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Classification is one of the most important tasks of ma-
chine learning. Although the most well studied model
is the two-class problem, in many scenarios there is the
opportunity to label critical items for manual revision,
instead of trying to automatically classify every item.

In this paper we tailor a paradigm initially pro-
posed for the classification of ordinal data to address
the classification problem with reject option. The tech-
nique reduces the problem of classifying with reject
option to the standard two-class problem. The intro-
duced method is then mapped into support vector ma-
chines and neural networks. Finally, the framework is
extended to multiclass ordinal data with reject op-
tion. An experimental study with synthetic and real
datasets verifies the usefulness of the proposed ap-
proach.
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1. Introduction

Decision support systems are becoming ubiqui-
tous in many human activities, most notably in
finance and medicine. Automatic models are be-
ing developed to imitate, as closely as possible, the
usual human decision. Within this context, classi-
fication is one of the most representative predic-
tive learning tasks. Classification predicts a cat-
egorical value for a specific data item. The most
well studied scenario is when the class to be pre-
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dicted can assume only two values—binary setting.
The classifier is developed to partition the feature
space in two regions, discriminating between the
two classes.

In credit scoring modeling, models are devel-
oped to determine how likely applicants are to de-
fault with their repayments. Previous repayment
history is used to determine whether a customer
should be classified into a ‘good’ or a ‘bad’ cate-
gory [29]. Prediction of insurance companies’ in-
solvency has arisen as an important problem in
the field of financial research due to the necessity
of protecting the general public whilst minimiz-
ing the costs associated to this problem [29]. In
medicine, the last decades have witnessed the de-
velopment of advanced diagnostic systems as alter-
native, complementary or a first opinion in many
applications [3]. These are just some applications
that continue to challenge researchers in the de-
ployment of fully automated decision support sys-
tems.

One of the problems with classifying complex
items is that many items from distinct classes have
similar structures in the feature space, resulting
in a setting with overlapping classes. The automa-
tion of decisions in these regions leads invariably to
many wrong predictions. On the other hand, and
although items in the historical data are labeled
only as ‘good’ or ‘bad’, the deployment of a de-
cision support system in many environments has
the opportunity to label critical items for manual
revision, instead of trying to automatically classify
each and every item. The system automates only
those decisions which can be reliably predicted, la-
beling the critical ones for a human expert to ana-
lyze. Therefore, the development of classifiers with
a third output class, the reject class, in-between
the good and bad classes, is attractive.

In a preliminary study [27], it was proposed a
new learning methodology, which is extended and
explored in various directions in this paper. Here,
we first detail the presentation of the method, in-
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troducing the mapping to support vector machines
(SVMs) and neural networks (NNs). Second, we
generalize the framework from binary classifica-
tion problems to multiclass ordinal data. Finally,
the experimental work reported at the end of this
communication is expanded, including a compari-
son over more datasets and with conventional and
state of the art methods. A principled approach
for learning critical regions on complex data is mo-
tivated and presented in Section 2, followed by a
review of the most relevant works addressing the
reject option problem. In Section 3 the fundamen-
tal concept of the reject option paradigm is revised
and the proposed model of this paper is described
in Section 4. An extension of standard procedures
for the reject option problem in the ordinal con-
text is presented in Section 5 and the implemen-
tation considerations of the methods discussed in
this paper is presented in Section 6. Performance
assessment is conducted in Section 7. Finally, con-
clusions are drawn in Section 8.

2. Problem Statement and Standard Solutions

Predictive modeling tries to find good models
for predicting the values of one or more variables
in a dataset from values of other variables. Our
target can assume only two values, represented by
‘good’ and ‘bad’ classes. When in possession of a
“complex” dataset, a simple separator is bound to
misclassify some points. Two types of errors are
possible, ‘false positives’ and ‘false negatives’. The
construction of a model can be conducted to op-
timize some adopted measure of business perfor-
mance, be it profit, loss, volume of acquisitions,
market share, etc, by giving appropriate weights
to the two types of errors. When the weights of
the two types of errors are heavily asymmetric, the
boundary between the two classes will be pushed
near values where the most costly error seldom
happens.

This fact suggests a simple procedure to con-
struct a three-class output classifier: training a
first binary classifier with a set of weights heavily
penalizing the false negative errors, we expect that
when this classifier predicts an item as negative,
it will be truly negative. Likewise, training a sec-
ond binary classifier with a set of weights heavily
penalizing the false positive errors, we expect that
when this classifier predicts an item as positive, it

will be truly positive. When a item is predicted as
positive by the first classifier and negative by the
second, it will be labeled for review. This setting
is illustrated in Fig. 1.

