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Tactical production and distribution planning with
dependency issues on the production process

Wenchao Wei∗, Luis Guimarães∗, Pedro Amorim∗, Bernardo Almada-Lobo∗‡

Abstract. Tactical production-distribution planning models have attracted a great deal of attention in the past decades. In
these models, production and distribution decisions are considered simultaneously such that the combined plans are more
advantageous than the plans resolved in a hierarchical planning process. We consider a two-stage production process, where
in the first stage raw materials are transformed into continuous resources that feed the discrete production of end products
in the second stage. Moreover, the setup times and costs of resources depend on the sequence in which they are processed
in the first stage. The minimum scheduling unit is the product family which consists of products sharing common resources
and manufacturing processes. Based on different mathematical modelling approaches to the production in the first stage, we
develop a sequence-oriented formulation and a product-oriented formulation, and propose decomposition-based heuristics to
solve this problem efficiently. By considering these dependencies arising in practical production processes, our model can be
applied to various industrial cases, such as the beverage industry or the steel industry. Computation tests on instances from an
industrial application are provided at the end of the paper.

Keywords: tactical integrated production-distribution planning, two-stage production process, sequence dependent setup times
and costs, MILP based heuristics.

1. Introduction

In many industrial supply chains, raw materials are gradually transformed into end products through a
series of production stages, and then delivered to scattered clients to meet their demands. With market
globalisation and international trade expansions, many firms have been trying to optimise their produc-
tion and distribution systems simultaneously in the most efficient and economical way possible, such
that the overall costs are minimised and all client requirements are met. For example, the production
sites are usually geographically close to clients and are dedicated to few types of products in order to re-
duce the distribution and production costs, respectively. In an environment where demands are seasonal,
the production rates and the inventory levels of some products are kept in a systematic way to balance
inventory costs and customer satisfaction. Moreover, some groupings of products of different types and
amounts over a large time scale for a one-off delivery may increase the usage of the transportation capac-
ities, and thus decrease the total delivery costs. The integrated production-distribution models consider
all the factors above throughout the decision-making process, thus providing the tools to investigate the
supply chains in a more macroscopic way than in a dissolved model (Chandra & Fisher, 1994).

Following the hierarchical supply chain management, company practitioners perform strategic, tac-
tical and operational oversight to monitor and improve the integrated production-distribution process.
The strategic level decisions are usually the first step in developing such a process, for instance, by
choosing the site and functionality of factories or creating a reliable transportation network. The process
itself is substantially defined at tactical level, where issues about demand satisfaction, cost control and
risk management are addressed. Common concerns in the tactical level include production schedules,
transportation and warehousing solutions, or inventory logistics. Operational level refers to day-to-
day processes, such as detailed management of good-in-process, or managing incoming and outgoing
products. In this study, we investigate the production and distribution planning in a tactical level by
considering the dependency constraints arising at operational level. The motivation is to provide the
company practitioners with a global vision of the entire production-distribution process, and to find key
bottlenecks for further improvements.
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Over the last decades, research has been conducted on this integration, as well as on its industrial
applications. For a review, the reader should go to Mula et al. (2010). However, most papers focus
mainly on the interdependencies between production and distribution, and thus fail to capture the depen-
dency attributes within the production process itself, which tends to be rather simplified. For example,
in a multi-product production site, the type of raw material entering the production system determines
the characteristics of the products being produced within a certain period. There is also the need for
cleansing the production entities in order to guarantee the purity of the products. The cost and time for
cleansing often depend on the sequence of product lots and the quality of the products produced. Clearly,
the above-mentioned dependencies substantially determine the detailed production management in the
operational level, and will eventually influence the final integrated production and distribution planning
in the tactical level as well.

In this study we consider production processes that are tightened with these dependencies. These
processes can be modeled using a two-stage production structure which consists of resource preparation
(where raw materials are transformed into continuous resources) in the first stage, and product forming
in the second. One industrial motivation comes from the mass production of glass containers (Almada-
Lobo et al., 2008), which are manufactured at a rate of thousands of products per minute on each
production line. In the first stage, raw materials such as sand, soda ash, limestone and cullet are mixed
and melted into glass paste (which we call continuous resources) around 1500◦C. In the second stage,
the paste is drawn into production lines that shape them into final products, which are glass containers.
This kind of structure captures the essential parts of the production process in many other industrial
cases. A similar process transferring alloy into various vessels can be found in the steel industry (Araujo
et al., 2007; Santos-Meza et al., 2002). There is also a two-stage production process with soft drinks
(Ferreira et al., 2009), where the syrup is prepared in tanks in the first stage, and then distributed to
parallel bottling machines in the second stage. The production system of the spinning industry processes
fibres (of different fibre blends) in the first stage, which are then used to produce different types of
yarn on parallel machines in the second stage (Camargo et al., 2014). In these examples, the two-
stage manufacturing structure must be addressed within the production-distribution planning procedure,
which may eventually alter the quantities of the production lot, as well as the timing and magnitude of
the distribution. The production sequences, lot sizes, inventory and distribution plans should therefore
be balanced in a comprehensive way such that the trade-offs between manufacturing and transportation
costs, demand satisfaction, and backlog and sale losses are optimised simultaneously.

In this paper, we study a model that integrates production and distribution planning in the tactical
level for a yearly planning horizon. By considering a two-stage manufacturing structure, this model is
a variation of the production-distribution models suggested by Fahimnia et al. (2013). The major mod-
elling concern is synchronising the production and distribution plans, while respecting the dependency
constraints arising in the production stages. Particularly, we consider that the setup times and costs con-
sumed in the first production stage are sequence-dependent, while the setup times and costs in the second
stage are just product-dependent. The justification for this modelling choice are presented afterwards in
Section 3. The unfulfilled demands are either shifted to subsequent production periods as backlog, or
penalised as lost sale if they cannot be supplied within a certain time lag. As a response to seasonally
varied demand, moderate amounts of products are normally produced in advance and stored in ware-
houses incurring inventory costs. The transportation costs are determined by the distance between the
plants and clients, and the quantities of products that will be delivered. The quantities of backlog, lost
sale, inventory and delivery are determined explicitly in the model.

We focus on big-bucket formulations rather than on small-bucket formulations, since the former
provide much better lower bounds (Wolsey, 2002). It is clear that in the two-stage production process,
second-stage decisions are dominated by the decisions made in the first production stage. Different
mathematical formulations are derived based on the modelling choices adopted in the first production
stage. For instance, one can define the changeovers (occurring in the first production stage) between
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products explicitly in the model, or alternatively, use a collection of pre-defined sequences of products,
such that the changeovers between products in the first production stage follow a given sequence. Ac-
cordingly, we develop two mixed integer linear programming (MILP) formulations: a product-oriented
and a sequence-oriented formulation, which are then compared.

The difficulty of solving our problem is synchronising the production activities in the two production
stages across all the machines in order to maintain a certain output rate. Additionally, the model is com-
plicated by the existence of sequence-dependent setup times and costs. In light of the existing literature,
such as Pochet & Wolsey (2006) and Helber & Sahling (2010), MIP-based decomposition algorithms
are capable of solving our problem efficiently. Different decomposition statistics are adopted based on
the problem characteristics, such as, for example, time periods, products, machines, or demands. Specif-
ically, we develop a relax-and-fix heuristic based on time-decomposition to find an initial solution, and
a fix-and-optimise improvement approach embedding a variable neighbourhood search (decompositions
based on time periods and entities in the first production stage). Our computation experiments on an
industrial application show that our solution approach is efficient in finding good solutions.

This paper contributes to this research area in three ways: firstly, we shed light on tactical production-
distribution planning with integrated dependency issues on the production process; secondly, we exam-
ine two mixed integer linear programming formulations for the integrated model; thirdly, we develop
heuristic algorithms to solve the problem efficiently, and then provide managerial analysis.

