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Geostatistical Mapping of Outfall Plume
Dispersion Data Gathered with an Autonomous
Underwater Vehicle

Maurici Monego, Patricia Ramos, and Mario V. Neves

Abstract The main purpose of this study was to examine the applicability of
geostatistical modeling to obtain valuable information for assessing the environ-
mental impact of sewage outfall discharges. The data set used was obtained in a
monitoring campaign to S. Jacinto outfall, located off the Portuguese west coast
near Aveiro region, using an AUV. The Matheron’s classical estimator was used the
compute the experimental semivariogram, which was fitted to three theoretical mod-
els: spherical, exponential and Gaussian. The cross-validation procedure suggested
the best semivariogram model and ordinary kriging was used to obtain the predic-
tions of salinity at unknown locations. The generated map shows clearly the plume
dispersion in the studied area, indicating that the effluent does not reach the nearby
beaches. Our study suggests that an optimal design for the AUV sampling trajectory
from a geostatistical prediction point of view, can help to compute more precise pre-
dictions and hence to quantify more accurately dilution. Moreover, since accurate
measurements of plume’s dilution are rare, these studies might be very helpful in
the future for validation of dispersion models.

1 Introduction

Outfalls are designed to promote the natural assimilative capacity of the oceans
to dispose of wastewaters with minimal environmental impact. This is accom-
plished through the vigorous initial mixing that is followed by oceanic dispersion
within spatially and temporally varying currents. Usually, those mixing processes,
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in conjunction to bacterial mortality, result in rapid reductions in the concentrations
of contaminants and organisms present in the wastewater to near background lev-
els. However, coastal physical, chemical and biological processes, very dynamic
and complex, and intimately coupled to the concentration and content of wastewa-
ter, are in most instances, poorly understood. Consequently, how sewage disperses
and how effluent modifies and is modified by coastal environments remain in many
aspects unknown and unpredictable. The impacts of discharged wastewaters on hu-
man beings may include direct contact (e.g., by swimmers, surfers, beachgoers)
with chemical contaminants or pathogens, and indirect effects through the con-
sumption of contaminated food suppliers (e.g., fish, shellfish). Much effort has been
devoted recently to improve the means to monitor and characterize effluent plumes
under a variety of oceanographic conditions, on relevant temporal and spatial scales.
However, effluent plume dispersion is still a difficult problem to study in situ. The
difficulties in conducting field studies arise from the rapid spatial and temporal vari-
ations in physical, chemical and biological processes and oceanographic conditions
that can occur in coastal waters. Additional logistical difficulties that include vari-
ability of discharge flowrate, high costs, and large area extent to be monitored, make
reliable field measurements of coastal outfall plumes rare.

Autonomous Underwater Vehicles (AUVs) have already been demonstrated to
be appropriate for high-resolution surveys of small features such as outfall plumes
(Ramos, 2005). Some of the advantages of these platforms include: easier field lo-
gistics, low cost per deployment, good spatial coverage, sampling over repeated
sections, and capability of feature-based or adaptive sampling. Demands for more
reliable model predictions, and predictions of quantities that have received little
attention in the past are now increasing. These are driven by increasing environmen-
tal awareness, more stringent environmental standards, and application of diffusion
theory in new areas. While the gross properties of the plume can be reasonably
predicted by the most commonly used marine discharge models, there remain many
aspects which cannot be, particularly the patchy nature of the wastefield. This patch-
iness, which has been observed in field studies, is not incorporated into any of those
models. They implicitly assume properties to vary smoothly in space, an assump-
tion that is true only for time-averaged plumes. If we want to calibrate these models
with real data we have to be able to quantify spatial correlations and other related
characteristics.

In this paper, we use geostatistics in the spatial analysis of environmental data
gathered with an autonomous underwater vehicle (AUV) in a monitoring campaign
targeted to a sea outfall, aiming: (i) to distinguish the effluent plume from the re-
ceiving water; (ii) to estimate the salinity value at unknown locations and map its
distribution by kriging interpolation, motivated by environmental impact assessment
for decision-making and (iii) to validate predictions of plume dispersion models.