(a) Overlapping regions. (b) Typical separator lines,
obtained with two indepen-

dent binary classifiers.

Fig. 1. Illustrative setting with overlapping classes.

A problem arises when an item is predicted as
negative by the first classifier and positive by the
second classifier as in Fig. 2(a). That can hap-
pen because the two separator lines intersect each
other, generating therefore regions with a non-
logical decision (regions where individual classi-
fiers are inconsistent, individually deciding for dif-
ferent classes). A convenient workaround is then to
avoid this problematic state by imposing that the
two boundaries of the classifiers do not intersect,
Fig. 2(b).

(a) Intersecting separating

lines.

(b) Non-intersecting sepa-

rating lines.

Fig. 2. Potential discriminative boundaries. The advantage

of the approach depicted in Fig. 2(b) on an ordinal setting
has already been stated in [8].

Before delving into the proposed method, it is
worth discussing the simple solution of using a sin-
gle classifier. If more than just discriminating be-
tween the two classes, the model to use yields the
posterior probability for each target class, then two
cutoffs can be defined on this value. All items with
predicted probability of belonging to class C−1 less
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than a low threshold are labeled as C+1, items
with predicted probability of belonging to class
C−1 higher than a high threshold are labeled as
C−1, items with predicted probability of belonging
to class C−1 in-between the low and high threshold
are labeled for review. Two issues can be identi-
fied with this approach. First, we need to estimate
the probability of each class, which is by itself a
problem harder than the problem of discriminat-
ing classes. Second, the estimation of the two cut-
offs is not straightforward nor can be easily fitted
into standard frameworks.

The design of classifiers with reject option can
be systematized in three different approaches:

– the design of two, independent, classifiers. A
first classifier is trained to output C−1 only
when the probability of C−1 is high and a
second classifier trained to output C+1 only
when the probability of C+1 is high. In other
words, train a first classifier with a set of
weights heavily penalizing the false negative
errors in order to obtain truly negative predic-
tions; and, train a second classifier with a set
of weights heavily penalizing the false positive
errors in order to obtain truly positive pre-
dictions. The simplicity of this strategy has
the weakness of producing intersecting bound-
aries, leading to regions with a non-logical de-
cision as aforementioned.

– the design of a single, standard binary clas-
sifier. This approach already provides non-
intersecting boundaries. If the classifier pro-
vides some approximation to the a posteriori
class probabilities, then a pattern is rejected
if the maximum of the two posterior proba-
bilities is lower than a given threshold. If the
classifier does not provide probabilistic out-
puts, then a rejection threshold targeted to
the particular classifier is used. For example,
the rejection techniques proposed with sup-
port vector machines consist in rejecting pat-
terns those distance from the optimal sepa-
rating hyperplane is lower than a predefined
threshold. The rejection region is determined
after the training of the classifier, by defining
appropriate threshold values on the output of
the classifier [9,17,18].

– the design of a single classifier with embedded
reject option. This approach has consisted in
the design of algorithms specifically adapted
for the reject option problem. Although the

option has the advantage of determining the
reject region during the training phase of the
classifier, it requires the implementation of
very specific algorithms, usually appropriate
for a single class of classifiers, like support vec-
tor machines [16,5].

The method to be proposed belongs to the type
of classifiers with embedded reject option. The
main advantage of the methods in this category
is simultaneously their main limitation: since the
cost matrix is embedded during the design, they
are optimal (in some sense) to that ‘business’ cri-
terion. By integrating the business performance in
the model construction we expect to attain an ‘op-
timal’ classifier, tuned for the business criterion.
However, a change in the business rules implies
that the model needs to be re-designed. Nonethe-
less, that may be easily accomplished. Typically
the cost matrix evolves slowly. So, instead of re-
training, a simpler update is usually sufficient. For
instance, for a neural network, that may require to
run the training process a few iterations, starting
from the previously optimized network, instead of
starting randomly. Since the costs are similar, the
convergence should be very fast.

In the next subsection we overview the current
state of the art related to the reject option prob-
lem.

2.1. State of the Art

In one of the first works to analyze the trade-
offs between erring and rejecting, Chow in [9] de-
rived a general error and reject tradeoff relation
for the Bayes optimum recognition system. This
derivation assumed a complete knowledge of the
a priori probability distribution of the classes and
the posterior probabilities which, in real problems,
are usually unknown. Fumera [17,18] shows that
Chow’s rule does not perform well if a significant
error in probability estimation is present, propos-
ing the use of multiple reject thresholds related to
the data classes.

