Typed Connector Families*

José Proenca'? and Dave Clarke®

! HASLab/INESC TEC, Universidade do Minho, Portugal

2 iMinds-DistriNet, Dept Computer Science, KU Leuven, Belgium
3 Dept. Information Technology, Uppsala University, Sweden
jose.proenca@cs.kuleuven.be dave.clarke@it.uu.se

Abstract. Typed models of connector/component composition specify
interfaces describing ports of components and connectors. Typing ensures
that these ports are plugged together appropriately, so that data can flow
out of each output port and into an input port. These interfaces typically
consider the direction of data flow and the type of values flowing. Com-
ponents, connectors, and systems are often parameterised in such a way
that the parameters affect the interfaces. Typing such connector fami-
lies is challenging. This paper takes a first step towards addressing this
problem by presenting a calculus of connector families with integer and
boolean parameters. The calculus is based on monoidal categories, with
a dependent type system that describes the parameterised interfaces of
these connectors. As an example, we demonstrate how to define n-ary
Reo connectors in the calculus. The paper focusses on the structure of
connectors—uwell-connectedness—and less on their behaviour, making it
easily applicable to a wide range of coordination and component-based
models. A type-checking algorithm based on constraints is used to anal-
yse connector families, supported by a proof-of-concept implementation.

1 Introduction

Software product lines provide the flexibility of concisely specifying a family of
software products, by identifying common features of functionality among these
products and automatising the creation of products from a selection of relevant
features. Interesting challenges in this domain include how to specify families
and combinations of features, how to automatise the creation process, how to
identify features from a collection of products, and how to reason about (e.g.,
verify) whole families of products.

This paper investigates such variability in coordination languages, i.e., it
studies connector families that exogenously describe how (families of) compo-
nents are connected. The key problem is that different connectors from a single
family can have different interfaces, i.e., different ways of connecting to other
connectors. Hence, specifying and composing such families of connectors while
guaranteeing that interfaces still match becomes non-trivial.

* This research is supported by the FCT grant SFRH/BPD /91908 /2012.

Consider, for example a component ¢ that produces 3 values, and a family
of connectors V,, that merge n values into a single output. We say the interface
of ¢ has 3 output ports, and the interface of each V,, has n input ports and 1
output port. This paper provides a calculus to compose such n-ary connectors
while guaranteeing that all their ports can be properly connected. For example,
“c; V3”7 denotes the sequential composition of ¢ and a merger with 3 inputs,
connecting the output ports of the first to the input ports of the second, resulting
in a well-connected connector with 0 inputs and 1 outputs.

3 >

e

Fig. 1. Example of the composition of connectors.

o
BRE

Fig. 1 exemplifies more complex compositions of n-ary connectors. The left
presents the composition of m parallel instances of the component ¢, written as
™, with a merger with n inputs. This composition yields a new connector that,
given some n and m values, produces a new connector with a single (output)
port. This paper provides a type system that checks if such n and m values
exist, and their relation: n must be 3 times larger than m. More formally, the
connector is written as Am:N,n:N- (¢™; V,,), and the type system yields both
the type Vm :N,n:N-0 — 1 and the constraint n = m 3. This means that both
the connector and the type are parameterised by two numbers m and n, the
connector has type 0 — 1, and n = m * 3 must hold for the connector to be well
typed. The right example of Fig. 1 shows a variation of this example, where the
instances of ¢ are composed with %k instances of a binary merger V. The type
of the composed connector is Vm :N, k:N -0 — k constrained by 3 x m = 2 x k,
which means that 3 x m = 2 % & must hold for the connector to be well typed,
yielding a connector with 0 inputs and k outputs. By writing this connector as
MmN kN (¢2*™; VE) the type becomes Vm : N, k:N-0 — 3 m, constrained
by k=3 *xm.

To increase compositionality, parameterised connectors can also be com-
posed. Hence (Am :N-¢™); (An:N-V,,) has the same type as the left composition
of Fig. 1. Finally, extra constraints can be added to parameterised connectors.
For example, Am:N - (¢" |,,<10) represents a parameterised connector that can
have at most 10 instances of the connector c¢. We call connector families such
connectors that can be parameterised, constrained, and composed.

Summarising, the main contributions of this paper are:

— a calculus for families of connectors with constraints;
— a type system to describe well-defined compositions of such families; and
— a constraint-based type-checking algorithm for this type system.

Connectors are defined incrementally. We start by defining a basic connector cal-
culus for composing connectors inspired by Bruni et al.’s connector algebra [5,3]
(Section 2). This calculus is then extended with parameters and expressions,
over both integers and booleans (Section 3), being now able to specify connec-
tors (and interfaces) that depend on input parameters. Both the basic and the
extended calculus are accompanied by a type system; the latter is an extension of
the former, allowing integer and boolean parameters (and effectively becoming
a dependent type system). Section 4 introduces connector families, by explicitly
incorporating constraints over the parameters, and by lifting the composition
of connectors to the composition of constrained and parameterised connectors.
Section 5 describes an algorithm to type-check connector families with untyped
ports, i.e., when the type flowing over each port is not relevant, and presents our
prototype implementation. This paper wraps up with related work (Section 6),
conclusions and future work (Section 7).