The paper is organised as follows: Section 2 lists relevant research contributions in the integration of
production and distribution planning. Section 3 introduces the problem features and the basic assump-
tions. Section 4 describes two different approaches for modelling the tactical production and distribution
planning. Section 6 elaborates on a relax-and-fix heuristic and on a fix-and-optimise heuristic procedure
for both formulations. Section 7 presents our computational experiments conducted on industrial in-
stances and summarise the results. Finally, Section 8 concludes this paper and outlines future research
topics.

2. Literature review

Among the first attempts to combine production and distribution, Burns et al. (1985) study the delivery of
products in a simplified production system in order to minimise inventory, production and transportation
costs.

Chandra & Fisher (1994) address a single manufacture site, with a multi-product problem. The au-
thors study the coordination of production planning and vehicle routing to minimise setups, inventories
and transportation costs. Their computational studies show that considering production and distribution
simultaneously decreases total operating costs. Pyke & Cohen (1993) restrict the supply chain to a single
plant and try to determine optimal batch sizes. A Markov chain model is proposed for the case of single
product and an approximation scheme for a multiple product environment in Pyke & Cohen (1994).

Dhaenens-Flipo & Finke (2001) discuss a multi-facility, multi-product, multi-period production and
distribution problem in the form of a network flow problem, applied to a real industrial problem. Park
(2005) considers a production and distribution planning problem to maximise the total net profit in a
multi-plant, multi-retailer, multi-item, and multi-period logistic environment, and propose optimisation
models and a heuristic solution for both integrated and decoupled planning.

Chen & Vairaktarakis (2005) study an integrated scheduling model of production and distribution
operations where products are processed and then delivered directly to the customer without intermediate
inventory. Their objective takes into account both customer service level and total distribution cost. Lee
et al. (2006) suggest an integrated mathematical model for the semiconductor industry supply chain
consisting of production and distribution chains, where production re-entry, binning and substitution
flows are considered. Kopanos et al. (2012) address a production process with a semi-continuous mixed
integer programming model for simultaneous production and logistics operations planning, based on
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the definition of families. A review of recent research on the integrated planning of production and
distribution is well described in Mula et al. (2010) and Fahimnia et al. (2013).

We list another stream of literature concerning the modelling choices of detailed lot sizing and
scheduling problems. The problem is often formulated on a discrete time scale using either a big-bucket
time scale where multiple setups can be scheduled in each period (see Lasserre, 1992 and Clark &
Clark, 2000), or a small-bucket time scale where only one setup is scheduled in each period (see Las-
don & Terjung, 1971 and Fleischmann, 1994). Hybrid models combining big-bucket and small-bucket
time scales are studied by Fleischmann & Meyr (1997) and Transchel et al. (2011). The disadvantage
of discrete time scales formulation is its untraceability for large problems due to the binary variables as-
signed to each discrete time period. Using continuous time scale formulations could avoid this problem,
but it renders a more complicated model (Floudas & Lin, 2004). For a recent research on two-stage
lot-sizing and scheduling formulations, go to Camargo et al. (2012). A continuous common resource
is considered in the first stage, and lot-sizing and scheduling with sequence-dependent setup times and
costs are considered in the second stage. This work provides three discrete and continuous time-based
scale formulations, as well as comparisons between them.

In this paper, production and distribution planning are combined to tackle a multi-site tactical
decision-making problem. Production sites are selected for conducting certain types of production ac-
tivities, and then paired with clients for delivering satisfactory quantities of products. To the best of
our knowledge, the dependence constraints arising in the production stage have not yet been studied in
this integrated context. Detailed production planning needs to be underlined when examining the entire
planning system. Specifically, we are interested in a two-stage production process where the outputs
on each stage are related. Moreover, we consider multiple types of resources in the first stage. Look-
ing at both literature streams, our problem is described as a multi-plant, multi-client, multi-period and
multi-product production and distribution problem with a two-stage production process.

3. Problem description

Let us consider a company which has several plants and clients scattered in a wide international region
(see Figure 1 for an illustration). The products are produced in the plants and then delivered to the clients
to meet their demands. A tactical integrated production and distribution plan for this company consists
of production decisions (such as machine utilisation, lot sizes, setup sequences of products), inventory
solutions and delivery management (such as quantity of products transported from plants to clients) over
a large time horizon with regard to all environmental constraints. Our objective is to find an integrated
plan that minimises the total setup, inventory, backlog, lost sale and transportation costs.

Plant

Client

Figure 1: An illustrative distribution network

4
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The model considered in this paper is based on a number of assumptions. Firstly, we present as-
sumptions which also hold for the integrated production-distribution models, as described in Mula et al.
(2010):

• The products are delivered to the clients directly from the plants without passing by a distribution
centre (as shown in Figure 1).

• The transfer cost per product unit only depends on the product’s characteristics and distance be-
tween the plants and clients.

• Warehouses are only located at each plant. Therefore, demands for each period cannot be supplied
in advance. The storage capacity of warehouses is assumed to be sufficiently large.

• Unsatisfied demands are either classified as backlog or penalised as lost sale (if they cannot be
met within a certain period).

The assumption of transportation cost may be seen as strict. However, with the advent of supply
chain management in various industrial sectors, many enterprises started to dismiss their own fleet of
vehicles and to transport final goods in cooperation with external partners, which are the called third-
party logistics service providers. In the long run, the unitary transportation cost is considered constant.
Thus, classical optimisation models which coordinate production and distribution volumes at an aggre-
gate level are appropriate for a long-term production planning.

Backlog makes it possible to further group demand and improves machine capacity utilisation; how-
ever, backlog is penalised because it leads to a deterioration of the customer service. In production
environments with high levels of capacity utilisation, as well as in other applications, the considera-
tion of backlogs, also known as back orders, is imperative. Otherwise, no feasible solution would exist
(Quadt & Kuhn, 2008).

Particularly, we consider a two-stage production process (see Figure 2 for an illustration) in the
integrated production-distribution planning. In the first-stage production, the raw materials are processed
into continuous resources, and then transformed into end products in the second stage. Feeding machines
are the entities that carry over the continuous batch of resources and feed them into manufacturing
machines, which are the entities that conduct the discrete production of end products. The outcome
of the first stage production is thereafter called a resource, which essentially determines the texture of
the end products. The end product is the output of the second-stage production and there are different
manufacturing (forming) processes to produce them. Next, a new production lot in the first stage is called
a resource campaign, and a production lot in the second stage is a (manufacturing) process campaign.

Stage 1: Continuous production of resources

Stage 2: Discrete production of end products

M1 M2 M3 M4 M5

End products

Manufacturing machines

Raw materials

Feeding machines F1 F2

Resources Resources

Resource campaigns

Process campaigns

Figure 2: An illustrative two-stage production process

To address the two-stage production process in the model, further assumptions are needed:
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• The procurement of raw materials is assumed to be reliable and is not considered.

• Each manufacturing machine is assigned unequivocally to a feeding machine.

• Simultaneous production of resources and end products is possible.

• At each point in time, one resource at most is provided by a feeding machine, thus all the man-
ufacturing machines connected to this feeding machine should manufacture products that require
the same resource.

• The processing of resources is considered a semi-continuous task at different throughput rates.
The manufacturing machines also have different throughput rates for each product and are allowed
to be idle only when the feeding machine is being set up to another resource campaign.

• The setup state of a machine is conserved from one period to the next.

• The setup times and costs of changing from one resource campaign to another are sequence-
dependent due to technical and/or quality issues. In addition, the triangle inequality holds, which
means that it is never faster to change from one resource to another by means of a third resource
campaign. The setup times and costs of changing from one process campaign to another are
considered constant.

• Setup carryover holds: a feeding machine starts a period by processing the same resource as the
one from the end of the previous period; a manufacturing machine starts a period with a process
campaign carried over from the previous period.

• No changeover may overlap the boundaries of periods (i.e., setup crossover is not allowed in the
model).

• Products are divided into families, each of which is described as a set of technologically similar
products sharing some resources or consuming the same resource. A changeover from one product
family to another consists of changing the (first-stage) resource, or the forming (second-stage)
process, or both. The changeovers between products of the same family only require simple
operations, and thus are neglected in the model. Therefore, family is the scheduling unit and only
the quantities of each product produced are determined.

