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aDAVE, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros, 3, 28040, Madrid,
Spain

bINESC Technology and Science (INESC TEC), Campus da FEUP, Rua Dr. Roberto
Frias, 4200-465 Porto, Portugal

Abstract

Wind power probabilistic forecast is being used as input in several decision-

making problems, such as stochastic unit commitment, operating reserve

setting and electricity market bidding. This work introduces a new on-line

quantile regression model based on the Reproducing Kernel Hilbert Space

(RKHS) framework. Its application to the field of wind power forecasting

involves a discussion on the choice of the bias term of the quantile models,

and the consideration of the operational framework in order to mimic real

conditions. Benchmark against linear and splines quantile regression models

was performed for a real case study during a 18 months period. Model

parameter selection was based on k-fold crossvalidation. Results showed

a noticeable improvement in terms of calibration, a key criterion for the

wind power industry. Modest improvements in terms of Continuous Ranked
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Probability Score (CRPS) were also observed for prediction horizons between

6-20 hours ahead.

Keywords: Wind power, quantile regression, Reproducing Kernel Hilbert

Space (RKHS), probabilistic forecast, short-term, on-line,

1. Introduction1

The high integration levels of wind power in several countries demands2

for a paradigm shift in terms of power system management tools and opera-3

tional practices, which consists in moving from deterministic to probabilistic4

decision-making tools [1]. In this context, probabilistic wind power fore-5

casts with high skill is a key requirement for end-users. For Transmission6

System Operators (TSO), this information is vital for setting the operat-7

ing reserve requirements [2, 3], stochastic unit commitment [4] and technical8

constraints evaluation [5]. Distribution System Operators (DSO) with high9

integration levels of wind power in their networks can also benefit from ac-10

curate forecasts, which can be integrated in multi-period optimal power flow11

problems [6]. For electricity market agents, this information can be embed12

in bidding optimization problems for electrical energy [7, 8] and ancillary13

services markets [9].14

The current wind power forecasting state of the art is rich in point15

and probabilistic forecast methods. A detailed review can be found in [10]16

and [11]. Four main classes of probabilistic forecasting algorithms can be17

found in the literature: conditional kernel density estimation (KDE), (b)18

semi-parametric regression, (c) machine learning and (d) quantile regres-19

sion. It is important to stress that other representations for the wind power20
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uncertainty are also possible, such as ramp forecasting [12] and temporal1

trajectories (or short-term scenarios) [13, 14].2

Two examples of conditional KDE algorithms are: (a) time-adaptive3

quantile-copula estimator that produces density forecasts for the next hours4

using Numerical Weather Predictions (NWPs) as inputs and explores the5

non-parametric copula for modelling the dependency between wind speed/direction6

and power (i.e., the power curve) [15]; (b) two-stage approach that, firstly,7

uses a vector autoregressive moving average-generalized autoregressive condi-8

tional heteroscedastic (VARMA-GARCH) model to capture wind speed and9

direction uncertainty forecast, secondly, employs conditional KDE to model10

the relationship between wind speed/direction and power [16].11

One work about semi-parametric regression is presented in [17], which12

proposes the use of generalized logit-Normal distribution to enable a full char-13

acterization of the forecast densities by their location and scale parameters.14

Dynamic models based on classical time series models (e.g., autoregressive15

model) are proposed for the location and scale parameters.16

In terms of machine learning algorithms, an online sparse Bayesian model17

based on warped Gaussian process is proposed in [18], and employed to gen-18

erate probabilistic wind power forecasts. Furthermore, in [19] multiple radial19

basis function neural networks (RBFNN), combined with self-organized maps20

that classify the uncertainty knowledge in multiple levels, are proposed to21

forecast eight quantiles of wind power distribution based on point forecasts.22

The majority of the methods based on quantile regression employed to23

model the non-linear relationship between wind speed and power use two24

well-known techniques, local regression (or varying coefficients) [20] and ad-25
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ditive models with splines [21]. Local regression methods were successfully1

applied to model time-varying conditions, for instance the relation between2

wind speed and direction in very short-term forecasting [22]. The main lim-3

itation of local quantile regression is that the computational time increases4

significantly with the number of predictors and it is also prone to overfitting.5