2 Basic Connector Calculus

This section describes an algebraic approach to specify connectors (or compo-
nents) with a fixed interface, that is, with a fixed sequence of input and output
ports that are used to send and receive data. The main goal of this algebraic
approach is to describe the structure of connectors and not so much their be-
haviour. We illustrate the usage of this algebra by using Reo connectors [2],
which have well-defined semantics, although our approach can be applied to any
connector-like model that connects entities with input and output interfaces.
We start by presenting an overview of how to specify connectors using our
calculus. We then describe the syntax of the basic connector calculus and a type
system to verify if connectors are well-connected, followed by a brief discussion
on how to describe the semantics of connectors orthogonally to this calculus.

2.1 Overview

Our basic connector calculus is based on monoidal categories—more specifically
on traced monoidal categories [13]—where connectors are morphisms, “;” is the
composition of morphisms with identity id, and “®” is the tensor product. The
operator “®” composes connectors in parallel, while the operator “;” connects
the ports of the given connectors. Objects of this category are interfaces, which
correspond to ports in our connectors and include the unit of the tensor product
represented by 0. The commutativity of the tensor product is captured by a
family of symmetries that swap the order of ports in parallel. Loops can be
represented via traces, which plug part of the right interface to the left interface
of the same connector.

The connector in Table 1 helps understanding the intuition behind our al-
gebra of connectors. Our algebra is inspired by the graphical notation used for
monoidal categories (see, e.g., Selinger’s survey [13]), and by Bruni et al.’s con-
nector algebra [5,3]. The Reo connector on the left is composed out of smaller

subconnectors, connected with each other via shared ports (e). The second col-
umn describes a possible representation of the same connector, writing the names
of each subconnector parameterised by its ports. For example, the connector ‘,»_’
is written as sdrain(a, b) to mean that it has two ports named a and b. Composing
connectors is achieved via the X operator, which connects ports with the same
names — this is the most common way to compose Reo connectors in the litera-
ture. In this paper we will use instead the algebraic representation on the right of
Table 1, where port names are not necessary. The connector A® A, for example,
puts two duplicator channels in parallel, yielding a new connector with 2 input
ports and 4 output ports. This can be composed via “;” with id ® sdrain ® fifo
because this connector has 4 input ports: both the id and the fifo channels have
one input port and the sdrain has 2 input ports.

Table 1. Specification of the alternator connector with port names and algebraically.

Graphical With port names Algebraic term
A(a.,al,az) X A(b, by, ba) X A A;
:] sdrain(az, by) id ® sdrain ® fifo;
;,0 id(a1, c1) X fifo(be, c2) XM v ’
Ve, ez, c)
2.2 Syntax

The syntax of connectors and interfaces of our basic connector calculus is pre-
sented in Fig. 2. Each connector has a signature I — J consisting of an input
interface I and an output interface J. For example, the identity connector id; has
the same input and output interface I, written id; : I — I. Ports of an interface
are identified simply with a capital letter, such as A, which capture the type of
messages that can be sent via that port. In our examples we assume that A can
only be the type 1, which represents any port type. This more specific model is
also exploited in our algorithm for constraint solving (later in Section 5).

c:=c1;c2 sequential composition pé€ P = Ay duplicator with output I
| ¢1 ® ca parallel composition | Vi merger with input
| idr identity connectors | sdrain synchronous drain
| 1,9 symmetries | fifo buffer
| Trr(c) traces | ... user-defined connectors
| p€ P primitive connectors I.J:=1®J tensor
| 0 empty interface
| A port type

Fig. 2. Connectors (left), primitive connectors (top-right), interfaces (bottom-right).

The intuition of these connectors becomes clearer with the visual representa-
tions exemplified in Fig. 3. All connectors are depicted with their input interface
on the left side and the output interface on the right side. Each identity connec-
tor id; has the same input and output interface I; each symmetry v ; swaps the
top interface I with the bottom interface J, hence it has input interface I ® J
and output interface J ® I; and each trace Try(c) creates a loop from the bottom
output interface I of ¢ with the bottom input interface I of ¢, hence if ¢ has
input interface I’ ® I and output interface J’ ® I then the trace has input and
output interaces I’ and J’, respectively.

sdrain| [71®11 Vig: id; ® fifo Tri(m,)

Id1 |d1 5 fIfO

— = D > S S

Fig. 3. Visual representation of simple connectors.

Parallelism is represented by tensor products, plugging of connectors by mor-
phism composition, swapping order of parameters by symmetries, and loops by
traces. Connectors and types obey a set of Fquations for Connectors that al-
low their algebraic manipulation and capture the intuition behind the above
mentioned representations. Fig. 4 presents some of these equations, which re-
flect properties of traced monoidal categories. For example, the fact that two
symmetries in sequence with swapped interfaces are equivalent to the identity
connector, or how the trace of the symmetry 7, ; is also equivalent to the identity.

idr;c=c=c;idy (ffe:I—J) Trr(yr,r) = ids
Y175 Y51 = idigs Tro(c) = ¢
(c1®c2)®c3 = c1® (c2®cs) c1; Tri(e2) = Trr(e1 ®idr ;5 ca)
0RI=1=1®0 Trr(e1) 5 ca = Trr(er ; c2 ®idy)
(11®12)®13 = 11®(12®13) TI‘[(TFJ(C)) = TI’[@J(C)

Fig. 4. Equations for Connectors — based on properties of traced monoidal categories.

