
munication with the Client (this includes essentially one bit
per row in the database to indicate the results).

The following section presents one possible trade-off that
can be applied to both protocols, this trade-off results in a
significant improvement in response time as shown by our
evaluation. The performance improvement emerges just by
sharing extra information between the parties. This extra
information does not compromise in any way the original
values.

4. PROTOCOL TRADE-OFF

The trade-off presented in this section works by reveal-
ing to the computing parties, through secure channels, just
enough information to reduce the overall messages sent while
not revealing the original values. The protocols exchange
more messages among them but reduce the number of mes-
sages sent to the client. This leads to an improvement on
the overall performance. At the same time, the information
revealed does not allow any computing party to reconstruct
the original values. However, an attacker can obtain addi-
tional information such as the users’ access patterns.

4.1 Relaxed security

On each protocol, a compromise in security can be made
to improve the protocols’ performance. This is made by hav-
ing the computing parties exchanging the resulting bits of a
protocol. By gathering those bits, a computing party gains
enough information to disclose the valid and invalid values
of a query. Despite the increased number of exchanged mes-
sages between the parties, the messages sent to a client are
reduced.

Figure [3] illustrates the trade-off of adding communica-
tion between the parties. However, the resulting table is
only composed of valid rows. In fact, only six more mes-
sages are exchanged between the computing parties in each
protocol. The number of messages sent to the client varies
according to the stored values and the protocols, but, as
showed by our experiments, this addition of messages ends
up compensating with queries having lower latency. The
new protocols are the same as the original until the return
statement. Instead of returning the results of the protocols,
additional computation is done as described in Algorithm [
In the case of the Equal protocol, the new steps work on
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the result of the BitConj protocol and on the case of the
Greater than protocol the new steps work on the result of
the Reshare protocol. These additional steps, share the re-
sulting bits between the parties, thus enabling each comput-
ing party to know the output of the protocols and discard
unwanted records. With the additional steps, the protocols
either return 1 or 0 depending on the validity of the record.

Algorithm 4 Trade-off additional steps
P1 sends wy to P; (i = 2,3)
P2 sends w2 to P; (i = 2,3)
Ps sends ws to P; (i = 2,3)
w = (w1 + w2 + w3) mod 2
Return w

S. ARCHITECTURE

The application of secret sharing and secure multi-party
protocol to the Derby database requires a modification of its
architecture and the addition of new components. As three
parties are required to store the data and to perform multi-
party protocols, our Derby database is in fact composed of
three independent databases. Furthermore, each individual
database contains a security library that handles the gen-
eration of secrets and computation of protocols. The last
component added to the Derby database was a communica-
tion middleware that enables each party to exchange secrets
and compute the protocols. A high-level conceptual view of
the system architecture is depicted in Figure [

The database client also requires some modification to
be able to not only communicate with the three database
servers but also to generate secrets and decode the protocol
results. In fact, this can be done with the same security
library as the one used in the Derby databases.

Currently the only supported queries are SQL select state-
ments with predicates that contain equal comparison or or-
der comparison. Once a query with a equal or a order op-
erator is issued, it is intercepted both at the client side and
the server side. On the client side, the values being searched
have to be encrypted with the secret sharing scheme. On
the server’s side, once the servers intercept the query a Se-
cure Multi-Party Computation protocol is executed instead
of executing the standard operation.

5.1 Implementation Details

The only queries being considered and used to evaluate
the performance of the Secure Multi-Party Computation re-
quire a full scan of a database table. The Derby database
has two main classes that are responsible to handle a full
scan of tables. The first class is the TableScanResultSet that



given a database table and a Filter, it returns all the rows
that satisfy the filter. This class however, only retrieves a
single row from storage which has a negative impact on this
system performance due to the overhead of reading a record
from storage. The other class is the BulkTableScanResultSet
which in fact is an extension of TableScanResultSet and re-
duces the overhead of reading records from storage by read-
ing records in bulk.

The evaluation of the benchmark is focused on reading
records in bulk and thus the class that is most used is the
BulkTableScanResultSet. The adjustments to the Derby
source code take action once this class does a fetch of the
rows from the table. After the rows are loaded to memory,
the filter to be applied to the database is intercepted. Once
intercepted, the standard derby filter is replaced by a Secure
Multi-Party Computation protocol takes place.

The Secure Multi-Party Computation protocols can also
be applied to a single record or to a batch of records. To
improve the performance of the systems, the security li-
brary that handles the protocols computations has in fact a
slightly different implementation of the protocols presented
as the implementation computes multiple secrets in batch
and also sends this secrets to the communication middle-
ware in batch. As the protocols require a high number of
messages to be exchanged between the parties, it is advanta-
geous to also send the messages between the parties in batch
to lower the communication overhead.

