
Linux software and Bluetooth: a formula to improve
accessibility by using Interactive Voice Response systems

Nuno T. Almeida, Emanuel Ribeiro
Institute for Systems and Computer Engineering of Porto - INESC Porto

Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Email: nalmeida@fe.up.pt, ee99083@fe.up.pt

Abstract— When accessing and interacting with regular
electronic devices or informatics systems, users frequently
depend on the sight sense because the information is,
consistently, presented in a visual format, despite the feasibility
to use additional formats, such as audio. It also happens that the
access to the information systems is triggered by the action of the
users, hence requiring an awareness of the surrounding
environment. These two facts lead to an exclusion of a
considerable number of citizens, such as the visually impaired
ones, from a fair access to the so-called Information Society.

The development of automatic user-aware Interactive Voice
Response (IVR) systems can be an interesting solution to this
issue, particularly, if the communications are done in a private
manner and a low-cost implementation is achieved. In a reply to
this challenge, it was formulated a pervasive user detection and
communication concept, based on Bluetooth technology and
Linux software modules, allowing improved interaction between
personal area information systems and mobile user devices. To
demonstrate the validity of the concept, it was developed a
personal area IVR system, based on Linux, being the private
interaction with the users made by means of the Bluetooth
technology.

Keywords- Interactive Voice Response (IVR) systems;
Bluetooth; Linux; “btsco” software; BlueZ protocol stack; ALSA
sound system.

I. INTRODUCTION

Nowadays, in what concerns the interaction of general
users with large/medium size organizations (corporations,
enterprises, etc.), Interactive Voice Response (IVR) systems
have a very important role, since they operate as the first line
answer to the broad user/consumer questions. The conception
and the implementation of a good IVR system improve the
satisfaction of final users, particularly in terms of permanent
availability and data discretion. From the point of view of the
organizations, besides some savings in man power, it is a way
of showing commitment to modern technological solutions
and in giving an answer to different user needs [1].

The implementation of IVR systems become even more
important when considering that almost all information is
presented in a visual format, hence excluding relevant groups
of citizens, such as the visually impaired ones. As so, it is
rather important to increase the number of systems providing
information in an audio format, additionally to a visual one [2]

[3]. In this aspect, the use of Linux open platforms can greatly
help the deployment of such systems.

In addition to the use of audio formats, and in order to
assure information access handling equality, it is also
important to perform the communication in a private and a
discreet manner, along with the use of fairly accessible
electronic devices. This last condition can be fulfilled using
devices equipped with the Bluetooth radio technology [4].

In fact, Bluetooth is a very well implemented personal area
network technology and, besides conventional cable
replacement, it allows new forms in the process of exchanging
or accessing information. Effectively, the attribute of mobility,
of almost all devices equipped with Bluetooth, has stimulated
the emerging of other types of service, of more dynamic
nature. One of the features, where this dynamic is more
noticeable, is the possibility to use Bluetooth devices, initially
conceived for one determined application, in contexts related
with the current location of the user, e.g., within an airport, a
train station, an organization premises or a museum.
Consequently, new informative services and new forms of
access can now emerge.

The novel concept, herein presented, deals with situations
where is intended the creation of spontaneous communication
channels, between generalized infrastructures of data and the
Bluetooth mobile user devices. Accordingly, such spontaneous
communications involve an automatic user-aware context-
based exchange of information, and occur when the mobile
devices approach a duly prepared data infrastructure. The goal
is, therefore, the establishment of an interactive environment
providing contextualized information to nearby Bluetooth
systems and devices.

To demonstrate the above proposed concept, in a context
particularly helpful to the visually impaired citizens, it was
defined a framework involving the implementation of an IVR
system personal area, using machines with Linux, as servers,
and plain Bluetooth headsets, as terminals. Fig. 1 shows the
scenario example of the IVR system personal area, using
Bluetooth as the main communication technology.

After this introductory section, the remaining paper is
organized into five more sections. The section two describes
the Bluetooth profiles which are particularly relevant to the
accomplishment of the defined work. In the section three is
exposed the Bluetooth software included with Windows XP

and Linux distributions, together with some Bluetooth
hardware devices. The section four is focused in the software
modules development, being the system demonstration
explained in the section five. The paper ends with the
conclusions and the references.