2.3 Type rules

Every connector ¢ has an input interface I and an output interface J, written
c: I — J. We call these two interfaces the type of the connector. Every primitive
has a fixed type, for example, fifo : 1 — 1 and Vig; : 1® 1 — 1. The typing
rules for connectors (Fig. 5) reflect the fact that two connectors can only be
composed sequentially if the output interface of the first connector matches the
input interface of the second one. A connector is well-connected if and only if it
is well-typed.

(sequence) (parallel)

Fei:h = J Fei:h — i (trace)
Feo:id = Jo Feo:i Iy = Jo Fe:hQ@J—=1oJ
}—01;62111—>J2 Fei®e 1 QI — J1® Ja FTF](C):Il—)IQ
(prim)
(sym) (id) p:I—>JeP
FyngI®@J—J®I1 Fidr: I — 1 Fp: I —J

Fig. 5. Type rules for basic connectors.

For example, using these type rules it is possible to infer the type of the con-
nector Trigi(1e1,1; (fifo®fifo®fifo)) to be 1 — 1, but no type could be inferred
after removing one occurence of fifo. This connector is chaining in sequence 3
parallel fifo connectors.

The type rules from Fig. 5 rely on the syntactic comparison of interfaces,
e.g., rule (sequence) allows c¢; and ¢y to be composed only if the output interface
J of ¢ is syntactically equivalent to the input interface of co. To support more
complex notions of interfaces we use the constraint-based type rules from Fig. 6,
which explicitly compare interfaces that must be provably equivalent instead of
syntactically comparing them. Rules (sym), (id), and (prim) remain the same, only
with the context. The typing judgments now include a context /" | ¢ consisting
both of a set of typed variables /" (that will only be used in the next section)
and a set of constraints ¢ that must hold for the connector to be well-typed.
The context must be always well-formed, i.e., /" cannot have repeated variables
and ¢ must have at least one solution, but for simplicity we do not include these
global restrictions in the type rules.

(sequence) (parallel)
¢|_C12[1—>J1 (ﬁFCz:IQ—)JQ ¢|_C1:[1—>J1 ¢|_02212—>J2
¢7J]:IQ}_01;02:[1—>J2 ¢FC1®CQZI1®12—>J1®J2
(trace)
(bFC:J] —>J2

(15, J1=X1®1, Jo=X ;1 [TrI(c) X — Xy

Fig. 6. Constraint-based type rules.

2.4 Connector behaviour

Semantics for the behaviour of connectors can be given in various ways. For this
paper we use the Tile Model [7], as it aligns closely with the algebraic presenta-
tion of connectors. We also use the Reo coordination language—more specifically
its context independent semantics [3]—as the behaviour of our primitive connec-
tors, whose visual representation has been being used.

We use the same ideas from the Tile Model proposed for Reo [3], using a
variation of the category used to describe connectors. Each connector in the Tile
Model consists of a set of tiles, one for each possible behaviour, as exemplified in
Fig. 7. Each of these tiles contains 4 objects of a double category (two categories
with the same objects) and four morphisms between pairs of objects. Visually, a
tile is depicted as a square with an object in each corner and with morphisms on
the sides of this square. These morphisms go from left to right and from top to
bottom: horizontal morphisms are from one category, describing the construction
of a connector, and the vertical morphisms are from another category, describing
the evolution in time of the connector. More specifically, horizontal morphisms
are connectors as specified in Fig. 2, and objects are interfaces. Vertical mor-
phisms are either flow, noFlow, or a tensor product of these, representing a step
where data flows over the ports where the flow morphism is applied, and data
does not flow over the ports where noFlow is applied.

1—— 1 1——1 1|1 1|1
lflow lflow lnoFIow lnoFlow lflow lnoFlow lnoFlow lnoFlow
1——1 1—— 1 1—{epr1 S B |

Fig. 7. Tiles for the behaviour of the id; (left) and the empty fifo (right) connectors.

Tiles can be composed vertically or horizontally when their adjacent mor-
phisms match, or composed in parallel using the tensor product @. Note that two
morphisms being the same also implies that their domain and codomain must be
the same (i.e., the source and destination of the arrows). The rest of this paper
will focus on the horizontal composition of connectors, i.e., on the structural
composition of connectors, and not on the behaviour of connectors—the verti-
cal composition. This focus also makes the results presented here more easily
applicable to any other coordination or component model where connectors or
components have a set of interfaces that can be composed using our calculus.

3 Parameterised Connector Calculus

Connectors are now extended in two ways: (i) by adding integer and boolean
expressions to control n-ary replication and conditional choice, and (ii) by adding
free variables that can be instantiated with either natural numbers or booleans.
These variables are also used in the connector types, previously written as I — J,
which are now given by the grammar:

T 2= I—J | VYa:P-T
where z is a variable and P € {N,B} represents a primitive type that can be
either the natural numbers (N) or booleans (B).

This section introduces the extended syntax and some of its properties, de-
scribes motivating examples, and extends the type rules for the connector types
described above with boolean and integer parameters.

3.1 Syntax

The extended syntax of connectors and interfaces with integers and booleans is
defined in Fig. 8. We write ¢ instead of ¢ when x is not a free variable in c.

connectors I:: interfaces

| "« n-ary parallel replication | I n-ary parallel replication
| a1 D% co conditional choice | I @®?®J conditional choice

| Az:P-c parameterised connector

| c() bool-instantiation integer expressions

|

a, B
c(a) int-instantiation b, boolean expressions

Fig. 8. Extended syntax of connectors (left) and interfaces (right).