Geostatistical modeling has been used to analyze and characterize the spatial
variability of soil properties (Saby et al., 2006; Wei et al., 2007), to obtain informa-
tion for assessing water and wind resources (Shoji, 2006; Shoji and Kitaura, 2006),
to design sampling strategies for estuarine sediment collection (Caeiro et al., 2003),
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to study the thickness of effluent-affected sediment in the vicinity of wastewater
discharges (Murray et al., 2002), and to obtain information about the spatial
distribution of sewage pollution in coastal sediments (Poon et al., 2000), among
many others.

Although very chaotic, due to turbulent diffusion, plume’s dispersion process
tends to a natural variability mode when the plume stops rising and the intensity
of turbulent fluctuations approaches to zero (Roberts, 1996). This region is called
the end of “near field” or “initial mixing region”. After the end of the near field the
established wastefield spreads laterally, drifting with the ocean current diffused by
oceanic turbulence. In the near field the dilution increases rapidly with downstream
distance, due to the turbulent kinetic energy generated by the buoyancy and momen-
tum of the discharge. However, after the end of the near field the rate of increase of
dilution is much lower. Dilution is then usually evaluated, for risk assessment pur-
poses, at the end of the near field. It is likely that after the end of the near field
pollutant concentrations are spatially correlated. In this sense, geostatistics appears
to be an appropriate technique to estimate dilution and map the plume dispersion.

In this work we conduct a geostatistical study of salinity measurements, obtained
in the vicinity of an outfall discharge, using ordinary kriging interpolation. In a first
step the spatial structure of the observations was inspected thought a descriptive sta-
tistical analysis. Then, the degree of spatial correlation among data in the study area
as function of the distance and direction was expressed in terms of the semivari-
ogram. Finally, ordinary kriging was used to estimate salinity at unknown locations,
and a map of this parameter distribution in the field was generated. Cross-validation
indicators and additional model parameters helped to choose the most appropriate
model.

2 Geostatistical Analysis

The data set used in this analysis was obtained in a monitoring campaign of §. Jac-
into outfall, located off the Portuguese west coast near Aveiro region, using the
AUV of the Underwater Systems and Technology Laboratory of University of Porto.
A rectangular area of 200 x 100 m? starting 20 m downstream from the middle point
of the outfall diffuser was covered. As planned, the vehicle performed six horizontal
trajectories at 2, 4, 6, 8, 10 and 12 m depth. In each horizontal section the vehicle de-
scribed six parallel transects, perpendicular to the current direction, of 200 m length
and spaced at 20 m. While navigating at a constant velocity of approximately 1 m/s,
CTD (conductivity, temperature, depth) data were collected and recorded at a rate
of 2.4 Hz. Consecutive measurements at horizontal sections were then distanced at
about 0.4 m.

In this study, we analyse salinity data (computed from conductivity, temperature
and depth) from the horizontal section at 2 m depth, where the effluent plume was
found established and dispersing horizontally. The trajectory of the AUV at this
section is shown in Fig. 1.
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Fig. 1 (a) AUV sampling trajectory at 2m depth. (b) Study area off the Portuguese west coast
near Aveiro region

2.1 Exploratory Analysis

Table 1 gives the summary statistics of the salinity data set (2,470 measurements).
The salinity ranged from 35.152 to 35.607 psu. The mean value of the data set was
35.451 psu, being close to the median value that was 35.463 psu. As in conventional
statistics, a normal distribution for the variable under study is desirable in linear
geostatistics (Wackernagel, 2003).

It can be seen from Table 1 that both skewness and kurtosis values are low indi-
cating an approximated normal distribution of the raw data.

Figure 2 shows the frequency distribution of the salinity data set. The left tail of
the histogram shows a lightly negatively skewed distribution, which is in accordance
with the negative value of the skewness parameter in Table 1. This can be Jjustified by
the sampling strategy adopted. Since transects were all perpendicular to the current
direction (and not parallel to the outfall diffuser), the ones closer to the diffuser still
caught the plume ascending giving much lower values of salinity.