Figure 1. Scenario example of the Interactive Voice Response (IVR) system
personal area, using Bluetooth communications technology.

II. WORK RELEVANT BLUETOOTH PROFILES

To enable improved compliance, among applications and
devices, Bluetooth standard sets up various kinds of profiles.
These profiles define the protocols and the procedures to be
executed by the applications and the devices.

For the purpose of this work, the relevant Bluetooth
profiles are the Service Discovery Application Profile and the
Headset Profile. The Fig. 2 shows the related structure for
these and some other important Bluetooth profiles.

A. Service Discovery Application Profile

In the Bluetooth standard is defined a Service Discovery
Protocol (SDP) which is used to locate the available services,
in the neighborhood of a Bluetooth enabled system or device.
After the identification of these services, the Bluetooth system
or device can start the request of intended ones.

Although SDP is not directly involved in the access
process to the services, returned information is very important
in order to select correct Bluetooth protocol stack segments.

Objectively, SDP offers direct support for the following
type of inquiries:

• search services by class type,

• search services by attributes,

• and, services browsing.

Inquiries can be carried out in particular chosen devices or
in all devices found in the neighborhood. In both situations,
Bluetooth devices have first to be connected and just then
inquired for supported services.

B. Headset Profile

Within the proposed framework, the most important
Bluetooth profile to take into account is the Headset Profile.
This profile defines the protocols and the procedures that must
be implemented by the so-called “Ultimate Headset” devices,
enabling full-duplex audio. Besides headsets, such profile
implementation can be found in Bluetooth enabled mobile
phones and personal computers. The Headset Profile depends
on the Serial Port Profile and this one depends on the Generic
Access Profile, as depicted in the Fig. 2.

In the Fig. 3 it is shown the protocol stack and the entities
defined by the Headset Profile for the Bluetooth
communication devices. The Baseband, the LMP (Link
Manager Protocol) and the L2CAP (Logical Link Control and
Adaptation Protocol) correspond, basically, to the layer 2 of
the OSI model. The RFCOMM (Radio Frequency
Communication) emulates a serial line interface. The SDP is
the already referred protocol.

In the upper layers of the Headset Profile it can be found a
Headset Control entity, which is responsible by the headset
signaling. Most of this signaling is composed by Attention
Sequence (AT) commands. Although not visible in the Fig. 3,
it is assumed that the Headset Control has access to some low-
level procedures (e.g., establishment of Baseband links). The
protocol stack is completed with suitable applications in the
Audio Gateway side (audio port emulation) and in the Headset
side (audio driver).

In the context of the undertaken work, the Audio Gateway
side stands in a PC with a Bluetooth USB dongle,
communicating with a normal Bluetooth headset, in the
Headset side.

Figure 2. Bluetooth profiles related structure.

Audio communications rely on the establishment of full-
duplex Synchronous Connection Oriented (SCO) baseband
links. Audio Gateway controls these audio communications,
having the Headset the opportunity to send related AT

IVR system
personal area

User mobile
device

Bluetooth enabled
IVR system

User mobile
device

User mobile
device

commands to the Audio Gateway. If valid, those AT
commands are properly recognized and the respective sub-
actions executed. In the Fig. 4 it is represented a SCO link
establishment between an Audio Gateway and a Headset.

Figure 3. Bluetooth Headset Profile: protocol stack and entities defined for
the communication devices.

III. BLUETOOTH SOFTWARE AND HARDWARE DEVICES

A. Windows XP related Bluetooth software

A Bluetooth protocol stack is a software module which
enables the interaction with other Bluetooth devices. In the
Windows operating system two protocol stacks are currently
available: the Bluetooth protocol stack from Microsoft, which
is supplied with Windows XP Service Pack 2, and the
Bluetooth protocol stack from Widcomm.

The protocol stack of Windows XP SP2 has some
limitations due to the reduced number of supported profiles. In
particular, it does not support the Headset Profile. Thus, a PC
with the original Windows XP Bluetooth protocol stack is
unable to communicate with Bluetooth headsets.

On the other hand, Widcomm (acquired later by
Broadcom) licenses its Bluetooth software to the great
majority of Bluetooth device manufacturers, and it includes
the Headset Profile. Therefore, it is possible to install the
drivers of Widcomm, which come along with many Bluetooth
devices, thus enabling the use of Bluetooth headsets with
Windows.