• A product cannot be produced in a given period unless the desired resource campaign and process
campaign are already set up during that period.

The assumption that setup state can be conserved over time periods is a real-world feature (specif-
ically in a 24-7 production system) which may promote savings in setup costs and time, and decrease
inventory levels since setups consume a large amount of the machine’s capacity.

Changeovers between different process campaigns normally incur in setup times and costs that are
much lower than those of the resource campaigns. Therefore, without loss of generality, both setup
times and costs are considered constant. This assumption is practical on a tactical planning level for
many two-stage production processes (such as in the glass container or steel industry).

The assumptions of setup carryover and non-overlapping render a much more compact formulation.
A natural consequence is that if a resource campaign is set up in the beginning of both the current and the
successive period, then that resource campaign is the only one in the current period. This conservation
applies mutatis mutandis to process campaigns, thus restricting the solution space to a reasonable size.
The potential advantage of setup crossovers has a relatively small effect on the total costs on this planning
level, as time buckets are large. Due to the triangle inequality of setup costs and times, at most one setup
is allowed for each resource on each feeding machine, during each period.
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Table 1: Relations between family, resource and process for the illustrative example

Family {Product} Resource Manufacturing process
f {i} u o

1 {1, 2} 1 1
2 {3} 1 2
3 {4, 5} 2 2

We consider the consumption of resources, as well as the production quantities, machine throughput
rates and product demands in the same unit of measurement (for instance, in tonnes). All the time related
parameters and variables, such as processing time or setup time, are measured in the same time unit (for
instance, hours).

u = 1
f = 1 f = 3

f = 1

T

u = 1 u = 2

i = 1

f = 2

t = 1

u = 2
f = 2

t = 2

f = 2

i = 2

Resource changeover

Process changeover

Machine idleness

f = 1f = 3

Resources (u)
Families (f)

Products (i) of family

Initial Inventory Inventory Inventory

Delivery Delivery

Production Production 

Backlog + Lost sale Backlog

Demand Demand

P
roduction planning

D
istribution planning

Backlog

Feeding machine  1

Manufacturing machine  1

Feeding machine  2
Manufacturing machine  2
Manufacturing machine  3

Figure 3: An illustrative production and distribution planning

Without loss of generality, we illustrate the integrated production-distribution planning with a two-
stage production process on a single plant. This plant consists of two feeding machines and three man-
ufacturing machines. Manufacturing machine 1 belongs to feeding machine 1; manufacturing machines
2 and 3 belong to feeding machine 2. The indices of other components of the problem and the rela-
tions between the components are given in Table 1. These two feeding machines can process the two
resources and the three manufacturing machines can perform two manufacturing processes. A possi-
ble production-distribution plan over periods 1 and 2 is presented in Figure 3. During period 1, the
changeover from family 3 to family 1 on feeding machine 1 requires only a process changeover, while
the changeover from family 1 to family 2 needs both a resource changeover on the feeding machine 1
and a process changeover on the manufacturing machine 1. These two changeovers are performed si-
multaneously. The process changeover occupies a small part of the time slot of the resource changeover,
with the machine remaining idle for the rest of the slot. During period 2, the changeover from family 3 to
family 2 requires only one resource changeover on feeding machine 2. Note that changeovers between
products, for example product 1 and product 2 in period 1, require very low capacity (few minutes) and
incur low costs, and are therefore neglected in the model.

At the end of time period 1, the products 1 produced are either delivered to clients to meet their
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demands in period 1, or stored in the plant and then used to fulfil the demands in period 2. The quantities
used for each purpose are determined explicitly in the model. Since product 3 is not produced in period
1, its demand in period 1 is either backlogged to period 2 or classified as lost sale if it cannot be satisfied
at the end of period 2 (if the demands can be backlogged for 1 time period at most).

4. Mathematical formulations

The main challenges of the mathematical formulations are synchronising the resource campaigns in the
first production stage with the process campaigns in the second production stage, and also incorporate
scheduling and lot-sizing decisions of resource campaigns. Since the major sequencing and scheduling
decisions relate to the first stage of production, we developed two mathematical formulations that differ
in the modelling choices adopted in the resource campaigns. The first one is a sequence-oriented for-
mulation, where a collection of pre-defined sequences of resource campaigns is used; the second one
is a product-oriented formulation, where the changeover between resource campaigns is explicitly de-
fined. The second stage production schedules, inventory and transportation solutions are either directly
or implicitly determined thereafter. In presenting these formulations, the following notation is used.

Indices

i ∈ N Products

f ∈ F Product families

j ∈ P Plants

k ∈ K Feeding machines

m ∈ M Manufacturing machines

k(m) ∈ K Feeding machine to which manufacturing machine m belongs to

t ∈ T Planning time periods

c ∈ C Clients

u, l ∈ U Resources

o ∈ O Processes

Sets

MK
k Set of manufacturing machines connected to feeding machine k

MP
j Set of manufacturing machines belonging to plant j

FM
m Set of product families that can be produced on manufacturing machine m

FU
u Set of product families whose production requires resource u

NM
m Set of products that can be produced on manufacturing machine m

N F
f Set of products belonging to family f

NU
u Set of products whole production requires resource u

8
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Parameters

dict Demand of client c for product i in period t

pim Throughput rate of product i on manufacturing machine m (tons/hour)

hij Unitary holding cost of product i at plant j

bic Unitary backlog cost of product i at client c

lic Unitary lost sale cost of product i at client c

rijc Unitary transfer cost of product i from plant j to client c

qkt Working time of feeding machine k in period t

capkt Producing rate of feeding machine k in period t (tons/hour)

stpm Setup time incurred for starting a new process campaign on manufacturing machine m

scpm Setup cost incurred for starting a new process campaign on manufacturing machine m

ϵ Maximum number of time periods a demand can be backlogged

θ A large value

Continuous variables

Dukt Production of resource u on feeding machine k in period t (hours)

Ximt Production of product i on manufacturing machine m in period t (hours)

Iijt Stock of product i at plant j at the end of period t

Sijct Supply quantity of product i from plant j to client c in period t

Ŝijctt′ Quantity of product i produced in plant j in period t that is used to satisfy demand of client c
for product i in period t′

Bict Backlog quantity of product i in client c in period t

Lict Lost sale quantity of product i in client c in period t

Binary variables

Yfmt (=1) if a setup occurs to family f on manufacturing machine m in period t

Zfmt (=1) if family f on manufacturing machine m is the first to be produced in period t

Qmt (=1) if no family starts up on manufacturing machine m in period t

4.1 Sequence-oriented formulation

Inspired by the sequence-oriented formulation of single stage, the single machine lot-sizing problem
proposed by Haase & Kimms (2000), this formulation is based on the concept of using a collection
of pre-defined sequences which describe the items to be produced and their order. Similar choices
have been made in Dhaenens-Flipo & Finke (2001) for a network flow model of multi-products, multi-
facilities and for a multi-period production-distribution planning problem. Here we denote a sequence
s ∈ S as a permutation of resource campaigns scheduled in the first production stage. To present the
sequence-oriented formulation, we further define the following parameters:

9
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ŝcs Setup cost incurred if sequence s is selected

ŝts Setup time incurred if sequence s is selected

gus (=1) if resource u is present in sequence s

fus (=1) if resource u is first in sequence s

lus (=1) if resource u is last in sequence s

and a binary decision variable:

WS
skt (=1) if sequence s is selected for feeding machine k in period t

The information of resource changeovers is already indicated in each sequence. For the instance
mentioned before (in Section 3), the set of possible sequences for each feeding machine is S = {1, 2, 12, 21}.
Then we illustrate our modelling considerations and choices in the follow order: first stage planning,
second stage planning, a combination of the first and second stages, and inventory management.