The communication middleware handles all of the con-
nections between the parties and abstracts the complexity
of sending secrets from a single player to the others. A
simple API is exposed by the middleware, that consists of
two main primitives, sendSecret(playerID, secret) and re-
ceiveSecret(playerID). Both of these primitives are also im-
plemented to support the communication of batches of se-
crets.

The implementation of Secure Multi-Party Computation
in a database imposes some limitations in its typical opti-
mizations, making some of them impossible to use. Such an
optimization is, for example, unique scans. With this op-
timization a selection query with a filter could be executed
without the database having to scan the entire table. How-
ever, this capability is lost since shared secrets are not in-
jective. Thus, one value can generate different values which
makes it impossible to have a unique scan. This only penal-
izes even further the final performance of the database.

6. EXPERIMENTAL EVALUATION

The protocols’ evaluation presented during this paper are
implemented in a SQL database, so that we may not only
assess their different performance trade-offs, but also have
an idea of the cost of having a SQL database that executes
its queries using Secure Multi-Party Computation protocols.

The experimental evaluation uses only a subset of SQL
and a limited set of data types. The evaluated queries fo-
cus on Select queries with a Where clause that compares
an equality or inequality of integers. The experiments were
made on a single machine with an Intel Core i5 1,8GHz,
8GB 1600 MHz DDR3 of main memory and running the
0S5X10.9.4(13E28). The database on which the Secure Multi-
Party Computation protocols were developed was Apache
Derby 10.10, with Java 1.8.0-20 using the SecureRandom
Class with the interface SHAIPRNG from SUN to gener-
ate the random numbers. Every experiment used a batch
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of 16 rows each time to minimize the number of rounds of
communication.

The Equal protocol evaluation, used two SQL queries.
These verify the equality or the difference of a value to every
row in a similar manner to the queries in Listing [I}

Listing 1 Queries used to evaluate the equal protocol

SELECT * FROM table WHERE age b4
SELECT * FROM table WHERE age !'= x

The evaluation of the queries was carried out in a database
with a table of 500,000 rows and three columns of integers.
Each run measures the time between the client request and
the answer arrival. Furthermore, it also contains the results’
decryption latency.

Figure [5| contains the execution time for each version of
the Equal protocol. The last vertical bar is the execution
time of the standard Derby implementation while the first
is the initial Sharemind protocol. As can be seen, there is a
tremendous difference between the execution times of these
versions. The original Sharemind protocol takes almost an
hour to finish the computation and obtain the correct result
while the default Derby implementation takes just 42 mil-
liseconds to complete. The new protocols have an increase
of performance of 5%.

The queries used to evaluate the greater than protocol can
be found at the Listing[2] The conditions of the experiments
are the same as in the equal protocol with a table of 500,000
rows and three columns of integers.

Listing 2 Queries used to evaluate the greater than protocol

SELECT * FROM table WHERE age > x
SELECT * FROM table WHERE age >= x
SELECT * FROM table WHERE age < x
SELECT * FROM table WHERE age <= x

The execution time of the most secure protocol is much
higher than the standard Derby implementation and even
than the equal protocol. The most secure protocol, the origi-
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nal Sharemind inequality protocol, takes more than 10 hours
to successfully complete the computation. The relaxed se-
curity protocol provides an improvement of 6%, a difference
of 2265 seconds. In fact, our protocol’s performance is not
constant but fluctuates depending on the dataset and the
query. If a small number of values satisfy a query, then the
query’s latency also decreases as less values are sent to the
client. However as the number of values that satisfy a query
increases, so does the query latency. It is possible to reach a
point where a query with our protocol can have a higher la-
tency than the same query with the original protocol. This
occurs when the overhead of messages in our protocol does
not compensate the number of values sent to the client.

7. CONCLUSION AND FUTURE WORK

Sharemind protocols offer a set of algorithms capable of
calculating equalities, inequalities, and arithmetic operations
securely on values that are shared between a set of comput-
ing parties. However, when applied on relational databases,
they impose a significant overhead in communication be-
tween the parties, leading to a real degrading in performance
as our experiments demonstrated. However by diminishing
the security of said protocols, it is possible to obtain effi-
ciency increases of 5% without ever revealing the original
values to any computing party. Nonetheless this improve-
ment still take a significant time to compute simple queries.
The query overheads might be acceptable only to certain ap-
plications, and certainly not to real time applications that
requires almost immediate results.

Our implementation and evaluation consisted only on a
subset of the data types and SQL operators that a relational
database uses. This subset can be expanded to operations
such as Join, Count, Max, Min and to support other data
types such as floats as seen in recent research on these areas
[7). One other strand of research is creating new protocols
with similar security to the ones presented here, or even with
slightly lower security but that allow to have higher degrees
of efficiency.
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