2.2 Semivariogram

Geostatistical methodology uses the semivariogram to quantify the spatial variation
of the variable in study (Cressie, 1993; Isaaks and Srivastava, 1989). The semivari-
ogram measures the mean variability between two data points as a function of their
distance. Matheron’s classical estimator of the semivariogram was used in this study,
whose computing equation is (Matheron, 1965):

N(h)
e Rl G . 2
y(h) = 5 N ; [Z(xi) — Z(x; + h)] (1)
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Fig. 2 Frequency distribution of the salinity data set

where y(h) is the semivariogram, Z(x;) is the salinity value measured at location
x;, h is the lag distance and N(h) is the number of pairs of measurements which
are h distance apart. The experimental semivariogram is calculated for several lag
distances. Once the experimental semivariogram is computed, the next step is to
fit it into a theoretical model. This model gives information about the structure of
the spatial variation being also used for the spatial prediction by kriging. The most
commonly used theoretical models are circular, spherical, exponential and Gaussian
(Kitanidis, 1997).

Figure 3 shows the omnidirectional experimental semivariogram of the salinity
data set and the models spherical, exponential and Gaussian fitted.

Estimation of semivariances was carried out using a lag distance of 10m.
Anisotropy was investigated by calculation of semivariogram for several directions.
However, no effect of anisotropy could be shown. The nugget, sill, and range pa-
rameters of the three fitted models are shown in Table 2.
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Fig. 3 Omnidirectional experimental semivariogram and fitted models

Table 2 Parameters of the Models

A= Nugget Sill Range  Nugget/Sill (%)
semivariogram models 2
Spherical 0.00021 0.00555 109.772 3.9
Exponential 0 0.00492 109.772 0

Gaussian 0.00093 0.00608 109.772 15.3

The degree of spatial dependence of the variable in study can be evaluated
through the nugget/sill ratio. According to Wei et al. (2007), nugget/sill ratios less
than 25% suggest that the variable has a strong spatial dependence; nugget/sill ratios
between 25% and 75% suggest that the variable has a moderate spatial dependence;
and nuggev/sill ratios above 75% suggest that the variable has low spatial depen-
dence. As can be observed in Table 2, the nuggetsill ratios of salinity for all the
semivariogram models are low and less then 25%, suggesting that the variable has
a strong spatial dependence and that probably local variations could be captured, as
expected.

2.3 Cross-Validation

Cross-validation was used to compare the prediction performances of the three
semivariogram models. In this procedure, each sample is eliminated in turn and
the remaining samples are used by kriging to predict the eliminated observation.
The differences between the observations and the predictions are then evaluated us-
ing the mean error (ME), the root mean squared error (RMSE), and the root mean
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Table 3 Cross-validation Models ME ; RMSE RMSSE

parameters for the : 7 =

semivariogram models Spherlcal~ 3.8 x 10 i 0.01476 0.8077
Exponential 0.29 x 10 0.01409 1.6310
Gaussian ~ —29.9 x 10> 0.02495 0.7461

squared standardized error (RMSSE), computed respectively according to the fol-
lowing equations:

S
== ; [Z(xi) o Z(xi)] )
e 2
RMSE = | =Y [2(x) - Z(x)] 3)
\ =1
st Y2020 )
— ! = ; [t e @

where Z(x;) is the predicted value at cross-validation point x;, Z(x;) is the actual
(measured) value at point x;, N is the number of measurements of the data set,
and o%(x;) is the kriging variance at cross-validation point x;. Table 3 shows these
indicators for the spherical, exponential and Gaussian models that helped to choose
the best semivariogram model among these candidates.

For a model that provides accurate predictions the ME should be close to zero,
indicating that the predictions are unbiased. The RMSE should be as small as pos-
sible, indicating that the predictions are close to the measured values. If the kriging
variances are accurate, then the RMSSE should be close to 1 (Wackernagel, 2003).
If it is higher, the kriging predictions are too optimistic about the variability of the
estimates. The results given by Table 2 and Table 3 suggest that the spherical model
should be used to estimate salinity over the studied area.