First stage planning

The setups of resource campaigns on feeding machines are modelled in constraints (1) - (3). Sk is the set
of sequences that can occur on feeding machine k. Constraint (1) selects exactly one sequence s ∈ Sk

for each feeding machine k, in each period t. In the problem description, we assume that in each period
a feeding machine must start with the same resource campaign as the one it had processed at the end
of the previous period. Therefore, the sequence chosen for a given period must be compatible with the
sequences chosen for the same feeding machine during the preceding and the subsequent periods. This
compatibility is expressed in constraint (2). Constraint (3) prevents a resource campaign from starting
until it has been set up.

∑
s∈Sk

WS
skt = 1, ∀ k ∈ K, t ∈ T (1)

∑
s∈Sk|fus=1

WS
skt =

∑
s∈Sk|lus=1

Wsk,t−1, ∀ u ∈ U , k ∈ K, t ∈ T (2)

Dukt ≤ qkt ·
∑

s∈Sk| gus=1

WS
skt, ∀ u ∈ U , k ∈ K, t ∈ T (3)

As mentioned before, switching from one resource campaign to another on a feeding machine de-
pends on the sequence they are processed. The feeding machine utilization constraint reads:

∑
u∈U

Dukt +
∑
s∈Sk

ŝts ·WS
skt = qkt, ∀ k ∈ K, t ∈ T (4)

and the feeding machine capacity constraint:

∑
m∈MK

k

∑
i∈NM

m

pim ·Ximt + capkt ·
∑
s∈Sk

ŝts ·WS
skt ≤ qkt · capkt, ∀ k ∈ K, t ∈ T (5)
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where the quantity of each product produced on each manufacturing machine in a period is function
of the manufacturing machine processing rate. Replacing qkt by

∑
u∈U Dukt +

∑
s∈Sk

ŝts · WS
skt in

constraint (5) leads to∑
m∈MK

k

∑
i∈NM

m

pim ·Ximt ≤ Dukt · capkt, ∀ k ∈ K, t ∈ T

which is more compact and used to substitute constraint (5).

Second stage planning

Each manufacturing machine m is set up for exactly one family f ∈ FM
m at the beginning of each

time period:∑
f∈FM

m

Zfmt = 1, ∀ m ∈ M, t ∈ T (6)

In line with constraint (2) from the first stage, no changeover occurs in the boundaries of periods;
constraint (7) expresses that during each period a manufacturing machine starts by producing the family
that was being produced in the previous period. Constraint (8) reinforces this by imposing that if such a
family is produced right at the beginning of the previous period, then it is the only family that produced
in the previous period. Constraint (9) defines the auxiliary variable Qmt.

Zfm,t+1 ≤ Zfmt + Yfmt, ∀ m ∈ M, f ∈ FM
m , t ∈ T (7)

Zfm,t+1 + Zfmt ≤ 1 +Qmt, ∀ m ∈ M, f ∈ FM
m , t ∈ T (8)

Yfmt +Qmt ≤ 1, ∀ m ∈ M, f ∈ FM
m , t ∈ T (9)

The production time of each product i is limited by the machine utilization:

Ximt ≤ qk(m),t · (Zfmt + Yfmt), ∀ m ∈ M, t ∈ T , f ∈ FM
m , i ∈ N F

f (10)

Combining first and second stages

At the beginning of each period t, the resource u feeding each manufacturing machine m for family
f ∈ FM

m ∩ FU
u must be available on the corresponding feeding machine:∑

f∈FM
m ∩FU

u

Zfmt =
∑

s∈Sk| fus=1

WS
skt, ∀ m ∈ M, u ∈ U , t ∈ T (11)

and family f ∈ FM
m ∩ FU

u can only be produced when resource u is available:∑
f∈FM

m ∩FU
u

Yfmt ≤ θ ·
∑

s∈Sk| gus=1

WS
skt, ∀ m ∈ M, u ∈ U , t ∈ T (12)

Constraint (13) links the family production time to the duration of the resource campaign, as well
as the duration of the process campaign. Every manufacturing machine has the same working time as
the feeding machine it belongs to. This happens for economic reasons related to the feeding machine’s
energy consumption. More specifically, the utilisation of a machine is divided into three parts: producing
products (connected to feeding machines), being set up for another process campaign and remaining idle
(when the corresponding feeding machine is being set up for another resource campaign). In each time
period and on each manufacturing machine, the sum of the production time of each product and the total

11
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processing setup time is equal to the duration of the resource campaign when the corresponding feeding
machine is active. Such condition is expressed on a resource campaign basis, according to constraint
(13). The number of process setups is subtracted by 1 if there is a resource changeover. This happens
because the process and the resource changeover are performed simultaneously.

∑
i∈NU

u

Ximt + (
∑
f∈FU

u

Yfmt −
∑

s∈Sk|fus=0,
lus=gus=1

WS
skt) · stpm = Du,k(m),t ∀u ∈ U , m ∈ M, t ∈ T (13)

Take the production planning depicted in Figure 3 for example, where there is no resource campaign
changeover on feeding machine 2 in period 1. Therefore, on manufacturing machine 2, the sum of the
total production time of all products (either from family 1 or 3) and the process setup time (from family
1 to family 3) is equal to the duration of the resource campaign (u = 1). On manufacturing machine 2
in period 2, the production time of products from family 2 fully occupies the duration of the resource
campaign (u = 2) since the process setup is conducted simultaneously with resource setup on feeding
machine 2. In the first case, we have

∑
s∈Sk|f1s=0,
l1s=g1s=1

Ws21 =
∑

s∈Sk|f2s=0,
l2s=g2s=1

Ws2t = 1, and in the second

case we have
∑

s∈Sk|f1s=0,
l1s=g1s=1

Ws22 = 0,
∑

s∈Sk|f2s=0,
l2s=g2s=1

Ws22 = 1

Inventory management

The inventory constraint (14) states that at the end of each period t, for any product i, the quantity
delivered to the set of customers that order i to be delivered by plant j is equal to the quantity of this
product produced in period t minus the inventory balance of product i at plant j.

Iij,t−1 +
∑

m∈MP
j

pim ·Ximt = Iijt +
∑
c∈C

Sijct, ∀ i ∈ N , j ∈ P, t ∈ T (14)

Sijct

Sijc,t+1

Sijc,t+2

Ŝijctt

Ŝijct,t-1

Ŝijct,t-2

Ŝijc,t+1,t+1

Ŝijc,t+1,t 

Ŝijc,t+1,t-1

Ŝijc,t+2,t+2

Ŝijc,t+2,t+1

Ŝijc,t+2,t 

Backlog Backlog Backlog

t + 1 t t - 1 t - 2t + 2

Backlog

Figure 4: Illustration of disaggregated supply, backlog

In light of the facility location reformulation of Krarup & Bilde (1977), constraint (15) disaggregates
Sijct (see Figure 4) to satisfy the demand of client c for product i at current time period t and the backlog
of product i from period interval [t− ϵ, t− 1].

Sijct =

t∑
t′=t−ϵ

Ŝijctt′ , ∀ i ∈ N , j ∈ P, c ∈ C, t ∈ T (15)
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The demand can only be backlogged for ϵ time periods at most and there is only inventory at the plants
(in modelling assumption), which implies that Ŝsjctt′ = 0 for all t′ < t− ϵ and t′ > t.

Accordingly, the demand of client c for product i at period t is met by supplying product i during
the time interval [t, t + ϵ], while the unmet demand is considered lost sale at period t (see constraint
(16)). Note that ϵ refers to the number of time periods that a certain demand can be met after its due date
without leading to lost sales. It is also worth noting that, in a deterministic model, lost sales of demands
in a period only occur at the end of that period.

dict =

t+ϵ∑
t′=t

∑
j∈P

Ŝijct′t + Lict, ∀ i ∈ N , c ∈ C, t ∈ T (16)

As displayed in Figure 4, the backlog of product i for client c, at period t, is the sum of the backlog
(occurred before period t) of met demand after period t (but still within maximum backlog period ϵ).