The incorporation of reject option opens new
fields of applications for a learning method. For
instance, application to Multiple Instance Learn-
ing (MIL) for image categorization as presented
in [33], the improvement of reliability in banknote
neuro-classifier [1] through the use of PCAs and a
Learning Vector Quantization (LVQ), among oth-
ers.



4 R. Sousa & Jaime S. Cardoso / The Data Replication Method for the Classification with Reject Option

The introduction of the reject option in a clas-
sifier also demands the introduction of new eval-
uation measures. In [13] new measures are devel-
oped to find a relation between the reduction of
the number of misclassified instances and the re-
duction of the number of unclassified instances.
Despite the results obtained and presented, they
claim that their measures can not be statistically
interpreted and henceforth no formal interpreta-
tion can be taken [13]. Following this idea, in [12]
the concept of delegating classifiers in a systematic
way is developed. These type of methods follow
the concept of divide-to-conquer [19,13,12], where
a more generic classifier abstains on a part of the
examples and delegates them to a second, more
specific, classifier. However, such approaches could
potentially delegate only a small number of in-
stances to the second classifier which will lead to
overfitting [12].

Based on the ROC curve principle, as in [13],
a cost-sensitive reject rule for SVM classifiers
is introduced in [30]. Other strategies are taken
in [31,26] where a reject rule based on the ROC
curve is specially designed for binary classifiers.

In [22] the authors explored the idea of com-
bining one-class learning models with supervised
learning. They further evaluated their strategy
concerning the incorporation of a reject option on
classification tasks through ROC analysis [21]. The
measures explored in [21] aid in choosing and opti-
mizing a classifier that reduces the risk of misclas-
sifying an unseen class (outlier). Another system to
identify outliers, in contrast with those proposed
in [22,21], is presented in [28]. The authors propose
a heuristic which combines any type of one-class
models for solving multi-class classification prob-
lem with outlier rejection. This is achieved through
the use of two models: density and distance based
class models. In this scheme, PCA is used to avoid
the dimensionality problem. Instead of rejecting
outlier instances, in [23] it is suggested a new re-
jection scheme. Their technique encompasses the
rejection of instances from one class determined
as outlier and the assignment of instances to the
remaining classes.

Other approaches can be taken. If the probabil-
ity density functions of classes are known, pattern
recognition is a problem of statistical hypothesis
testing [15]. Keeping in mind the minimization of
the empirical risk principle, in [6] it is proposed a
kernel learning method. This technique consists in

a likelihood ratio based classifier where a Parzen
window estimator is used to estimate the proba-
bility densities. In [5], the authors follow the sta-
tistical hypothesis testing rationale a little further
through the use of the Neyman-Pearson (NP) cri-
terion. NP does not introduce any new decision
theory since it relies on the likelihood test as Bayes
theory [15]. However, this criterion has a more nat-
ural way to specify a constraint on the false alarm
(type I error) probability than to assign costs to
the different kinds of errors. Based on this, a reject
option method based on the Neyman-Pearson cri-
terion is presented as an extension of the Chow’s
rule.

Although several learning methods exist ad-
dressing the reject option, only a few tackle the
assessment of the sensibility. Devarakota et al. [10]
present a generic approach where, through the
quantification of uncertainty of a decision made
by a statistical learning scheme, the method com-
putes a confidence interval which can afterward be
used on several learning techniques.

Despite the myriad of techniques that handle
the incorporation of a reject option in their ap-
proaches, many of them do not fully account the
pioneer work of [9]. Also, the principle issue usu-
ally used in pattern recognition, which is the min-
imization of the empirical risk, is feebly explored
on the reject option case. Moreover, a major dif-
ficulty with these approaches is that the resulting
formulations are no longer standard optimization
procedures and cannot be solved efficiently, lacking
some appealing features like convexity and spar-
sity. In this line, [2,32] consider a convex surrogate
of the generalized loss function to efficiently solve
the resulting problem under SVMs and of the con-
vex loss functions. As an extension of this, in [20]
it is proposed a double hinge function and a prob-
abilistic viewpoint of the SVM fitting. Without
changing the loss function, in [16] it is proposed a
modified support vector machines (SVMs). In [27]
a new embedded reject option learning scheme is
presented and in [24] it is applied to the diagnostic
of pathology on the vertebral column.