This solution is feasible from user’s point of view but,
concerning programming and the development of software
solutions, the access to Widcomm’s protocol stack is rather
problematic. This fact leads us to investigate Linux as a
possible alternative.

B. Linux related Bluetooth software

1) BlueZ protocol stack

The official Bluetooth protocol stack of Linux operating
system distributions is named BlueZ [5]. The BlueZ stack
provides support to the Bluetooth core layers and protocols
and is included in Linux series 2.6. Unfortunately, as in
Window XP protocol stack, BlueZ does not support the
Headset Profile and any type of audio SCO synchronous links.

Figure 4. Bluetooth Headset Profile: SCO link establishment, initiated by
the Audio Gateway (AG) equipment towards the Headset (HS) device.

To overcome this limitation, in the BlueZ protocol stack,
several software programmers have developed, in open-source
code, the so-called “Bluetooth-ALSA Project” [6]. This
project deals with the development of Linux software, in order
to enable Bluetooth SCO connections. The principal aspects of
this software are referred just above.

2) SCO connections (Bluetooth-ALSA Project)

Concerning the software which enables SCO connections
in Linux, this was developed by Bluetooth-ALSA Project and
is based on the BlueZ protocol stack and on the “Advanced
Linux Sound Architecture” (ALSA) sound system [7]. This
software is entitled “btsco” (Bluetooth Synchronous
Connection Oriented) and is available to download at [8].

“Btsco”, besides installing the software which manages all
audio and SCO links, creates a Bluetooth sound module likely
of being added to Linux kernel, by using the “modprobe"
command (modprobe “snd-bt-sco”). That sound module is, in
fact, a kernel’s ALSA driver which uses the BlueZ stack to
communicate with headsets. Thus, when using “btsco”, it
becomes possible the connection to Bluetooth headsets and the
exchange of quite satisfactory voice quality audio, through the
use of the ALSA sound system.

Regarding the selected Linux distribution, the choice was
the Kubuntu 6.06, after some installation and operational
problems with SuSE 10 and Fedora Core 5. Besides all,
Kubuntu 6.06 distribution includes the “Kbluetoothd”
program, which assists the creation and the administration of
Bluetooth networks and manages the respective connections.

C. Bluetooth hardware devices selection

1) USB dongles

All USB dongles available in the market are designed to
operate with Windows, being rare the products specifically
designed to work with Linux. Nevertheless, it is possible to
find several USB dongles, not intended to be used with Linux,
still functioning in perfect with this operating system.
Nevertheless, the selection of an USB dongle, to operate with
a certain Linux distribution, requires always some previous
practical assessment.

In the scope of this work, two USB dongles were used,
connected to the same Linux computer. The first one was an
Anycom USB-200, which was used to make the Bluetooth
neighborhood scanning, being the other a SMC BT-10. This
last was used to establish the SCO (audio) connections with
the Bluetooth headsets attending in the surrounding area.

2) Bluetooth Headsets

The choice of the Bluetooth headsets, like the USB
dongles, is easier in Windows than in Linux. In this operating
system, it is essential to know the compatibility of the headset
device with the Linux distribution (BlueZ stack) in use, as well
with the “btsco” Linux software. Information relative to
headsets compatibility with Linux distributions can be found
in Bluetooth-ALSA Project homepage.

A distinctive characteristic, in the headset selection
process, is the number of available buttons. Between the two
used models, the Nokia HS-11w (having four buttons,
including a power-on and a power-off) and the Logitech HS04
(having just two buttons), it is noticeable the increased
versatility of the Nokia headset. Concerning the maximum
radio range, all Bluetooth headsets are of class 3, that is, they
have a maximum range of 10 meters.

IV. LINUX SOFTWARE MODULES DEVELOPMENT

The primary approach to the development of the new
Linux software modules, necessary to the intended IVR
system, was to perform the adaptation and the evolution of
some related software code. As previously referred, one part of
that code was the “btsco” software, created by the Bluetooth-
ALSA Project.