Bict =
t∑

t′=t+1−ϵ

t′+ϵ∑
r=t+1

∑
j∈P

Ŝijcrt′ , ∀ i ∈ N , c ∈ C, t ∈ T (17)

Problem statement

The objective is to minimise the sum of total costs related to inventory, transportation, backlog, lost sale,
and setup. The sequence-oriented formulation ΠSO reads:

min
∑
i∈N

∑
j∈P

∑
t∈T

(
hij · Iijt +

∑
c∈C

rijc · Sijct

)
+
∑
i∈N

∑
c∈C

∑
t∈T

(
bic ·Bict + lic · Lict

)
+

∑
k∈K

∑
s∈Sk

∑
t∈T

ŝcs ·WS
skt +

∑
m∈M

∑
f∈FM

m

∑
t∈T

Yfmt · scpm
(18)

subject to (1) - (17) and

Dukt, Ximt, Iijt, Sijct, Ŝijctt′ , Bict, Lict ∈ R+
0 ;Yfmt, Zfmt, Qmt,W

S
skt ∈ {0, 1}. (19)

4.2 Product-oriented formulation

Instead of giving a set of pre-defined sequences of resource campaigns, we can alternatively incorporate
the resource changeover decisions into the model, and implicitly optimise them during the solution
procedure. In light of the single machine capacitated lot-sizing problem with sequence dependent setup
costs (CLSD), we developed a product-oriented formulation presented below. Instead of sequence-
oriented variable WS

skt, we propose using two binary decision variables, WP
ulkt and Fukt, to schedule

first stage production activities. We introduce variable:

WP
ulkt (=1) if a changeover from resource u to resource l happens on feeding machine k in period t

Fcukt (=1) if the feeding machine k is set up for resource u at the beginning of period t

Vukt An auxiliary variable

and parameters:

13
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stulk Setup time incurred when performing a changeover from resource u to resource l on feeding
machine k

sculk Setup cost incurred when performing a changeover from resource u to resource l on feeding
machine k

Only constraints related to the first stage and its links to the second stage need to be modified, namely
constraints (1)-(5) and (11)-(13). The constraints regarding the second stage and inventory management
remain the same.

First stage planning

Constraint (20) imposes each feeding machine k to start by processing exactly one resource campaign
in each period t.∑

u∈U
Fcukt = 1, ∀ k ∈ K, t ∈ T (20)

Constraint (21) is the flow balance requirement which handles the setup state carryover on each
feeding machine in each period. This constraint is also proposed by Haase (1996).

Fcukt +
∑
l∈U

WP
lukt =

∑
l∈U

WP
ulkt + Fcuk,t+1, ∀u ∈ U , k ∈ K, t ∈ T (21)

As previously mentioned, a feeding machine starts a period with the same resource campaign as
the one processed at the end of the previous period. Therefore, processing sequences of resources for
adjacent periods must be connected. Constraint (22) is the disconnected sub-tour elimination constraint
motivated by the travelling salesman problem, and suggested by Almada-Lobo et al. (2007) to cut off
disconnected sub-tours in the lot-sizing problem. Sub-tours are sequences that start and end at the same
setup state. Constraint (22) links the resource campaign sequences in adjacent time periods. Without it,
one may find infeasible solutions. Other possible disconnected sub-tour elimination constraints can be
found in Smith-Daniels & Ritzman (1988) and Haase (1996).

Vukt ≥ Vlkt + 1−N · (1−WP
lukt)−N · Fclkt, ∀u, l, l ̸= u,∈ U , k ∈ K, t ∈ T (22)

Constraints (23) states that a resource campaign can only be conducted after it has been set up.

Dukt ≤ qkt ·
∑
l∈U

(Fcukt +WP
lukt), ∀u ∈ U , k ∈ K, t ∈ T (23)

The feeding machine utilization is guaranteed by constraint (24).∑
u∈U

Dukt +
∑
u,l∈U

stul ·WP
ulkt = qkt, ∀ k ∈ K, t ∈ T (24)

and the respective capacity constraint by constraint (25):∑
m∈MK

k

∑
i∈NM

m

Ximt · pim ≤ Dukt · capkt, ∀ k ∈ K, t ∈ T (25)
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Linking first and second stages

Constraints (26) - (28) perform the same function as constraints (11) - (13), respectively.

∑
f∈FM

m ∩FU
u

Zfmt = Fu,k(m),t, ∀ m ∈ M, u ∈ U , t ∈ T (26)

∑
f∈FM

m ∩FU
u

Yfmt ≤ θ ·
∑
l∈U

WP
lukt, ∀ m ∈ M, u ∈ U , t ∈ T (27)

∑
i∈NM

m

∩
NU

u

Ximt+(
∑
f∈FU

u

Yfmt−
∑

l∈U :l ̸=u

WP
lukt) ·stm = Duk(m),t, ∀m ∈ M, u ∈ U , t ∈ T (28)

Problem statement

The product-oriented formulation ΠPO reads:

min
∑
i∈N

∑
j∈P

∑
t∈T

(
hij · Iijt +

∑
c∈C

rijc · Sijct

)
+
∑
i∈N

∑
c∈C

∑
t∈T

(
bic ·Bict + lic · Lict

)
+

∑
u,l∈U

∑
k∈K

∑
t∈T

sculk ·Wulkt +
∑
m∈M

∑
f∈FM

m

∑
t∈T

Yfmt · cpm
(29)

subject to (6)-(10), (14)-(17), (20)-(25), (26)-(28), and

Dukt, Ximt, Iijt, Sijct, Ŝijctt′ , Bict, Lict, Vukt ∈ R+
0 ; Yfmt, Zfmt, Qmt,W

P
ulkt, F cukt ∈ {0, 1}. (30)

4.3 Remarks

In the product-oriented formulation, sequences of resource campaigns are defined by the model, while
in the sequence-oriented formulation the model has a pre-determined set of sequences. A sequence-
oriented formulation corresponds to the selection of a connected sequence to be applied in each time
period. Therefore, it does not require additional constraints to ensure the connectivity (for example,
constraint (22)). A production-oriented formulation selects the setups to be performed in each time
period, hence the so-called disconnected sub-tour elimination constraints, which can have an exponen-
tial size, and are often required to ensure the connection between the sub-sequences induced by setup
decisions.

This is the major difference between these two formulation approaches and explains why sequence-
based formulations are easier to model. However, this potential advantage has a drawback of the number
of possible sequences (decision variables) growing exponentially with the number of products present in
the problem instance. The sequence-oriented formulation has more decision variables than the product-
oriented formulation but less constraints. Haase & Kimms (2000) suggest that one may only consider
the so-called effective sequences and still find the optimal solution. An effective sequence is defined as
a permutation of a subset of items, which has the minimum total setup cost (time) within all the permu-
tations of the items in this subset. We argue that, in a continuous production environment, especially
when the problem is tight capacitated, this might not hold, for example when the feeding machines are
not allowed to be idle. A counter example is given in Appendix A. Therefore, the computation effort of
our industrial example involves all possible sequences.
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The practical restrictions on the number of resources processed on each feeding machine can signif-
icantly reduce the number of available sequences for one feeding machine during a period. This makes
it possible to outline all sequences that correspond to the possible states of a feeding machine during a
period.

5. An illustrative instance

In this section, we illustrate an integrated production-distribution plan on a concrete instance. The
instance consists of 5 products grouped into 2 product families and 3 manufacturing machines allocated
to 2 feeding machines, each on a different plant. The relations between families, resources and processes
are given in Table 1. The relations between the entities that carryover the production activities are
provided in Table 2. Feeding machine 1 can only process resource 1, and feeding machine 2 can only
process resource 2; therefore, products 1 and 2 can only be produced on machine 1 and products 3, 4 and
5 can only be produced on machines 2 and 3. These three machines are identical. Let scpm = 1, sctm =
0.1, bic = 4, lic = 4, hij = 2, pim = 5 for i = 1, · · · , 5, c = 1, 2, j = 1, 2,m = 1, 2, 3, qkt = 10 for
k = 1, 2, t = 1, 2, 3, ϵ = 1 and

(dict) =

((
0 25 20
0 20 20

)
,

(
0 20 15
0 30 20

)
,

(
51 13 25
55 22 40

)
,

(
12 10 0
10 20 0

)
,

(
10 16 0
6 5 0

))
,

(capkt) =

(
5 5 5
10 10 10

)
, (stul) =

(
0 2
1 0

)
, (rpc) =

(
0.4 0.8
0.8 0.4

)
.