The additive models require a correct choice of the splines for different types6

of variables (e.g., categorical, circular) and a hyperparameter is needed to7

each predictor variable.8

Related to this last category, this paper proposes a new quantile regression9

model based on kernel methods. Kernel methods are a class of algorithms10

oriented to pattern analysis that have been applied to a number of prob-11

lems, involving classification, regression and time series forecasting (see [23]12

and references therein). The presented model implements quantile regression13

in the Reproducing Kernel Hilbert Space (RKHS) according to the frame-14

work described in [24]. In this framework, the data from the input space is15

transformed to the feature space using a kernel matrix. In other words, this16

means transforming a non-linear space into a high dimensional linear space17

where the classical linear quantile regression technique can be applied. The18

algorithm is implemented from an on-line learning perspective. While the19

main advantage of this approach is to account for smooth variations in the20

underlying dynamics of the modelled process, other advantages as compared21

with the off-line approach were analysed in [25].22

This paper presents a number of original contributions: it represents23

the first application of quantile regression in the RKHS to the wind power24

probabilistic forecasting problem, establishing a connection between quantile25
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regression techniques and recent research in signal processing theory. Second,1

the model equations were developed for the case of including a bias term; this2

has an impact on the model performance since a proper choice for the initial3

bias allowed the model to perform at least as climatology, a reference model in4

the field. Third, the benchmark experiment relied on a detailed description of5

the operational framework of wind power forecasting, which was implemented6

to mimic real conditions characterised by meterological forecast availability7

each 12 hours. Finally, the observed noticeable improvement in terms of8

calibration (one of the criteria considered in the evaluation framework) was9

related to the adaptive nature of the algorithm.10

The remaining of the paper is organized as follows: Section 2 provides11

a general description of the quantile regression models in the RKHS, an its12

particularization to the on-line standpoint. An overview of the operational13

framework in wind power forecasting is given in Section 3, outlining the14

interactions between the NWP delivery and models generating wind power15

predictions. Section 4 describes the setup of the experiment, consisting on the16

employed data, benchmark models and evaluation framework. The obtained17

results are presented and discussed in Section 5. Finally, the paper ends with18

concluding remarks in Section 6.19

2. Quantile Regression in the RKHS20

The objective of quantile regression is to model a functional relationship21

between a set of explanatory variables, here denoted by vector x in X ∈ Rn,22

and the τ -th quantile of the conditional probability density function of the23

objective variable y, which is assumed to be one-dimensional in the following.24
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In a general manner, a quantile regression model can be written as follows:1

qτ (x) = f(x) + b, (1)

where qτ is the τ -th quantile, τ ∈ [0, 1], b is a bias term and f : X −→ R,2

with X ∈ Rn, is a function to be determined. The most straightforward3

strategy to define f is that of linear quantile regression [26]. While linear-4

ity usually entails a number of advantages (i.e. simplicity and robustness),5

such hypothesis may result too restrictive when dealing with problems with6

complex underlying dynamics.7

Regression in the RKHS allows exploiting non-linear relationships be-8

tween data keeping the simplicity of the linear approach. To do so, linearity9

is assumed in a high-dimensional feature space given by the feature map10

φ : X → H, where H is a RKHS defined by the reproducing kernel (also11

referred to as kernel matrix) k(xi,xj) = ⟨φ(xi), φ(xj)⟩. By doing this, it12

holds that:13

qτ (x) = ⟨w, φ(x)⟩+ b, (2)

where w is a vector in Rn containing the coefficients of the linear regression.14

From the off-line standpoint, the model parameters, w and b, can be15

obtained by minimising the following regularised cost function evaluated over16

N samples (xi, yi) (see [24], among others):17

R1:N :=
1

N

N∑
i=1

lτ (yi, q
τ (xi)) +

λ

2
∥f∥2H, (3)
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where ∥·∥2H is the norm in the RKHS, which measures the complexity of1

the function f , λ is a regularization parameter providing control on the2

bias/variance balance in the model estimation, and lτ : R2 → R+ is a loss3

function of the forecast error. According to quantile regression theory [24],4

lτ (yi, q
τ (xi)) is the pinball function, given by:5

lτ (yi, q
τ (xi)) =

τ · (yi − qτ (xi)) if yi ≥ qτ (xi)

(τ − 1) · (yi − qτ (xi)) if yi < qτ (xi)

. (4)

From the Support Vector Machine literature (see [27], among others), it6

can be demonstrated that the model that minimises Eq. (3) can be written7

in the form of a kernel expansion based on the available samples, as follows:8

qτ (x) =
N∑
t=1

αik(xt,x) + b, (5)

where the expansion coefficients αi and the bias term can be obtained by9

solving the dual problem associated to the minimisation of Eq. (3).10

2.1. On-line learning in the RKHS11

On-line learning is an incremental process in which a model integrates12

information as new observations are available. One of the main advantages13

of this strategy in the case of wind power forecasting is that the model is14

able to account for smooth variations of the underlying dynamics of the wind15

power output over time, which are likely to happen within a monthly scale16

because of meteorological seasonalities, and in the long-term due to the wind17

turbine aging. Since the quantile model evolves over time, it is required to18

7



index the model state to time. In this work, we define qτt (x) as the resulting1

quantile regression model after integrating the available samples from (x1, y1)2

to (xt, yt). Mathematically:3

qτt (x) =
t∑

i=1

αik(xi,x) + bt. (6)