That code is written in “C” language, making practicable
the inclusion of the functionalities and the automatic
procedures, intended for the new software. Some of these
improved functions are concerned with the automatic scanning
of the IVR system neighborhood, the detection of commands
by analyzing pressed headset buttons and the launch of voice
dialogs simultaneously with the establishment of the SCO
links.

A. Adaptation and expansion of “btsco” functionalities

As previously referred, the open-source “btsco” code was
the development basis for the new software modules. A first
change, to the original software, was to enable the new
software to work in cycle, allowing, in this way, successive
connections of distinct headsets. Another modification, which
expands the functionalities of the original program, is the

redefinition of the routine which detects the headset buttons, in
order to enable a broaden user–system interaction. (referred
ahead in subsection D.)

The other main functions, added to the “btsco” code, were
the automatic scan of Bluetooth devices, the establishment of
the RFCOMM (Radio Frequency Communication) connection
and the automatic trigger process of the audio files.

B. Main program implementation

The developed main program is composed by two distinct
software modules, entitled “ivrBTSCO” and “ivrASound”.
From “ivrBTSCO” module are launched two main threads,
one to perform the permanent scanning of the Bluetooth
devices, in the neighborhood of the IVR system, and another
to carry out the establishment of the SCO connections.

After a scanning, returning a valid Bluetooth MAC
address, the “ivrBTSCO” module automatically creates a
RFCOMM link. In the following, the “ivrASound” module is
launched by the “ivrBTSCO”, starting the execution of an IVR
dialog menu. As soon the “ivrASound” module has an audio
file ready to play, the “ivrBTSCO” opens a SCO connection,
in order to transmit that audio file.

The “ivrASound” module, besides enabling the navigation
of the user in the IVR’s dialog menu, it manages the repetition
of the messages, when the user doesn’t interact in the defined
time window. In fact, at the end of each played message, it is
launched a thread to detect the amount of elapsed time,
without a command reply from the user. In case of no user
answer, the “ivrASound” launches the repetition of the last
played message, at most, two more times. If the absence
remains, it finishes by carrying out an ending message. The
ending process can also be initiated by the user, when properly
selected in the dialog menu. In both situations, after the
execution of the ending message, the respective “ivrASound”
module stops and it is extinguished the RFCOMM link,
previously created by the “ivrBTSCO” module.

In summary, the main program execution implies a
continuous running of the “ivrBTSCO” module, being the
“ivrASound” module launched only when there is a connected
Bluetooth headset device. Concerning the structure of the IVR
dialog menu, further details of the implemented IVR can be
found in section V.

C. Scanning routine

As mentioned above, the search of Bluetooth devices, in
the neighborhood of the IVR system, is carried out by a thread
launched by the “ivrBTSCO” module. This developed C code,
besides a standard basic scan, it is responsible by the
continuous operation of the scan process, by the handling of
the results and by the selection of detected Bluetooth devices.
Therefore, that thread is constantly running having, always, an
updated track of the devices in the surrounding area.

In the tested configuration, the USB dongle, exclusively
assigned to this task, was the Anycom USB-200. In fact, by
assigning distinct USB dongles to the scan and to the
communication functions, it is possible to achieve a better
management and a superior performance to the system.

Figure 5. Demonstration of the implemented multi-touch, one-button navigation, main IVR menu structure.

D. User-system interaction

The user-system interaction is done by applying simple
touches in the headset device button(s). Each of these touches
corresponds to the Attention Sequence command
“AT+CKPD=200”, being the selected action dependent on the
number of received commands, within a certain time-window.

By limiting the maximum number of admissible touches in
a sequence, and by specifying the maximum time interval,
between successive touches, it becomes practical the
navigation within an IVR menu. Therefore, using the number
of “AT+CKPD=200” commands which are sent, the
respective menu selection is performed. That is, if only one
AT command is received, it corresponds to option 1, two AT
commands in a row, option 2, and so on.

In the present case, the detection function to a pressed
headset button is performed by the main “ivrBTSCO” module.
As a result, this module includes all the detection process of
the “AT+CKPD=200” commands but also their handling.

Upon the detection of the end of an “AT+CKPD=200”
sequence, the “ivrBTSCO” module evaluates the number of
respective AT commands, that is, it gets aware of the option
indicated by the user. On the following, it passes that
information to the “ivrASound” module, which continues the
IVR menu execution.