Furthermore, let scul = 25stul for u, l = 1, 2.

Table 2: Parameter structure of the illustrative example

Plant {Feeding machine} {Manufacturing machine}

1 {1} {1}
2 {2} {2, 3}

We sum up the demand corresponding to each resource type and present the aggregated demand, as
well as the capacity profile, in Figure 5, on the right. The proportion of each product is immediately
below the demand profile, on the left of Figure 5. Thereafter, we intuitively observe that there are
insufficient capacities to meet both demands.

u = 1 u = 2

Demand

Capacity
k = 1 k = 2 Tt = 1 t = 2 t = 3

Units

i = 1 0 35% 29%

i = 2 0 38% 25%

i = 3 100% 27% 46%

i = 4 58% 59%

i = 5 42% 41%

t = 1 t = 2 t = 3 t = 1 t = 2

Figure 5: Illustrative profile of aggregated demand and capacity

Suppose manufacturing machine 1 is set up for family 1, and manufacturing machines 2 and 3 for
family 2 at the beginning of the planning horizon. Both the product-oriented and sequence-oriented
formulations can be easily solved by a MILP solver. They deliver the same optimal solution with an
objective value of 633. The values for key variables are shown in Figure 6.
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f = 1

f = 2

u = 1
f = 2 f = 3

T

u = 1

t = 1

u = 2

t = 2

Resource changeover

Process changeover

Machine idleness

Resources
Families

P
roduction planning

D
istribution planning

Sijct
Sijct

X211 = 50
X321 = 50
X331 = 50

dict dict

u = 1
f = 2

f = 3 f = 2

t = 3

X112 = 45
X212 = 5
X322 = 17.5
X422 = 1.5
X522 = 21
X332 = 17.5
X422 = 22.5

I211 = 50 I212 = 5 I523 = 18

B412 = 6 B123 = 10

L411 = 12
L421 = 10
L511 = 10
L521 = 6

X113 = 20
X213 = 30
X323 = 32.5
X423 = 6
X523 = 6
X333 = 32.5
X533 = 12

Feeding machine  1

Manufacturing machine  1

Feeding machine  2
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Figure 6: Optimal production and distribution planning for the illustrative instance

We observe the dependency issues in the optimal solution as follows: feeding machine 1 can only
process resource 1, and therefore can only produce products 1 and 2. This leads to a large inventory
(50) of product 2 at the end of period 1 (as machines cannot be idle), while the quantities of lost sale of
products 4 and 5 amount to 38. Similarly, machines 2 and 3 cannot produce products 1 and 2. Therefore,
there is a backlog for product 1 at the end of period 3 while 18 units of product 5 are over produced and
classified as inventory. The distribution plan is affected as well. Since the capacities of the machines are
tight, in period 2, the demand for products 4 and 5 cannot be fully met at the same time. Six units of
product 4 are backlogged for client 1 instead of client 2, since the unitary transportation cost from plant
2 to client 1 is twice the cost from plant 2 to client 2. Therefore, backlog always occurs with clients that
need higher transportation costs.

6. Solution approach

Solving the stand alone production planning problem is difficult. The CLSP (Capacitated lot-sizing prob-
lem) is the basic large-bucket production planning problem (Eppen & Martin, 1987), which is known
to be NP-hard (Florian et al. 1980 and Bitran & Yanasse 1982). If positive setup times are considered,
finding a feasible solution is NP-complete (Maes et al. 1991). Usually, solvers such as CPLEX do not
satisfactorily solve real world instances of this integrated large-sized problem. Therefore, it is neces-
sary to develop a more specific solution method. We propose two general heuristic algorithms capable
of solving both formulations. The first is a relax-and-fix constructive heuristic based on a decompo-
sition technique, and the second is a variable neighbourhood search with an adapted fix-and-optimise
improvement approach to solve our problem.

6.1 A relax-and-fix approach

The structure of our model suggests that relax-and-fix heuristics could be a proper method to find solu-
tions to this problem. The basic framework iteratively decomposes the original problem into a number
of smaller partially relaxed sub-problems that can be solved in an easier way. By reducing the number
of binary variables in each sub-problem, the computation time needed to solve each sub-problem to op-
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timality is expected to be small. To begin with, the set of binary variables is partitioned into disjunctive
subsets. At each iteration, the variables of only one of these subsets are defined as binaries, while the
rest of the variables is relaxed. The resulting sub-problem is then solved to (near) optimality. A subset
of binary variables of the sub-problem is then fixed at their current values and the process is repeated
for all the remaining subsets. Once a binary variable is fixed, it will not be re-optimised afterwards. The
decomposition of the binary variables and the criteria used to fix the binary variables mainly determine
the degree of the difficulty of solving the sub-problems.

There are various strategies to divide the set of binary variables (Escudero & Salmeron, 2005). In
the usual relax-and-fix strategy, the variables are grouped by periods (macro-periods) and only the binary
variables are fixed at each iteration. We will use the same strategy in this paper. Another motivation for
this choice is that in both formulations, all the binary variables have the same time index as one subscript
(no other common subscript).

Let T f be the subset of periods whose variables are fixed, T r be the subset of periods whose vari-
ables are relaxed, and T o be the subset of periods whose variables are optimised. These subsets are
updated at each iteration. For the sequence-oriented formulation, we chose the tuple of binary variables
(WS , Y, Z) as the pivot to conduct the solution procedure; other binary variables are implied thereafter.
Assume that a partial or feasible solution has values WS′, Y ′ and Z ′ (for WS , Y and Z respectively),
obtained from previous iterations. The sub-problem subRelaxP(WS , Y, Z; T f , T o, T r) to be solved in
the next iteration reads:

ΠSO
WS

skt = WS′
skt, Yfmt = Y ′

fmt, Zfmt = Z ′
fmt t ∈ T f

WS
skt, Yfmt, Zfmt ∈ R+ t ∈ T r

WS
skt, Yfmt, Zfmt ∈ {0, 1} t ∈ T o

(31)

The first case of constraint (31) fixes the binary variables for periods that have been solved previously,
the second case defines the relaxed binary variables and the last case defines the binary variable to be
solved in each iteration. Similar results are obtained for product-oriented formulations by replacing ΠSO

with ΠPO, WS with WP and WS′ with WP ′, where WP ′ is the value of WP from a feasible solution.
There are multiple patterns to decompose the time intervals T f , T r and T o. In light of Pochet &

Wolsey (2006) and James & Almada-Lobo (2011), we adopt a partition with overlapping time intervals
(overlapping between T o and T f ). The parameters used to tune the heuristic are α and β, which relate
to the number of time periods with integrality requirements at each iteration, and the number of time
periods variables are fixed at the end of each iteration, respectively. Note that α and β are constant
throughout the procedure. The heuristic (in sequence-oriented formulation) is described in Algorithm 1.