It is noted that Eq. (6) is general in the sense that the bias term is also4

subject to change with the learning process.5

Under the on-line standpoint, the expansion coefficients are assessed in6

base on the learning strategy. A number of challenges and kernel-based7

algorithms related to on-line learning are described in [28]. The stochastic8

gradient descent in Hilbert Space, also described in that work, is here adopted9

and generalised for the case b ̸= 0. Stochastic gradient descent means that10

the model evolves in order to minimise only the most recent error, making11

the cost function given in (3) to collapse into Rt:t. Since the minimisation12

occurs in the RKHS, the gradient is computed with respect to the function13

qτ . Mathematically:14

qτt+1 = qτt − η
∂Rt:t

∂qτ

∣∣∣∣
qτ=qτt

, (7)

where η is the learning rate, which is assumed to be constant.15

Operating the derivative in Eq. (7), two terms can be identified:16

∂ Rt:t

∂ qτ
=

∂ lτ (yt, q
τ (xt))

∂ qτ︸ ︷︷ ︸
(a)

+
λ

2

∂ ∥f∥2H
∂ qτ︸ ︷︷ ︸
(b)

.
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According to the reproducing property of RKHSs, given by:1

⟨f, k(x, ·)⟩H = f(x),

the first term can be rewritten as:2

(a) =
∂ lτ (yt, q

τ (xt))

∂ qτ (xt)
· ∂ q

τ (xt)

∂ qτ
=

∂ lτ (yt, q
τ (xt))

∂ qτ (xt)
· k(xt, ·).

On the other hand, the second term can be rewritten as follows:3

(b) =
λ

2

∂ ∥qτ − b∥2H
∂ qτ

= λqτ − λb.

Thus,4

qτt+1 = qτt − ληqτt + ληbt − η
∂ lτ (yt, q

τ (xt))

∂ qτ (xt)
· k(xt, ·).

Making use of Eqs. (4) and (6), the following rules for updating the5

model from time t to time t + 1 (i.e., once sample (xt+1, yt+1) is available)6

are obtained:7

αt+1 :=


ητ if yt+1 > qτ

t
(xt+1)

η(τ − 1) if yt+1 < qτ
t
(xt+1)

0 if yt+1 = qτ
t
(xt+1)

, (8)

αi := (1− ηλ)αi for i ≤ t, (9)

bt+1 := bt. (10)
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Concerning the reproducing kernel, k(·, ·), it must meet certain conditions1

to be considered an admissible kernel. A number of admissible kernels are2

provided in [27]. From here on, we assume k(·, ·) to be the Radial Basis3

Function (RBF) Kernel, given by:4

k(x1,x2) = exp (−σ∥x1 − x2∥2), (11)

where σ is a parameter related to the kernel width. According to [29], the5

RBF kernel is a general purpose kernel well-suited for situations in which no6

prior knowledge about the data is available.7

Equation (8) implies that the assimilation of sample (xt+1, yt+1) consists of8

a correction of the quantile model in the neighborhood of xt+1 of a magnitude9

related to η, where the notion of neighborhood in the input space X ∈ Rn
10

is linked to the aforementioned parameter σ. Out of this neighborhood, Eq.11

(9) states that the quantile model degrades towards the bias term with a rate12

related to a forgetting factor given by ηλ. That the learning occurs locally13

while the forgetting occurs globally is also a consequence of the fact that14

the bias term is actually not updated with the new sample (see Eq. (10)),15

reflecting that this term must be selected with care, specially if the stream16

of observations xt might not cover the span of the input space X regularly.17

3. Operational framework18

Wind power forecasting models are usually classified into two basic ap-19

proaches. A first approach, referred to as physical approach, consists on20

obtaining the best wind speed forecast at the wind farm, and use it to gen-21

erate the associated wind power forecast. This approach requires access to22
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NWP outputs delivered by one or more meteorological models. In a general1

manner, it can be written as follows:12

p̂t+k|t = f(m̂t+k|t+k−k∗), (12)

where p̂t+k|t is the power forecast for time t+k generated at time t, m̂t+k|t+k−k∗3

is a vector containing the forecast of a number of meteorological variables4

(typically, wind speed and direction) for time t+k generated at time t+k−k∗,5

k is the prediction horizon of the power forecasting model and k∗ is the pre-6

diction horizon of the meteorological forecasts. It is noted that, because the7

meteorological forecast must be available at time t, it holds k∗ ≥ k.8

The second approach aims at seizing the inertia of the wind power output9

through time series analysis, so that power forecasts can be generated using10

recent wind power records provided online by the SCADA2 system. It is11

generally accepted that time series based models outperform physical models12

for the very short-term (this being characterized by prediction horizons up13

to 3-5 hours), while meteorological information is key for generating accurate14

forecasts in the short-term (prediction horizons up to one-two days ahead)15

[30].16

Because most of the applications of wind power forecasting involve pre-17

diction horizons larger than a few hours, the use of accurate NWPs is cru-18

cial in operational wind power forecasting. An important issue is that the19

NWP delivery scheme places conditions to operational forecast. Meteorolog-20

1For simplicity, we present the formulation for a point-forecasting model, but this is