This paper does not formalise integer and boolean expressions with typed
variables, since the details of these expressions are not relevant. The semantics
of the n-ary parallel replication, the conditional choice, and the instantiation of
parameters? is captured by the new Equations for Connectors in Fig. 9. These
equations include a new notation—c[v/z]—that stands for the substitution of
all variables = in ¢ that appear freely (i.e., not bounded by a A quantifier) by
the expression v. This paper does not formalise free variables nor substitution,
which follow the standard definitions.

Y = =¢[0/2] @ ... ® cla—1/x] I* = I®...®1 (atimes)
a®™ e = a Le"™ I, = I
a®’c = e a L&’ = Lo
(Az:P-c)(v) = clv/z]

Fig. 9. Equations for Connector — replication, choice, and instantiation.

Although this extension allows an n-ary composition in parallel of connectors
and not in sequence, n-ary sequences of connectors can also be expressed by using
traces, as exemplified in the general sequence of fifo connectors on the top-left
corner of Fig. 10. We write expressions such as n— 1 instead of the interface 1”1
for simplicity, when it is clear that these expressions represent interfaces. Observe
that this example has been mentioned in the end of Section 2.3, for the specific
case of 3 fifos in sequence, already defined using traces and parallel replication.
The bottom example is more complex, and is based on the sequencer connector

4 Known as S-reduction in lambda calculus.

found in Reo-related literature [2]. This connector forces n (synchronous) streams
of data to alternate between which one has dataflow. It uses the zip and unzip
connectors to combine «y connectors (symmetries) in order to regroup sequences
of pairs into a pair of sequences and vice-versa. The top-right corner instantiates
the zip connector to illustrate the overal idea; the visual representation unfolds
the trace, used to produce a sequence of connectors (as in seg-fifo).

seq-fifo = O
’ ids—e ®771) "% &~
Trn1 V12,65 - ’
e ®Qids_g —>—>
('Ynfl,l ; fifo) —0—>0—>

sequencer = An:N -
(An 5 unzip(n)) @ Trn(yn-1.1;
(fifofull; A2)®
(fifo; A2)" ™1 ; unzip(n)) ;
idn, ® (zip(n) ; drain™)

zip = AN Trg2 o, (

72n2—2n,2n; (idn*Z ®7f,1® Id"*Z)an)
unzip = An:N-Try2_o.(

Y2n2—2n,2n; (idﬂ')‘l’l ® 7?;171@ Idx"'l)x(_n)

Fig. 10. A sequence of n fifo connectors (top-left), an instance of the zip connector
(top-right), and an n-ary sequencer connector (bottom).

The details about the behaviour of the sequencer connector are out of the
scope of this paper. However, observe that the visual representation is no longer
precise enough, since the dotted lines only help to provide intuition but do not
specify completely the connector. The parameterised calculus, on the other hand,
precisely describes how to build a n-ary sequencer for any n > 0.

3.2 Parameterised type rules

The extended type rules are presented in Fig. 11, which now use the context I
consisting of a set of variables and their associated primitive type (B or N).

As mentioned before, the context cannot contain repeated variables, but this
restriction is omitted from the type rules. The actual verification of the type of
the boolean and integer variables is done during the type-checking of boolean
and integer expressions, which is well known and not defined in this paper. Hence
the new type rules have some gray premises, corresponding to the type rules for
booleans and integer expressions. The typing judgment I"| ¢ - e: P for integer
and boolean expressions means that I - e: P (i.e., the variables in the boolean
or integer expression e have the type specified in I') in a context where ¢ is

(parameterisation) (instantiation)

z:Pl¢tc:T x¢¢ I'loFv:P I'i¢tc:Vo:P-T
I'l¢t-Xe:P-c:Vx:P-T I'l¢tc(v): Tv/x]
(replication) (choice)
I'¢otFa:N Ix:N|¢bc:I—J I'ekvy:B
(b]:(X[=][0/$]®...®I[Ot—1/$]) F|¢FC1211—>J1
¢ = (Xs =J0/2]®...® Jla—1/z]) Tlpkeca:ls— Jo
D¢, 1,2 ™% X1 — Xy I'logba @' co: 1®'L — J18Y),

Fig. 11. Parameterised type rules—x ¢ ¢ means x does not appear in ¢. Previous type
rules remain unchanged.

satisfiable. The notation I[e/x] denotes the substitution of free occurrences of
x in I by the expression e, similarly to the substitution in connectors, also not
formalised here. Observe that the constraint ¢ in the (choice) rule does not
influence the typing of ¢; and cs. Intuitively, if 1 and — was to be added to
the context when typing c; and cs, respectively, then very likely one of these
branches would have false in the context, meaning it could not be typed.

FI1enh-1)=1"n-1)®1=X;®(n—-1),I"=X,;® (n—1)
[/\n:N~Trn,1(7n,1,1 ; flfo") :VHZN~XI *)XJ
[z¢ (1e(n—-1)=1"(n-1)®1=X;®(n-1),1" =X, ® (n—1))
n:N[1@nh-1)=1"n-1)®1=X;®(n—-1),1"=X;® (n—1)
= Tl’nfl(’ynfl,l) fIfOn) Xy — Xy
n:N|1® (n—-1)=1"

Foyp—i1; fifo:(n—1)®1—1"

n:Nlg b 411 (n—1)®1 =10 (n—1)

n:N|@ = fifo" : 1" — 1"

parameterisation

trace

sequence

Fig. 12. Derivation tree for the seq-fifo connector; contexts are represented grey.