2.4 Ordinary Kriging

After selecting a variogram model, kriging was applied to estimate the value of
the variable at unsampled locations, using data from surrounding sampled points.
The estimation is also based on the semivariogram model, and therefore, takes into
account the spatial variability of the variable in study.

The kriging method belongs to the best linear unbiased estimators (BLUE) fam-
ily. It is said to be linear because the estimated value is a linear combination of the
measurements, being written in the form of:

M
Z(xo) =Y i Z(x;) (5)

i=1
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where Z (xo) is the estimated value for location X, M is the number of observations
in the neighborhood of x¢ used in the estimative, and «; are the correspondent
weights.

Ordinary kriging is used when the mean value of the variable in study is un-
known. For this estimator to be unbiased, for any value of the mean, it is required
that Zf‘il a; = 1. The estimated value is obtained by minimizing the kriging vari-
ance with the help of the Lagrange multipliers, in order to impose the unbiased
condition (Cressie, 1993; Kitanidis, 1997).

3 Results

The kriged maps of salinity of the horizontal section at 2 m depth using the spher-
ical, exponential and Gaussian models are shown in Fig. 4. All maps show clearly
the spatial variation of salinity in the studied area. From these maps it is possible to
identify unambiguously the effluent plume and its dispersion downstream in the cur-
rent direction. It appears as a region of lower salinity compared to the surrounding
ocean waters at the same depth. It is also possible to observe the plume edges since
the wastefield width is shorter than the survey width. We may say that the results
obtained with the three semivariogram models are quite similar. However, in the
prediction using the Gaussian model some small local variations were not captured.
Figure 5 shows the prediction error map when using the spherical model. It can be
seen, as expected, that the prediction error is smaller the closer the prediction to the
trajectory of the vehicle.

Salinity differences compared to the surrounding waters at 2 m depth started to
be about 0.455psu in the first two transects (20 and 40 m), decreasing to about
0.293 psu in the third transect (60 m), to about 0.215 psu in the forth transect (80 m),
to about 0.176psu in the fifth transect (100 m), ending almost equally to back-
ground waters at 120 m distance, with a difference of about 0.071 psu. Washburn
et al. (1992) observed salinity differences compared with the surrounding waters of
the order of 0.1 psu, while Petrenko et al. (1998) found differences of the order of
0.2 psu.

A sharp difference in salinity at the effluent plume lateral edges is clearly visible,
being the wastefield spreading almost centered in the survey area. This indicates that
the sampling strategy designed was successful, even for a surfacing plume which
can be considered as the most complicated case in terms of natural tracer tracking.

The plume exhibits a considerably more complex structure than the compact
shape of the classical picture of the buoyant plume, but not so patchy as in pre-
vious studies, maybe due to the increase in horizontal resolution and also possibly
due to the kriging results.
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Fig. 5 Prediction error map using the spherical model

4 Conclusions

Geostatistical analysis of salinity, obtained with an AUV in a monitoring campaign
to an ocean outfall, was able to produce a kriged map of the sewage dispersion
in the field. The spatial variability of the sampled data was analysed previously
calculating the classic statistical indicators. The results indicated an approximated
normal distribution of the data samples, which is desirable. Then, Matheron’s clas-
sical estimator was used to compute the experimental semivariogram for several
directions. No effect of anisotropy could be shown. The semivariogram was fitted to
three theoretical models: spherical, exponential and Gaussian. The cross-validation
indicators for the three models suggested the best semivariogram model among the
candidates. Finally, the predictions of salinity at unknown locations were obtained
by ordinary kriging. The generated map shows clearly the spatial variation of salin-
ity in the studied area, indicating that the effluent does not reach the nearby beaches
distanced about 3 km.

Our study demonstrates that geostatistical analysis can provide estimates of ef-
fluents dispersion, valuable for environmental impact assessment and management
of sea outfalls. Moreover, since accurate measurements of plume’s dilution are rare,
these studies might be helpful in the future for validation of dispersion models.
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