also valid for a quantile model.
2Supervisory Control And Data Acquisition.
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ical agencies deliver NWP outputs according to specificities of the employed1

meteorological model. Relevant parameters are the model cycle, (∆T , time2

between two different launches of the model), the output time-step, (∆t, time3

between two consecutive forecasts) and the output length, (k∗
max , maximum4

prediction horizon). Figure 1 displays a generic delivery scheme for ∆T = 65

h, ∆t = 3 h and k∗
max = 24 h.6

b b b bb b bbr bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

b b bb b bbr bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

b bb bbr bc bc bc bc bc bc bc bc bc bc bc bc

bc bcbc

00h 03h 06h 09h 12h 15h 18h 21h 24h

Figure 1: Scheme of a NWP delivery for ∆T = 6 h, ∆t = 3 h and k∗max = 24 h. Black

squares indicate different launches of the model. The forecast are generated for times

indicated with black circles.

While the optimal situation corresponds to have ∆T and ∆t as short7

as possible, these parameters typically result as a balance between computa-8

tional limitations, extension of the spatial domain considered and time/spatial9

resolution employed by the meteorological model, among other factors. For10

instance, the Rapid Refresh (RAP) numerical weather model of the National11

Centers for Environmental Prediction (NCEP), a limited area model that12

covers North America with a horizontal resolution of 13 km, works with13

∆T = 1 h, ∆t = 1 h and k∗
max = 18 h. Conversely, the global deterministic14

forecasting system of the European Centre for Medium-range Weather Fore-15
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casts (ECMWF) model yields forecasts according to ∆T = 12 h and ∆t = 31

h for k∗
max = 144 h, and ∆t = 6 h for further horizons up to k∗

max = 240 h.2

NWP delivery affects operational wind power forecasting in the sense that3

∆T , ∆t and k∗
max determine which meteorological forecasts (and the related4

prediction horizons, k∗) would be available at time t, leading to specificities5

and restrictions in the wind power forecasting model design.6

For example, let consider the delivery scheme of Fig. 1 together with7

a wind power forecasting model implemented for a prediction horizon of8

seven hours (k = 7). This model, at time t = 02 h, would generate a power9

forecast for lead time t = 09 h in base of the meteorological forecast generated10

(launched) at t = 00 h, thus, k∗ = 9 h. However, for time t = 05 h, the11

available meteorological forecast for the lead time t = 12 h (also generated12

at time t = 00 h) has a prediction horizon of k∗ = 12 h. In summary, the13

considered delivery scheme of the meteorological forecasts translates on the14

fact that, for a wind power forecasting model with horizon k, the prediction15

horizon of the employed meteorological forecasts is in the range k∗ ∈ [k, k +16

∆T − 1], depending on the day time. This fact is important insofar as the17

performance of the power forecasting model is conditioned to the accuracy18

of the meteorological forecasts, which typically decreases with the increase19

of k∗. Thus, larger ∆T values tend to decrease the wind power performance.20

Another issue is the fact that the maximum prediction horizon for a wind21

power forecasting model would be limited to k∗
max −∆T + 1 hours, because22

larger horizons would imply that the model is unable to generate power23

forecasts for some times of the day, as the related meteorological forecast is24

missing. For example, for the delivery scheme described above, this maximum25
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horizon is of k = 19 hours; effectively, for a power forecasting model with1

k = 20 hours, there is no meteorological forecast for the related lead time2

at day times t = 23, 05, 11 and 17 h. An important problem with a power3

forecasting model providing forecast time series with periodically missing4

forecasts is that this fact is likely to distort performance assessment, which5

might be critical specially during a benchmark exercise.6

4. Experiment setup7

The case-study considered in this work consists in one real wind farm8

from the Global Energy Forecasting Competition dataset (GEFCOM 20129

- third wind farm), which is freely available in [31]. The employed dataset10

ranges from 01/07/2009 to 31/12/2010 (one year and a half) and consists11

of historical power measurements with hourly resolution, {pt}, and wind12

speed and wind direction predictions, {ŵst} and {ŵdt}, extracted from the13

ECMWF model with ∆T = 12 h, ∆t = 1 h, and k∗
max = 48 h. The first year14

of data was employed to set-up the models through k-fold crossvalidation15

with three folds. The remaining six months of data represent the test set,16

employed to evaluate the performance of the models.17

4.1. Proposed models18

Taking into account the operational framework described in Section 3, six19

models are proposed. Each model actually comprises 19 quantile regression20

models based on the methodology described in Section 2.1 and particularised21

for τ = [0.05, 0.10, ..., 0.95].22

• Five models, MRKHS
1 , ... , MRKHS

5 , for very-short term wind power23

forecasting, corresponding to prediction horizons from one hour to five24
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hours ahead. These models put emphasis on the statistical approach,1