We illustrate the usage of these type rules by building the derivation tree for
the seg-fifo connector (Fig. 12), where we illustrate how to calculate the type
of this connector by consecutively applying type rules. At every step of this
derivation tree the context is well-formed (I" has no repeated variables and ¢ is
always satisfiable). From the existence of this derivation tree one can conclude
that the seq-fifo connector is well-typed, and by further analysing the constraints
in the context it is possible to simplify the type to Vn:N-1 — 1.

4 Connector families

This section introduces connector families: parameterised connectors that can (i)
be restricted by given constraints 1, written c |y, and (ii) be composed with each

(restriction) (parallel)

I'oty I'lopbe:T lote I = Jily, I'lobca:la— Jaly,
I'lobcly:Tly IoFca®c: i @Ix— J1 ® Ja |y, 0,

Fig. 13. Adding restrictions to types. Other rules remain almost the same, adapted in
a similar way to the (parallel) rule.

other—sequentially, in parallel, via the choice or replication operators, or within
traces. These restricted and composable connector families represent families in
the same sense as software families in the context of software product lines (SPL)
engineering [11]. The added constraints represent the family, which in the SPL
community are often derived from feature models.

4.1 Restricted connectors and types

Connectors can now be written as ¢ |4, meaning that the connector c is restricted
by the constraint . For example, the connector with at most 5 fifo connectors
in parallel can be written as An:N - (fifo" |,<5). The type of this connector is
written similarly as ¥n:N-n — n|,<5. More formally, types now include these
constraints, following the following syntax.
T 2= I—=J | Ye:P-T | Ty

The main type rules are presented in Fig. 13. The new rule (restriction) introduces
a constraint ¢ from the connector to the context. All other rules are adapted in a
similar way to the (parallel) rule, by simply collecting the restriction constraints in
the conclusions of the rules. For readability we write ‘1)1, 12’ to denote ‘@1 Ahs’.
A connector ¢ is now well-typed if there is a derivation tree @ |¢ ¢ : T |y such
that ¢ A is satisfiable, i.e., ¥ has at least one solution that does not contradict
at least one solution of ¢.

The example with a parameterised sequence of fifos from Fig. 12 can be
adapted to restrict to sequences of at most 5 fifos, yielding the typing judgment:

glilenh-1)=1", n-1)®1=X;@(M"n-1) , 1"=X;0(n—1)
FAn:N- (Trpo1(Yn—11; fifo") ln<s) @ Vn:N-X; — X |nu<s

The conjunction of the above constraints is satisfiable: the possible solutions
map X; and X; to 1, and map n to any value between 0 and 5. Hence the
connector is well-typed.

4.2 Family composition

Parameterised connectors (Section 3) allow integer and boolean expressions to
influence the final connector. However, the existing type rules for composing con-
nectors do not describe how to compose connectors with parameters. The type
rules in Fig. 14 add support for composing connector families: the composition
of two parameterised connectors produces a new connector parameterised by the

(fam-parallel)
F‘¢F01:V$1:T1~I1*>J1|wl F|¢|—62:VZE21TQ'IQ—>J2‘¢2 T1NT2 =9

Fl(ﬁFCl Qco:Vry:T,xo:To - 11 @ Io = J1 ® Jo |¢1,¢2
(fam-sequence)

F‘Qf)FClZV[I}1ZT1'[1—>J1|w1 F|¢|_C2:VJJQ:T2'IQ—>J2‘1/)2 T1NT2 =9
F‘¢,J1=IQ}—01) 62:V$11T17:L‘2:T2-11*)J2|¢1’¢2

(fam-replication)

I''¢gFa:N (fam-choice)
INx:N|¢btc:Va':P-1I— Jly I'lo-v:B
o1 = (Xr=1[0/z] ®...® I[a—1/xz]) Tlobec Vo :Ti-I — Ji |y,
¢2:(XJ:J[O/JC}@)“-@J[O‘_U‘T]) ot co:Vao:To Io — Ja |y,
F|¢7¢17¢2

F|¢|—01€Bd’62:Vm1:T1.x2:T2 .
F Vo' P-X; — X ’
¢ ’ ! 71w L®YT: — Ji®Y T2 |y

(fam-trace)

F|¢|—C:V:L‘:P-J1*>J2|¢
F‘¢,Il:X1®I,12:XJ®I|—TU(C):VICP~X[—>XJ|w

Fig. 14. Type rules for the lifted composition operators of connectors.

parameters of both connectors. We write Va : P to represent a (possibly empty)
sequence of nested pairs Vx: P. Note that connectors without parameters are
specific instances of connector families; indeed, the new rules (fam-*) coincide
with their simpler counterparts whenever the set of parameters is empty.

For example, both connectors below have the same type: Vo1 : N, x5 : N, 23 : N-
1"1 — 1%2 ® 13 under a context where 1% = 1¥2 ® 1¥3. The first composes 3
connector families, while the second is a family that composes 3 connectors.

(Az1:N-id7') 5 (Az2:N-id7?) ® (Ax3:N-id7®) (composition of families)
Ary Ny zg:Nyjz3:N - (id* ; id7? ®id7?) (family of compositions)

Observe that the modularity gain with the composition of families is achieved
by serialising all input arguments. As a consequence the tensor product ® no
longer obeys the property (¢1 ® ¢2); (c3 ®cq) = (c1;¢3) ® (¢25 ¢4) with connector
families, since the serialisation of the arguments produces different orders.