Algorithm 1 Relax-and-fix heuristic
1: Given α, β;
2: T f = ∅, T o = {to1, · · · , toα}, T r = {tri | tri ∈ T \ T o}
3: while T o ̸= ∅ do
4: Solve subRelaxP
5: WS′ = WS , Y ′ = Y, Z ′ = Z
6: T f = T f ∪ {to1, to2, · · · , toβ}
7: T o = {toβ+1, · · · , toα, tr1, · · · , trβ}
8: T r = T r \ {tr1, · · · , trβ}
9: end while
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6.2 Fix-and-optimise heuristic

In this subsection, we propose a fix-and-optimise improvement heuristic with an adapted variable neigh-
bourhood search (VNS) procedure, which is designed to solve large problems (Seeanner et al., 2013).
The fix-and-optimise heuristic decomposes the binary variables of an incumbent solution into only two
subsets in every iteration. The variables in the first subset are fixed to the best solution found so far, and
the other variables are optimised. No binary variables are relaxed. The criterion of decomposing the set
of variables is important to the solution’s quality. For example, Helber & Sahling (2010) use decompo-
sition strategies either based on products, resources or processes to successfully solve large-time-bucket
model of a multi-level capacitated lot-sizing problem. In this paper, we adopt a decomposition scheme
based on a combination of feeding machines K and periods T , therefore incorporating more information
in each iteration. Similar decisions are also made by James & Almada-Lobo (2011) and Sahling et al.
(2009). For the sequence-oriented formulation, the resulting sub-problem is denoted as subFixP:

ΠSO{
WS

skt = WS′
skt, Ymft = Y ′

mft, Zmft = Z ′
mft k(m) ∈ Kf , t ∈ T f

WS
skt, Ymft, Zmft ∈ {0, 1} k(m) ∈ Ko, t ∈ T o

(32)

where Kf represents the subset of K whose variables will be fixed, and Ko represents the subset of K
whose variables will be optimised. Sub-problem in the production-oriented formulation is acquired by
substituting ΠSO for ΠPO, WS for WP and WS′ for WP ′ in subFixP.

Compared to the relax-and-fix heuristic, at each iteration of the fix-and-optimise procedure, we
actually exploit different parts of the solution space. The VNS serves as a diversification strategy which
systematically examines the neighbourhood of current solutions, and directs the search to another region
of the solution space. This strategy is achieved by gradually fixing the current solution’s attributes
from a set of pre-defined neighbourhood structures and the neighbourhood space is then explored by a
MILP solver. If an improved solution has been found, VNS partially fixes this solution according to
the structure to explore the neighbourhood of the new solution again; otherwise the VNS proceeds to
the next neighbourhood structure to move to another part of the solution space. Since the MILP solver
is used to find the best solution in the neighbourhood, moving to the next neighbour always means an
improvement from the current solution. The VNS here mainly serves to drive the search out of a local
optimum. VNS conducts the search based on each of the neighbourhood structures and only allows
for a limited number of no improvements to the solutions. If all structures have been tested without an
improvement in the solution, then a local optimum has been found.

Neighbourhood structures are defined on a subset of periods T o and a subset of feeding machines
Ko, which index the variables to be re-optimised. Binary variables belonging to T f = T \ T 0 and
Ko = T \ T f are fixed. Specifically, given the cardinality |T o| = λ and |Ko| = γ, the neighbourhood
contains all the combinations of possible T o and Ko. A high degree of the cardinalities of T o and Ko

makes it possible to search the solution space on a larger scale, therefore providing a good result. How-
ever, additional computation time is required. Since a full neighbourhood evaluation of our industrial
instances is too time consuming, we apply a stochastic process that controls the neighbour selection to
conduct a partial neighbourhood search.

Initially, the probabilities of selecting a period and a feeding machine are set to 1. As the procedure
continues, the probability of selecting that period again is reduced. Two parameters are used to tail the
selection of a period and feeding machine, namely the frequency and recency. Frequency represents the
number of times the corresponding period or feeding machine has been selected. Recency indicates the
number of iterations since the respective period or feeding machine were last selected. The probability
of selection is determined by a weighted average of these two parameters. Intuitively, the probability
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decreases as the values of frequency and recency increase. A similar neighbour scoring method is
described in James & Almada-Lobo (2011).

Given a pre-defined set of neighbourhood structures Pattern = {(λ, γ)}, the basic structure and
implementation of this fix-and-optimise heuristic with VNS (in sequence-oriented formulation) is illus-
trated in Algorithm 2.

Algorithm 2 Fix-and-optimise heuristic with VNS

1: Input: Pattern = {(λ, γ)}, MaxIter
2: Generate an initial solution using CPLEX and update CurSol
3: BesSol = CurSol
4: while |Pattern| > 0 do
5: Initialize T o, Ko based on a randomly selected pattern (λ, γ)
6: count = 0
7: while count ≤ MaxItr do
8: Solve subFixP
9: Update CurSol

10: if CurSol < BesSol then
11: WS′ = WS , Y ′ = Y, Z ′ = Z
12: BesSol = CurSol
13: cout = 0
14: end if
15: Update T o,Ko

16: count++
17: end while
18: Remove (λ, γ) from Pattern
19: if runtime limit is reached then
20: Break
21: end if
22: end while
23: Return BesSol

7. Computational results

The models are implemented in Visual Studio 2010 with CPLEX concert technology, and the exper-
iments are run on a Dell Laptop Latitude E6400 with an Intel Core 2 2.66-GHz processor and 4 GB
RAM, equipped with the Windows 7 Enterprise Service Pack 1.

In order to evaluate the performance of our approach, we use five instances to conduct the compu-
tational experiments that are generated based on real-world data sets from a company producing glass
containers. The size of these instances is of practical relevance for this industry. Each of these five
instance includes 5 plants, 12 feeding machines, 42 manufacturing machines, 16 clients (note that hun-
dreds of clients have been clustered in 16 geographical areas), 1809 products grouped into 95 families
according to 8 types of resources, and 12 types of processes. The planning horizon is 12 months. The
demands at each period can be backlogged for one time period at most.

The parameters of the sequence-oriented and product-oriented formulations of the instances are
described in Table 3. These instances differ in the set of resources each feeding machine can process
and (or) in the quantities of demand forecast of each client for each product. In instances Ins1 and
Ins2, each feeding machine can process up to three resources, while in instances Ins3, Ins4 and Ins5,
only few of the feeding machines can process up to two types of resources. Naturally, the sizes of the
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Table 3: Parameters and objectives of sequence-oriented and product-oriented formulation

Sequence-oriented formulation Product-oriented formulation
Constraints Variables LB Constraints Variables LB

Binary Continuous Binary Continuous
[103] [103] [103] [107] [103] [103] [103] [107]

Ins1 67.076 106.704 43.903 3.5506 80, 344 26, 652 43, 903 3.5475
Ins2 66.533 100.092 43.111 3.5529 75, 082 25, 396 43, 011 3.5493
Ins3 34.163 4.394 29.850 3.3059 37, 193 4, 589 29, 850 3.3167
Ins4 33.754 4.350 29.619 3.3236 36, 306 4, 520 25, 619 3.3380
Ins5 33.048 4.432 28.971 3.4478 35, 422 4, 491 24, 951 3.4587

formulations of Ins3, Ins4 and Ins5 are much smaller than Ins1 and Ins2, as shown in Table 3. Generally,
the sequence-oriented formulations are more compact than the product-oriented formulations since they
have fewer constraints. However, the number of binary variables grows exponentially as the number
of possible sequences for each feeding machine increases, as indicated in the fourth column of Ins1
and Ins2. Compared to Ins3, the sequence-oriented formulation of Ins1 contains binary variables nearly
twenty times more than Ins3, while regarding the product-oriented formulation this number is reduced
to four. The lower bound (LB) for each instance is obtained by means of the truncated brand-and-cut
algorithm used by CPLEX with a maximum computation time of 7200 second (s). We use the values
of the lower bounds as the thresholds to calculate the optimality gaps of the solutions returned by our
heuristic approaches.

7.1 Algorithms parameters

As explained in Section 6.1, the value of α decides the size of the sub-problem to be solved in each
iteration of the relax-and-fix heuristic, while β controls the pace of the search procedure. Since only
the sub-problem in the first iteration is a relaxation of the original problem, the solution quality of the
heuristic is mainly determined in this step. Intuitively, the higher the value of α, the better will be the
solution quality the algorithm could reach, and the higher will be the computation effort. Through our
experiments, we find that for low values of α, we obtain good solutions quickly. However, it is not
possible to guarantee their quality. Additionally, the solver could not solve the sub-problem in the first
iteration to optimality within 3600s (even for α = 2). To find a feasible solution fast, the parameters are
set to α = 4, β = 4 with 30 seconds (s) running time for each iteration (in total 90s).