exploiting autocorrelation in wind power time series. Each quantile2

forecast for lead time t+k is generated from the most recent power ob-3

servation provided by the SCADA and the most recent meteorological4

forecast for time t + k available at time t. Thus, data samples (xt, yt)5

for model Mk (1 ≤ k ≤ 5) are in the form:6

xt = [pt, m̂t+k|t+k−k∗ ]

m̂ = [ŵs, cos(ŵd), sin(ŵd)]

yt = pt+k,

where k∗, according to Section 3, ranges between k and k+11 depending7

on the day time.8

• One model, MRKHS
0 for short-term wind power forecasting. This model9

puts emphasis on the physical approach, building optimal regressions10

between the meteorological forecasts and power quantile forecasts for11

a range of horizons up to 36 hours ahead.3 Because the same model12

is employed to generate forecast time series for a wealth of prediction13

horizons, the prediction horizon of the meteorological forecast, k∗, is in-14

troduced as an explanatory variable. The reason why k∗ is preferred as15

3Note that the maximum horizon to have complete forecast time series, according to

Section 3, is of 37 hours ahead. For convenience, we opted for a maximum horizon of one

day and a half.
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explanatory variable rather than k is the aforementioned implications1

of the NWP delivery scheme, particularly the fact that, for a given k,2

meteorological forecasts with different horizons k∗ are involved. In ad-3

dition, feeding the quantile model with k∗ is deemed to be the proper4

approach to capture the expected decrease of accuracy of the meteo-5

rological forecast with the related prediction horizon. Data samples6

(xt, yt) for this model are in the form:7

xt = [m̂t+k|t+k−k∗ , k
∗]

m̂ = [ŵs, cos(ŵd), sin(ŵd)]

yt = pt+k.

The wind power variable was referred to the rated power, PR, so that the8

power records belong to the interval [0, 1]. Regression variables contained9

in xt were standardized (zero mean and unit variance) in order to put all10

predictors on a common scale. Standardizing is a common practice in fore-11

casting as it helps remove the impact of the variable scale on the regression12

process. In addition, in view of Eq. (11), this step is deemed to be particu-13

larly important, since different predictor scales may hamper the optimisation14

of the parameter σ.15

4.2. Benchmark Models16

Linear quantile regression (Linear QR) was firstly introduced in [26], and17

the conditional quantile is modelled as follows:18
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qτ (x;Θ) = [1 xT ] ·Θ, (13)

where x are explanatory variables and Θ is a vector coefficients to be deter-1

mined from the historical dataset.2

By considering high-order polynomials, Linear QR can be used to model3

non-linear relations between target and explanatory variables. However, this4

parametric representation is not very flexible for wind power modelling. Here,5

a third-order polynomial between wind speed and wind power is used as a6

means to model the non-linear relationship between wind and wind power7

output, the so-called wind power curve.8

A more suitable framework is a semi-parametric QR model based on9

additive models theory [21, 32]. Mathematically, additive QR (or splines10

QR) can be expressed as follows:11

qτ (x; θ0) = θ0 + f1 (x1) + · · ·+ fp (xp) , (14)

where θ0 is a constant and the functions fp (xp; τ) may have a parametric12

form (e.g., polynomial), non-parametric or semi-parametric estimated from13

the data. According to [32], each of the functions can be approximated by14

linear combinations of known basis functions of the explanatory variable,15

which results in linear QR model.16

The R code presented in [21] is used for the benchmark model. Natural17

spline bases with ten degrees of freedom was used for the wind speed and the18

wind direction was modeled with Fourier decomposition (i.e., composition of19

sinusoidal functions), although periodic cubic spline basis could be also used.20
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4.3. Evaluation framework1

Performance assessment of probabilistic models is more complex than2

that of deterministic models. This is so because the fitness between the3

observation and the predictive densities involves a higher degree of subjec-4

tivity [11]. For this reason, several metrics revealing different aspects of the5

forecasts are usually employed to define the evaluation framework. Three6

metrics widely employed in probabilistic forecasting were considered in this7

work: calibration, sharpness and the Continuous Ranked Probability Score8

(CRPS) [33, 34].9

Calibration measures the difference between the nominal proportions, τ ,10

and the empirical proportions (τ1:N , computed from time series {qτt } and11

{pt}, with 1 ≤ t ≤ N):12

bτ1:N = τ − τ1:N . (15)

bτ1:N = 0 is usually referred to as perfect calibration. A positive bτ1:N value13

means that quantile {qτt } was infra-estimated, as it resulted higher than {pt}14

in a proportion less than τ . It is also noted that calibration is of major15

importance for the wind power industry and for TSOs (see discussion in [5],16

among others).17

Sharpness is employed to assess the uncertainty conveyed by the proba-18

bilistic forecasts, regardless reliability (that is, despite how well the predictive19