5 Solving type constraints

This section describes an algorithm to check if the constraints produced by the
type rules are satisfiable; if so, this algorithm also provides an assignment of
variables to values or to other variables.

Constraint-based approaches to type-checking are well-known, for example,
for the lambda calculus [10, Chapter 22|, where constraints are solved using an
unification algorithm. However, the unification algorithm used for the lambda
calculus is not enough for our calculus, because interfaces can include complex

expressions that cannot be just syntactically compared. Hence our algorithm per-
forms algebraic rewritings, uses an unification algorithm (for the simpler cases),
and invokes a constraint solver (for the more complex cases).

We focus only on untyped ports, represented by 1, which mean that any data
can go through these ports. Consequently, interfaces are interpreted as integer
expressions, denoting the number of ports, as we will shortly explain.

5.1 Overview

In our type-checking algorithm interfaces are interpreted as integers, by mapping
constructors of interfaces to integer operations. For example, (I®J)) = (I])+(J]
and (1)) = (I]) * o, where ([I]) represents the interpretation of I as an integer.
Both the constraints that appear in the context and the constraints that appear
in the type are combined, hence producing a type Va: P -I — J|y, where ¢
represents the conjunction of these constraints.

We exemplify our approach using the zip connector (Fig. 10), restricted to
when n is at least 5. The type rules produce the type Vn:N - z3 — x4 |y, where
1 is as follows (after interpreting the interfaces as integer expressions).

z3 + ((2#n) * (n—1)) = ((2%n) * (n—1)) + (2xn) , x4 + ((2%n) * (n—1)) = 2,

21 = 0cacn (=) + (2¢2)) + (n—2)) , @2 = 32, o, ((n—2) + (2%2)) + (n—2)) ,
(2#n) + ((2#n) * (n—1)) =21 , n <5

Using algebraic laws such as distributivity, commutativity, and associativity of
sums and multiplications, the constraints are simplified as follows.

xz=2n, —2n+2n°+xs =22, x1=2n>, z2o=2n%, 202 =21, n<5

The unification algorithm then produces the sequence of substitutions below,
leaving the n < 5 constraint to be handled in a later phase.

[2n/z3] o [x4+2n% —2n/x2] o [2n%/x1] o [2n/x4]

The final step is to verify that the remaining constraint (n < 5) is satisfiable
using a constraint solver, allowing us to conclude that the connector is well-
typed. Furthermore, applying the substitution above to the type produced by
the type rules gives the most general type Vn:N-2n — 2n|,<5. The constraint
solver provides a solution, say {n + 0}, which can be used to produce an instance
of the general type: 0 — 0.

5.2 Three-phase solver

This section explains in more detail the three-phase algorithm used to reason
about constraints, exemplified in the previous subsection. These phases are per-
formed in sequence, and consist of the simplification phase, the unification phase,
and the constraint-solving phase, explained below.

Simplification This first phase prepares the constraints obtained by the type
rules to be used by the unification phase. More specifically, it rewrites the con-

straints by applying algebraic laws of sums and multiplications, building a polino-
mial and manipulating the coefficients. For example, sums like ., (5*x),
where 5 % z is linear on z, are rewritten into (5 * n2 + 5 * nl) * (n2 —nl)/2; to
avoid integer divisions the denominator 2 is dropped and the other coefficients
are multiplied by 2. Equalities are rewritten to match, if possible, the pattern
x = «, which is exploited by the unification phase.

Note that the type rules, apart from (restriction), only produce equalities of
integer expressions. Our choice of rewrites included in the prototype implemen-
tation took into account the constraints generated by the type rules using a
range of different connectors. These rewrites are able to simplify all the exam-
ples presented in this paper that do not use inequalities, most of which involve
only linear expressions or are reduced to linear expressions, to a point where
the constraint solving phase was not needed. Furthermore, other fast off-the-
shelf technologies, such as computer algebra systems, could be used to quickly
manipulate and simplify more complex expressions.

Unification The second phase consists of a traditional unification algorithm [10,
Chapter 22| adapted to our type system, which produces both an unification and
a set of constraints postponed to the constraint solving phase. An unification is
formally a sequence of substitutions oy o --- o g,,, and applying a unification
to a connector or interface ¢ consists of applying the substitutions in sequence
((to1)...)op. For example, unifying the constraints t =2+ y,z =34+ z,y = w
produces the sequence of substitutions [2 4+ y/x] o [3+ 2+ y/z] o [w/y]. Applying
this unification to an interface means first substituting = by 2 + y, followed by
the substitutions of z and y. The resulting interface is guaranteed to have no
occurrences of x, y, nor z, and not to have w bound by any constraint.

The unification algorithm is described by the unify function (Fig. 15) that,
given a set of constraints ¢ to be solved, returns a pair with a unification and a set
of postponed constraints. The core of unify is defined in the right side of Fig. 15.
For every equality a = </, it first checks if they are syntactically equivalent
(using =). It then checks if either the left or the right side is a variable that does
not occur on the other side; if so, it adds the equality to the resulting unification.
If none of these cases apply, it postpones the analysis of the constraint for the
third phase, by using the second argument of unify as an accumulator.