Due to practical reasons, for each menu selection step, the
maximum number of options should be no more than four.

Idem, the maximum time interval, between successive
touches, should be around one second.

With the above tuning, this kind of multi-touch, one-button
user–system interaction represents a low cost and a fair
reliable solution when compared with voice recognition
systems. In fact, these ones are much more expensive and
present some weaknesses when dealing with a heterogeneous
universe of users.

V. SYSTEM DEMONSTRATION SCENARIO

To prove the validity of the developed work, it was
prepared a demonstration scenario, simulating an information
access point in a metro station, providing timetables and line
itineraries information.

For each station, the line itineraries consist in relatively
static information, but timetable information includes the
dynamic indication, for each line/direction, of the remaining
time of each vehicle arrival.

In this scenario, it were considered three lines/destinations
(A, B and C), due to the established limit of four successive
touches in the headset button. The implemented main IVR
menu structure is depicted in the Fig. 5, being the IVR
navigation possible using a single button.

The demonstration relies, thus, in a nearby server, loaded
with the developed IVR system, and some mobile Bluetooth
headsets. After server initialization, the headsets are detected
when they are within a range of, approximately, 10 meters and

Multi-touch,
one-button navigation,
IVR menu structure.

1

2

76 8

15 16 1714 19 20 2118

9

3 4 5

11 12 1310

23 24 2522

Welcome message

Timetable information or
Line itineraries information?

Menu back
Line itineraries:
which destination?

Line A: up or
down direction?

Timetable information:
which line?

back

Line B: up or
down direction?

Line C: up or
down direction?

Dest. A

Dest. B

Dest. C

exit back

back

back back exit Up Down Down Down Up Up exit

in pairing mode. After the connection of a headset, it is
possible the interaction of the user with the IVR system, being
allowed the respective menu exploration.

After the end of a connection, if a new headset is in the
neighborhood of the IVR system, it will be linked, and the
previously described process repeated. If there aren’t any more
headsets in the neighborhood, the IVR main program
continues to scan the surrounding area, in search of new
Bluetooth headsets.

VI. CONCLUSIONS

When considering communication processes between user
mobile devices and fixed computing/electronic equipment,
there is still a long way to improve the daily quality of life of
general users. This is even more important, and of
unquestionable social fairness, when thinking in the visually
impaired citizens, which can not rely on the sight sense.

In accordance with these facts, and by using IVR system
concepts, a substantial help can arise from the creation of
human-machine interfaces based on voice dialogs.
Furthermore, and consisting in one of the novel approaches
presented here, by using the Bluetooth radio technology, the
access to the voice dialogs can be done in a private and in a
discreet manner.

Hence, the development of IVR applications embedded in
general computing/electronic equipment, and communicating
with the aid of the Bluetooth technology, surely represents a

considerable advance in the way how people might interact
with that equipment.

The developed work serves, as well, to reveal a
communication concept that, besides the visually impaired
citizens, can also improve the daily quality of life of the ones
with mobility handicap. In fact, further to the exchanging of
audio signals, the Bluetooth technology can be used to send
remote commands, from respective personal Bluetooth
devices, to machines or equipments with due compatible
interfaces.

REFERENCES
[1] R. Dettmer, “It’s good to talk”, IEE Review, June 2003.

[2] L. Motiwalla, “Speech-Enabled Mobile Learning Application”,
Wireless Telecommunications Symposium, 2005.

[3] A. Talevski, E. Chang, “Reconfigurable Software Architecture for
Voice Access to Data Services”, IEEE International Conference on
Digital Ecosystems and Technologies, 2007.

[4] C. Bisdikian, “An Overview of the Bluetooth Wireless Technology”,
IEEE Communications Magazine, December 2001.

[5] “BlueZ Home”, On-line at: http://www.bluez.org/ (2006).

[6] “Bluetooth-ALSA Project Home”, On-line at: http://bluetooth-
alsa.sourceforge.net/index.html (2006).

[7] “Advanced Linux Sound Architecture – ALSA Home”, On-line at:
http://www.alsa-project.org/ (2006).

[8] “Btsco 0.42-r0 package”, On-line at: http://www.angstrom-
distribution.org/repo/?action=details&pnm=btsco (2006).