forecast fits the observation). Sharpness is computed as the average interval20

size between two symmetric quantiles. Mathematically:21

δβ =
1

N

N∑
i=1

(q
0.5−β/2
t − q

0.5+β/2
t ) , for β ∈ (0, 1), (16)
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N being the number of samples. Given that δβ = 0, ∀ β, means no uncer-1

tainty, as the probabilistic forecasts collapse into point-forecasts.2

The CRPS is a widely employed skill score that provides an average per-3

formance of how well probabilistic forecasts compares with observations. It is4

considered a global skill score since it allows to jointly evaluate reliability and5

sharpness of the probabilistic forecasts within a single score [33], the main6

drawback being that bad scores are not informative about the specific aspect7

causing this situation. CRPS associates lower values to better performances,8

zero being the best mark possible. This criterion is given by:9

CRPS =
1

N

N∑
t=1

∫ ∞

−∞
(Ft(p)−Hpt(p))

2 dp, (17)

where Ft(p) is the predicted cumulative distribution function for time t,10

Hpt(p) is the Heaviside function located at the observation pt, and N is the11

number of evaluated forecasts. For the case of quantile regression models,12

the CRPS can be estimated from a set of quantiles [35].13

5. Results and discussion14

5.1. Aspects of the model training15

According to Section 2, there are a number of parameters to set in order16

to fully define a quantile regression model in the RKHS. These are the kernel17

parameters (for the case of the RBF kernel, the bandwidth σ), the learning18

rate, η and the bias term to initialize the model, b0. Concerning σ and η, we19

restricted the analysis by assuming the same values for each of the nineteen20

19



quantile models enclosed within each probabilistic model. Parameter assess-1

ment was performed through k-fold crossvalidation with three folds based on2

the CRPS criterion obtained in the training period.3

The choice for b0 for each of the nineteen quantile models was the re-4

spective non-conditioned quantile computed from the wind power time series5

during the training period, Qτ
train :6

b0 = Qτ
train . (18)

These quantiles are depicted in Fig. 2. The rational for this choice is that,7

in case of a long sequence of missing data, the forgetting process makes8

the quantile estimates tend to the non-conditioned quantile, which actually9

represents a classical reference model in wind power forecasting (referred to10

as climatology). Hence, in such situations, the model would still perform as11

a reference. This property also applies to regions of X (the span of x) where12

data are observed with low frequency (rare or extreme events).13

Table 1 illustrates the obtained model parameters and the related per-14

formance obtained through the training period. It is observed that larger15

prediction horizons entail an increase of σ, which actually means, according16

to Eq. (11), a decrease of the kernel width. This result could be expected17

since the dominant underlying inputs-outputs relationship shifts from a linear18

pattern between consecutive power values (steaming from wind power cor-19

relation) towards the non-linear relationship between wind speed and power20

output (given by the power curve). Concerning the learning rate, a similar21

optimal value was found for models MRKHS
1 ,..., MRKHS

5 , while for the case of22

model MRKHS
0 the learning process resulted to be more effective with a lower23
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Figure 2: Non-conditioned quantiles of the wind power time series in the train set.

η. This could be explained from the fact that this model is employed for a1

wealth of prediction horizons, meaning that it learns as well from a higher2

number of samples (xt, yt). Concerning parameter λ, little variations are ob-3

served among the models. As explained, this parameter affects the forgetting4

factor ηλ, the highest value obtained being 1.77e-07, which means a negligi-5

ble forgetting process (a certain expansion coefficient αi falls by 0.018% after6

1 000 time steps). Finally, the decrease of the forecasting performance with7

the prediction horizon is a classical result in wind power forecasting [30].8

Figure 3 illustrates the forecast quantiles q0.10t (top) and q0.90t (bottom)9

for the obtained model MRKHS
5 at two different time instants: after two weeks10

(t = 336, left) and three months (t = 2016, right) of learning. In particular,11

the plots show the dependency of the quantiles at t + 5 with the forecast12

21



Table 1: Parameter values and performance obtained for QR models in the RKHS during

the training period.

σ λ η CRPS

MRKHS
1 4.64·10−2 1.00·10−5 1.00·10−2 4.45

MRKHS
2 6.81·10−2 1.78·10−5 1.00·10−2 6.28

MRKHS
3 1.00·10−1 1.00·10−6 1.00·10−2 7.20

MRKHS
4 1.00·10−1 3.16·10−6 1.00·10−2 7.76

MRKHS
5 1.00·10−1 1.00·10−6 1.00·10−2 8.15

MRKHS
0 1.47·10−1 2.00·10−5 5.00·10−3 9.28 (a)