To devise a proper neighbourhood structure (λ, γ) for the fix-and-optimise heuristic, we include
search patterns which either allow for an extensive search on a large scale or an intensive examination
within a small region. Experiments seem to indicate that the quality of the solution is mainly determined
by Ko. To keep the sub-problem in a reasonable size, only patterns with small γ values are considered.
The final adopted neighbourhood structure consists of each combination of λ ∈ {3, 6, 9, 2, 4, 8} and
γ ∈ {2, 3}.

7.2 Analysis of the computational results

The heuristic approaches described in Section 6 are used to solve the instance sets. Each approach
consists of two phases: initial solution generation and improvement with CPU time limit 90s and 1800s,
respectively. In the tables presented in this subsection, B&C represents the truncated brand-and-cut
algorithm used by CPLEX, R&F refers to relax-and-fix heuristic with decomposition based on time
periods, and F&O means the fix-and-optimise improvement heuristic. The optimality gaps are calculated
based on the corresponding lower bound values in Table 3 and summarised in Table 4 and Table 5 for
the sequence-oriented and product-oriented formulations, respectively.
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Table 4: Results of the heuristic approaches for the sequence-oriented formulation

Initial solution Initial solution + improvement
B&C R&F B&C+B&C R&F+B&C B&C+F&O R&F+F&O
[%] [%] [%] [%] [%] [%]

Ins1 1521 867 5.85 4.79 2.57 2.81
Ins2 1627 920 6.69 5.64 3.01 2.67
Ins3 1228 489 1.13 1.11 0.54 0.47
Ins4 1033 445 1.11 1.03 0.50 0.52
Ins5 1207 511 1.17 1.08 0.43 0.41

Average 1323 646 3.18 2.73 1.41 1.37

Table 5: Results of the heuristic approaches for the product-oriented formulation

Initial solution Initial solution + improvement
B&C R&F B&C+B&C R&F+B&C B&C+F&O R&F+F&O
[%] [%] [%] [%] [%] [%]

Ins1 1401 802 5.69 4.54 2.81 2.61
Ins2 1454 889 6.04 5.36 2.93 2.74
Ins3 1323 524 1.59 1.38 0.63 0.55
Ins4 1197 574 2.13 1.63 0.74 0.71
Ins5 1211 528 1.51 1.31 0.48 0.27

Average 1317 663 3.39 2.81 1.52 1.37

In the first phase of our heuristic approaches, initial solutions are generated by means of B&C or
R&F (with the parameter setting described in Subsection 7.1). The optimality gap percentages of the
initial solutions are summarised in columns “R&F” and “B&C” in Table 4 and 5. As we can see, R&F
outperforms B&C when trying to quickly find a good initial solution in both formulations.

In the second phase, the initial solution is improved either by F&O or B&C. Computational results of
each combination of the initial solution generation technique and improvement approach are summarised
in the last four columns in Table 4 and 5. For instance, “B&C+F&O” means that the initial solution is
generated by the truncated branch-and-cut algorithm, and then improved by the fix-and-optimise heuris-
tic.

For the sequence-oriented formulation, an intuitive observation is that solutions of the last three
instances converge faster than the first two, because of their smaller sizes. Additionally, R&F generates
better initial solutions than B&C, and leads to final solutions with higher quality as well. F&O is
much more efficient than B&C in improving the quality of the solution. The value of the optimality
gap of the final solutions improved by B&C are twice higher than that improved by F&O. Overall,
the combination “R&F+F&O” outperforms others. Similar observations were obtained for the product-
oriented formulation.

We then compare the performance of our heuristic approaches between these two formulations.
For Ins1 and Ins2, the initial and the final solutions in the product-oriented formulation are better than
those in the sequence-oriented formulation. This is because of the large number of binary variables in
the sequence-oriented formulation that slows down the solution’s convergence rate. For Ins3, Ins4 and
Ins5, the sequence-oriented formulation is much smaller than the product-oriented formulation. The
performance of the former is therefore better.

We take ins4 and present the performance of our heuristic approaches over CPU time in these two
formulations in Figure 7. The optimality gap is measured in a logarithmic scale. We observe that F&O
greatly improves the solutions in the first 800s. After 1300s of computation time, the improvement of
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Figure 7: Optimality gap over CPU time, for each combination of heuristic approach and mathematical
formulation

the solution is not so significant. B&C, however, improves the solution more slowly. The best solution is
given by R&F+B&C in the sequence-oriented formulation, for which an acceptable quality is acquired
only after 1500s of computation time.

We take the results of R&F+F&O in the sequence-oriented formulation to analyse how the integrated
production and distribution planning are optimised. By comparing the final result with the one acquired
in the middle of the computation process (at about 200s), we observe that the total cost decreases 13%,
while the inventory and transportation costs remain nearly the same. There is a remarkable increase
in the setup cost and a remarkable decrease in backlog and lost sales. Taking into consideration the
cost term contributions, this observation reveals that by arranging the production activities wisely, it is
possible to greatly reduce the backlog and lost sale, and improve customer satisfaction as well.

8. Conclusions

In this paper, we study the problem of integrated production and distribution planning with depen-
dency issues on the production process. This model incorporates a two-stage production structure which
is common in many industrial applications. The solution is a tactical plan of production and distri-
bution activities over a 12-month planning horizon. We present two formulations that differ on the
first-stage modelling choices. The first is a sequence-oriented formulation based on a set of predefined
sequences of resource campaigns; the second is a product-oriented formulation which models each re-
source changeover with a periodical variable. The predefined sequences contain all the information of
resource campaigns: setup times, costs and the orders in which they will be produced. Therefore, the
sequence-oriented formulation is more compact, and is generally more efficient when the number of
possible sequences is moderate.

Being aware of the NP-hardness of solving integrated production, distribution problems and the large
data set tackled in this study, we developed two decomposition-based approaches: relax-and-fix and fix-
and-optimise. The fix-and-optimise heuristic with a VNS strategy is desirable for large problems. The
algorithm is capable of performing an efficient search in the solution space based on an iterative selection
of the neighbourhood structures. The fix-and-optimise systematic heuristic searches the neighbourhood
space by fixing a subset of binary variables and solving the residual sub-problem to (near) optimality.
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Therefore, the computation procedure is accelerated by solving a smaller sub-problem at each iteration
using a commercial software. The computational studies reveal that our heuristic was able to find good
solutions in less time.

We chose the glass container industry to illustrate our formulations and solution methods. However,
it can be easily applied to other similar industrial cases in the future. It would also be interesting to
develop stronger valid inequalities to reduce the size of the solution space and accelerate the solution
approaches.

Appendix A An illustrative example for the effective sequences losing ef-
fectiveness

Haase & Kimms (2000) define the effective sequence of products as: if the first and the last product, as
well as the set of products in between are fixed, the sequence with the minimum total setup time is called
effective sequence. The authors claim that if the machine is allowed to be idle, remaining in the set of
effective sequences would make it possible to obtain an optimal solution. The objective is to minimise
the total setup and holding cost. An example in this section shows that if the machine is not allowed
to be idle (in the glass container case, the furnaces work 24 hours a day), it is not always true since a
large amount of inventory might occur. We consider a single machine lot sizing problem with sequence
dependent setup time and setup costs, and the value of setup time is in line with the value of setup costs.
The setup times satisfy the so-called triangular inequality and given as:

0 5 10 11
4 0 6 11
9 6 0 6
12 9 4 0


with the demand 

48 0 0 0
1 0 0 0
1 0 0 0
1 100 100 100


the holding cost (100, 100, 100, 100), the capacity of the machine (100, 100, 100, 100) and the consump-
tion of capacity for producing a single unit of product (1, 1, 1, 1).

Assume the machine is set up for product 1 in the beginning, the product sequence of the first time
period in the optimal solution is (1, 3, 2, 4) with setup time 37, while an effective sequence would be
(1, 2, 3, 4) with setup time 17. We note that in this example, the holding cost per unit product is relatively
high, such that the sequence with higher setup time is selected to occupy the machine in order to reduce
the total holding cost.
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