Constraint solving The last phase consists of collecting the constraints post-
poned by the unification phase and use an off-the-shelf constraint solver. This
will tell us if the constraints are satisfiable, producing a concrete example of
a substitution that satisfies the constraints. In the example of the sequence of

unify(¢) = unify(a =o', ;5 9) =
unify(¢; true) unify(é;) ifa=d
.) _ unify(dla’ /x];) o [@’/z] if a =z and = ¢ fu(a’)
unlfy.(ftrue? 05 9) = unify(¢la/z]; ¥) o [a/z] if &' =z and = ¢ fv(a)
unify(¢;) unify(¢; ¥, = ') otherwise

Fig. 15. Unification algorithm for constraints over boolean and integer variables.

fifos with at most 5 fifos (Section 5.1), a possible solution for the constraints is
{n+ 4,21 — 1,29 — 1}. This substitution, when applied to the type obtained
for seq-fifo, yields a concrete type instance seq-fifo : 1 — 1. In this example the
concrete type instance matches its general type (Vn:N-1 — 1), since the value
of n does not influence the type of the connector.

Note that a wide variety of approaches for solving constraints exist. One can
use, for example, numerical methods to find solutions, or SMT solvers over some
specific theory. The expressive power supported by the constraint solver dictates
the expressivity of the expressions a and ¢ used in the connector, which we
are abstracting away in this paper. The choices made in our proof-of-concept
implementation, briefly explained in the next subsection, are therefore not strict
and can be rethought if necessary.

5.3 Implementation

We developed a proof-of-concept implementation in the Scala that covers all
the examples described in this paper, which can be found online.® Listing 1
exemplifies the usage of this library—more examples can be also found online.

import paramConnectors.DSL._
val x = "x":I ; wvaln="n":I ; val b = "b":B

//----- Az:N - (fifo” |g>5) ----- //

typeOf(lam(x, (fifo™x) | (x>5)))

// returns Vx:I . x -> x | x >5
typeInstance(lam(x, (fifo™x) | (x>5)))

// returns © 6 -> 6

typeSubstitution(lam(x, (fifo”x) | (x>5)))
// returns © [x:I -> 6]

[/----- seq-fifo ----- //

typeOf(lam(x, Tr(x-1, Sym(x-1,1) & (fifo™x))))

// returns Vx:I . 1 -> 1 [type obtained only after constraint solving]
typeTree(lam(x, Tr(x-1, Sym(x-1,1) & (fifo™x))))

// returns Vx:I . x1 -> x2 | ((x1 + (x - 1)) == ((x - 1) + 1))

// & ((x2 + (X - 1)) ==x) & ((1L + (x - 1)) ==x) & (x1 >=0) & (x2 >=0)
[/----- zip and sequencer ----- //

val zip =

typeOf(zip)

// returns Vn:I . 2 x n ->2 % n
val sequencer =

typeOf(sequencer)

// returns ¥n:I . n ->n

Listing 1. Calculating the type of connectors using our tools.

5 https://github.com/joseproenca/parameterised- connectors

https://github.com/joseproenca/parameterised-connectors

This implementation includes a simple domain specific language to specify
connectors, making them similar to the syntax used throughout this paper. It
provides three main top-level functions: typeTree, typeOf, typeInstance, and
typeSubstitution. The first creates the derivation tree (if it exists); typeOf
simplifies the constraints, uses the unification algorithm, invokes the constraint
solver, and returns the most general type found; and typeInstance and type-
Substitution perform the same steps as typeOf, but the former returns the
result of the constraint solving phase (even if the type is not the most general
one) and the latter returns the substitutions obtained by the unification and
the constraint solver phases. Hence the result of typeInstance never includes
constraints. The constraint solving phase uses the Choco solver® to search for
solutions of the constraints.

Observe that the resulting type instance and substitution of the first connec-
tor start with @—this means that the resulting type is a concrete instance of a
type, i.e., the constraint solving phase found more than one solution for the vari-
ables of the inferred type (after unification). However, if we would ask for a type
instance of (Az: N-fifo”|z > 5)(7), for example, the result would be also its (gen-
eral) type 7 — 7, without the ®@. Typing the connector (Az:N - fifo|z > 5)(2)
gives a type error, because the constraints are not satisfied.

6 Related Work

Algebras of connectors The usage of symmetric monoidal categories to
represent Reo connectors (and others) has been introduced by Bruni et al. [5],
where they introduce an algebra of stateless connectors with an operational se-
mantics expressed using the Tile Model [7]. The authors focus on the behavioural
aspects, exploiting normalisation and axiomatisation techniques. An extension
of this work dedicated to Reo connectors [3] investigates more complex seman-
tics of Reo (with context dependent connectors) using the Tile Model. Other
extensions to connector algebras exist. For example, Sobocinski [14], and more
recently Bonchi et al. [4], present stateful extensions to model and reason about
the behaviour of Petri Nets and of Signal Flow Graphs, respectively. The latter
also describes the usage of traces (Tr) as a possible way to specify loops in their
algebra. In all these approaches, interfaces (objects of the categories) can be
either input or output ports, independently of being on the left or right side of
the connector (morphism), focusing on the behaviour of connectors instead of
how to build families of these connectors.

In our work we do not distinguish input from output ports, assuming data
always flows from left to right, and use traces to support loops and achieve the
same expressivity. As a result, we found the resulting connectors to be easier to
read and understand. For example the connector fifo has type eo — 0 in Bruni
et al.’s algebra, meaning that the left side has 2 ports: an input e and an output
o one. Composing two fifos in sequence uses extra connectors (called nodes) and

5 http://choco-solver.org

http://choco-solver.org

has type 0 — oce—for a more complete explanation see [7]. Indeed, our algebra
has stronger resemblances with lambda calculus (and with pointfree style in
functional programming [8]), facilitating the extension to families of connectors,
which is the main novelty of this work.