(a) Average value for prediction horizons from 1 to 36 hours ahead

wind speed, ŵst+5 (x axis), and the most recent power observation, pt (with1

colours, divided into four groups for illustrative purposes). To perform each2

plot, the outputs of each model at the related time instant were obtained3

for 1000 inputs xt homogeneously distributed in the input space X ∈ Rn. It4

can be seen that, after two weeks of learning, the modeled quantiles deviates5

little from the associated non-conditioned quantiles, specially for regions in X6

with small density of samples (shown by gray dots in the figure). After three7

months, the learning process has deepened, allowing the modeled quantiles to8

show predictions coherent with the underlying power curve and the influence9

of the most recent power observation (see left bottom).10

5.2. Test results and discussion11

Figure 4 shows the CRPS versus the prediction horizon obtained for the12

different models. Concerning models for very short-term forecasting (M
(·)
1 -13

M
(·)
5 ), all the models showed relatively similar performance. This result could14
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Figure 3: Quantile models for τ = 0.1 (left) and τ = 0.9 (right) from model MRKHS
5 at

two different time instants: after two weeks (top) and three months (bottom) of learning.

PR stands for rated power.

be attributed to the fact that, for such prediction horizons, the underlying1

relationships between inputs and outputs are dominated by autoregressive2

dynamics, which are typically well sized with simple linear regression. Thus,3

more advanced strategies, as the QR in the RKHS, contributes little or noth-4

ing to improve the probabilistic forecasts. Conversely, focusing on models5

M
(·)
0 , the on-line quantile regression in the RKHS provided better results for6

a range of prediction horizons (namely, up to 20 hours ahead). While the7

improvement with respect to the spline approach implied a decrease of only8

up to 4.75%, this happens within a range of prediction horizons of special9

interest for bidding in electricity markets. For example, prediction horizons10

related to intra-day markets in the Iberian electricity market ranges between11
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3-30 hours ahead.1
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Figure 4: CRPS according to type of model and prediction horizon.

Model calibration is depicted in Fig. 5 according to type of model and2

prediction horizon (on top, results for models M
(·)
1 -M

(·)
5 ; at the bottom, results3

for models M
(·)
0 broken down according to prediction horizon). Results show4

a fairly improvement obtained by RKHS models as compared with reference5

models. While for the latter the absolute value of bτ1:N ranged between 0.016

and 0.03, the calibration of the proposed models remained within the ±0.0157

interval.8

This result could be due to the adaptive nature of the algorithm, which9

refines the quantile regression with every new sample according to learning10

rules based on the pinball loss function. To confirm this hypothesis, the evo-11
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Figure 5: Calibration according to type of model and prediction horizon.

lution of the bias over time during the test set was analysed. The particular1

case of k = 5 was considered, though similar analysis were performed for2

other prediction horizons. Figure 6 shows the calibration bias for quantile3

τ = 0.5 computed for an increasing size of samples from the test set, b0.51:t , ob-4

tained for models MLinear
5 , MSpline

5 and MRKHS
5 . An additional curve, labeled as5

MRKHS,frozen
5 , reflects the calibration related to model MRKHS

5 without adap-6

tivity, that is, without learning during the test set. To implement this, no7

more terms were added in the kernel expansion given in Eq. (6) during the8

test set. Thus, models MLinear
5 , MSpline

5 and MRKHS,frozen
5 generate predictive9

densities according uniquely to patterns captured from the training set. It10

can be seen that the calibration of these models evolve over time with a11
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similar drift, suggesting that this result derives from wind power dynamic1

seasonalities. Conversely, model MRKHS
5 performs nearly perfect calibration2

consistently over time, reflecting a clear improvement with respect to the3

previous models. Consequently, the observed result could be considered as4

an achievement of the adaptive nature of the model.5

0 1000 2000 3000 4000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

Time [hours]

b
1:

t
0.

5

M5
Linear

M5
Spline

M5
RKHS

M5
RKHS, frozen

Figure 6: Calibration bias for quantile τ = 0.5 evaluated over an increasing window of the

test set. Case for k = 5.

Lastly, results concerning sharpness are illustrated in Fig. 7. As could6

be expected, an increase of the uncertainty conveyed by the models with the7

prediction horizon is observed, specially for models M
(·)
1 -M

(·)
5 , where the most8

recent power observation is key for generating predictive densities in the very9

short-term. For these models, the single noticeable difference is that models10

26



MRKHS
(·) provided slightly higher averaged intervals between quantiles τ = 0.051

and τ = 0.95 (i.e. β = 0.9). Concerning models M
(·)
0 , the sharpness of linear2

and spline models were found to depend little on the prediction horizon,3

the latter showing slightly better marks. Model MRKHS
0 showed a sharpness4

more dependent on the prediction horizon, though the marks roughly evolved5

from that of splines (for the shortest horizons) to that of the linear quantile6

regression (for the largest horizons).7
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Figure 7: Sharpness according to type of model and prediction horizon. δβ is expresses as

a percentage of the rated power, PR.

A final remark on the presented model must be done. It relates the8

growing sum problem. According to Eq. (6), the number of terms in the9

expansion grows linearly with t, increasing the computational and memory10
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requirements. Though it did not represent a limitation in this work, as1

the time series were relatively short (one year and a half), this issue has2

been recognized as the main bottleneck in kernel adaptive algorithms [36].3

To avoid this problem, [28] proposed expansion truncation by dropping the4

oldest samples, given that the αi coefficients decrease with time as (1 −5

ηλ)t. This option does not represent a proper solution in cases where the6

optimal forgetting factor results very low (as it was the case in this work)7

in combination with time series spanning over several years (or less, for sub-8

hourly time resolution). Another option is to explore the extent to which9

the contribution of certain samples to the model can be approximated by10

linear combinations of the contribution of another samples, so that not every11

sample must translate into a new term in Eq. (6). This idea is the base of12

sparsification [37, 38]. Quantization of the feature space was presented as13

an alternative in [36]. According to [39], sparsification and quantization do14

not fully solve the growing sum problem, as they curb the rate of growth15

from linear to sublinear. Instead, the author proposed a new approach by16

approximating kernel evaluations using finite dimensional inner products in17

a randomized feature space. This approach was applied to the Kernel Least18

Mean Square (KLMS) algorithm. Thus, its application to the stochastic19

gradient descent algorithm employed in this work could represent a future20

line of research.21

Finally, for illustrative purposes, the predictive densities provided by some22

of the quantile regression models in the RKHS during a four days period are23

shown in Fig. 8. In particular, results for one hour, five hours and 24 hours24

ahead are shown on top, middle and bottom, respectively. The impact of the25
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prediction horizon on the wind power uncertainty can be clearly appraised:1

while autocorrelation in wind power allows narrow predictive densities for one2

hour ahead, where the contribution of the most recent power observation is3

paramount, uncertainty increases with the forecast horizon, especially for4

the case of model MRKHS
0 where the forecasts are generated essentially from5

NWPs.6

6. Conclusions7

We have presented a new on-line quantile regression model based on the8

Reproducing Kernel Hilbert Space (RKHS) framework. This approach, based9

on linear regressions in the feature space, combines simplicity with non-linear10

modelling capabilities. In addition, since the model takes roots in kernel11

methods, the complexity and computational requirements remain relatively12

independent with the number of explanatory variables. This represents an13

advantage as compared with other models typically employed in probabilistic14

wind power forecasting.15

An important feature of the model is on-line learning, which allows the16

predictive densities to account for smooth variations over time, typically17

present in wind power dynamics due to seasonalities and wind turbine aging.18

The developed algorithm is based on the stochastic descent gradient intro-19

duced in [28], here generalised for the case of including a bias term. The20

analysis of the obtained learning rules permitted us to connect this parame-21

ter with the non-conditioned quantiles of wind power output, as this allows22

the model to perform as a classical reference model in wind power forecasting23

(climatology) when facing missing input data and rare or extreme events.24
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Figure 8: Probabilistic forecasts provided for k = 1 (top), k = 5 (middle) and k = 24

(bottom) during four days.

Specificities of the operational framework of wind power forecasting were1

also described. These relate the impact of the delivery scheme of a meteo-2
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rological model on the generation of predictive power densities. Within this1

context, a benchmark exercise to predict 19 wind power quantiles from wind2

speed and direction forecasts delivered each 12 hours was performed for a3

real case study. Two model configurations were proposed: one for very-short4

term forecasting up to five hours ahead (including the most recent power5

observation gathered from the wind farm as explanatory variable) and other6

for short-term forecasting up to 36 hours ahead (including the prediction7

horizon of the meteorological model). Two benchmark models were consid-8

ered, comprising linear quantile regression (with a third-order polynomial for9

the wind speed to better capture the wind power curve) and spline quantile10

regression (with ten degrees of freedom for the wind speed and using Fourier11

decomposition for the wind direction).12

Results were based on a multi-criterion evaluation framework. The find-13

ings showed noticeable improvements in terms of calibration, this criterion14

being of major importance for the wind power industry and for Transmission15

System Operators [5]. Further analyses led us to attribute this achieve-16

ment to the adaptive nature of the model. In terms of Continuous Ranked17

Probability Score, the RKHS approach obtained modest improvements for18

prediction horizons between 6 and 20 hours ahead. This result could be in-19

teresting insofar as this range of horizons is of special interest for bidding in20

electricity markets. Finally, concerning the sharpness criterion, no remark-21

able improvements were observed in reducing the uncertainty captured by22

the model.23

In summary, the presented results support regression in the RKHS as24

a competitive approach for wind power probabilistic forecasting. Indeed,25
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more studies could be performed to gain insights into its capabilities and1

limitations. The issue of the growing sum problem was specially remarked.2

While it did not represent a limitation for the considered dataset of one3

year and a half, this issue needs to be addressed in future studies dealing4

with longer time periods. In this regard, several possibilities discussed in5

the literature were outlined, and their application represents clear paths for6

improvement.7
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