Analysis of software product lines In the context of software product
lines Késtner et al. [9], for example, investigated how to lift a type-checking
algorithm from programs to families of programs. They use featherweight Java
annotated with constraints used during product generation, and present a type-
checking approach that preserves types during this product generation. Their
focus is on keeping the constraints being solved as small as possible, unlike
previous approaches in the generative programming community (e.g., by Thaker
et al. [15]) that compile a larger global set of constraints. Many other verification
approaches for software product lines have been investigated [12,1,16,6]. Post
and Sinz [12] verify families of Linux device drivers using the CBMC bouned
model checker, and Apel et al. [1] verify more general families of C programs
using the CPAchecker symbolic checker. More recently Thiim et al [16] presents
an approach to use the KeY theorem prover to verify a feature-oriented dialect
of Java with JML annotations. They encode such annotated families of Java
programs into new (traditional) Java programs with new JML annotations that
can be directly used by KeY to verify the family of products. Dimovski et al [6]
take a more general view and provide a calculus for modular specification of
variability abstractions, and investigate tradeoffs between precision and time
when analysing software product lines and abstractions of them.

Our approach targets connector and component interfaces instead of typed
languages, and explicitly uses parameters that influence the connectors. Conse-
quently, feature models can contribute not only with feature selections but also
with values used to build concrete connectors. Our calculus is simpler than other
more traditional programming languages since it has no statements, no notion
of heap or memory, nor tables of fields or methods.

7 Conclusion and Future Work

This paper formalises a calculus for connector families, i.e., for connectors (or
components) with an open number of interfaces and restricted to given con-
straints. A dependant type system guarantees well-connectedness of such fami-
lies, i.e., that interfaces of subconnectors can be composed as long as the param-
eters obey the constraints in the type. These constraints are reducible to non-
linear constraints on integers when considering untyped ports (only the type 1),
in which case arithmetic properties and integer constraint solvers can be used to
check the constraints under which a connector family is well-connected.

In the future we will investigate connector families where the type of the data
passing through the ports is also checked. Finally, we also plan to investigate how
to reduce the size of the constraints being solved, by using the more dedicated
contexts while building the type tree instead of collecting the constraints for a
follow-up phase, similarly to the work of Késtner et al. [9].

References

1.

10.

11.

12.

13.

14.

15.

16.

S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection of fea-
ture interactions using feature-aware verification. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE
'11, pages 372-375, Washington, DC, USA, 2011. IEEE Computer Society.

F. Arbab. Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14(3):329-366, June 2004.

F. Arbab, R. Bruni, D. Clarke, I. Lanese, and U. Montanari. Tiles for Reo. In
A. Corradini and U. Montanari, editors, Recent Trends in Algebraic Development
Techniques, pages 37-55. LNCS 5486, 2009.

F. Bonchi, P. Sobocinski, and F. Zanasi. Full abstraction for signal flow graphs.
In Proceedings of the 42nd Annual Symposium on Principles of Programming Lan-
guages, POPL ’15, pages 515-526, New York, NY, USA, 2015. ACM.

R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless connectors.
Theor. Comput. Sci., 366(1-2):98-120, 2006.

A. S. Dimovski, C. Brabrand, and A. Wasowski. Variability abstractions: Trad-
ing precision for speed in family-based analyses (extended version). CoRR,
abs/1503.04608, 2015.

F. Gadducci and U. Montanari. Proof, language, and interaction. chapter The
Tile Model, pages 133—-166. MIT Press, Cambridge, MA, USA, 2000.

J. Gibbons. A pointless derivation of radix sort. Journal of Functional Program-
ming, 9(3):339-346, 1999.

C. Kastner and S. Apel. Type-checking software product lines - a formal ap-
proach. In Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’08, pages 258-267, Washington, DC, USA,
2008. IEEE Computer Society.

B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineering.
2005.

H. Post and C. Sinz. Configuration lifting: Verification meets software configu-
ration. In Proceedings of the 2008 23rd International Conference on Automated
Software Engineering, ASE 08, pages 347-350. IEEE Computer Society, 2008.

P. Selinger. A survey of graphical languages for monoidal categories. In B. Coecke,
editor, New Structures for Physics, volume 813 of Lecture Notes in Physics, pages
289-355. Springer Berlin Heidelberg, 2011.

P. Sobocinski. Representations of petri net interactions. In P. Gastin and
F. Laroussinie, editors, CONCUR 2010 - Concurrency Theory, 21th International
Conference, CONCUR 2010, Paris, France, August 31-September 8, 2010. Proceed-
ings, volume 6269 of Lecture Notes in Computer Science, pages 554—-568. Springer,
2010.

S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition of product lines.
In Proceedings of the 6th International Conference on Generative Programming
and Component Engineering, GPCE ’07, pages 95-104. ACM, 2007.

T. Thiim, I. Schaefer, S. Apel, and M. Hentschel. Family-based deductive verifica-
tion of software product lines. In Proceedings of the 11th International Conference
on Generative Programming and Component Engineering, GPCE ’12, pages 11-20,
New York, NY, USA, 2012. ACM.

	Typed Connector Families