In this work we detail a solution that: a)
uses standard binary classifiers; b) produces non-
intersecting boundaries; c) determines the reject
region during the training phase. The proposed so-
lution is based on the extension of a technique de-
veloped for ordinal data.
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3. The Optimum Reject Rule

The pioneer work of [9] about the optimum re-
ject rule provided the foundations towards the re-
ject option problem development, as already men-
tioned in the previous section. For completeness,
we start by reviewing this work.

On statistical decision theory, one decides Cj for
a given pattern x if,

πjp(x|Cj) ≥ πip(x|Ci) ∀i = 1, . . . ,K

where πi is the a priori probability of class Ci, and
K the number of classes [15,11].

In what concerns to rejection, a decision is hold-
up if the maximum a posteriori probability is less
than a given threshold, 1− t. In other words:

max
i

(πip(x|Ci)) < (1− t)
K∑
i=1

(πip(x|Ci)),

with 0 ≤ t ≤ 1. Assuming uniform cost function
within each class of decisions, i.e., no distinction is
made among errors, among the rejects and among
the correct recognition, the rejection threshold is
related with the costs by

t =
wr − wc
we − wc

where wr, we and wc, are the costs for rejecting,
error and correct classification, respectively [9,16].

Defining the probability of error, or error rate,
as E(t) and the probability of reject or reject rate
as R(t) and assuming we = 1 and wc = 0, one
obtains [9]

risk(t) = E(t) + tR(t) (1)

We will return to this matter later in this paper.

4. An Ordinal Data Approach for Detecting
Reject Regions

Having motivated the development of classifiers
with a third output class, the reject class, in-
between the good and bad classes, this particu-
lar class structure will be explored using concepts
from ordinal data classification. In statistical pat-
tern recognition, it is usually assumed that a train-

ing set of labeled patterns is available where each
pair {xi, yi} ∈ <d × Y has been generated inde-
pendently from an unknown distribution. The goal
is to induce a classifier, i.e., a function from pat-
terns to labels f : <d → Y. On the ordinal case
the output space exhibits a natural order, for in-
stance, Excellent�Good�Fair�Poor, and formally
defined as Y = {y1, · · · , yK}, where y1 � · · · � yK
and � is a linear order relation in Y.

4.1. The Data Replication Method for Ordinal
Data

The data replication method for ordinal data
can be framed under the single binary classifier
(SBC) reduction, an approach for solving multi-
class problems via binary classification relying on
a single, standard binary classifier.

To introduce the data replication method, as-
sume that examples in a classification problem
come from one of K ordered classes, labeled from
C1 to CK , corresponding to their natural or-

der. Consider the training set {x(k)
i }, where k =

1, . . . ,K denotes the class number, i = 1, . . . , `k
is the index within each class, and x

(k)
i ∈ Rd,

with p the dimension of the feature space. Let
` =

∑K
k=1 `k be the total number of training ex-

amples.
Let us consider a very simplified toy example

with just three classes, as depicted in Fig. 3(a).
Here, the task is to find two parallel hyperplanes,
the first one discriminating class C1 against classes
{C2,C3} and the second hyperplane discriminat-
ing classes {C1,C2} against class C3. These hyper-
planes will correspond to the solution of two binary
classification problems but with the additional
constraint of parallelism—see Fig. 3. The data
replication method suggests solving both problems
simultaneously in an augmented feature space [8].

In the toy example, using a transformation from
the R2 initial feature-space to a R3 feature space,
replicate each original point, according to the rule
(see Fig. 4(a)):

x ∈ R2↗
↘

[ x
h ] ∈ R3

[ x
0 ] ∈ R3

, where h = const ∈ R+

Observe that any two points created from the same
original point differ only in the extension feature.
Define now a binary training set in the new (higher
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(a) Original dataset in R2, K =

3.

(b) Binary problem C1 against

classes {C2,C3}.
(c) Binary problem {C1,C2}
against class C3.

Fig. 3. Binary problems to be solved simultaneously with the data replication method.

(a) Dataset in R3, with

samples replicated (h =
1).

(b) Transformation into

a binary classification
problem.

(c) Linear solution to the

binary problem.

(d) Linear solution in the

original dataset.

Fig. 4. Data replication model in a toy example (from [8]).

dimensional) space according to (see Fig. 4(b)):[
x
(1)
i
0

]
∈ C1,

[
x
(2)
i
0

]
,
[

x
(3)
i
0

]
∈ C2[

x
(1)
i

h

]
,
[

x
(2)
i

h

]
∈ C1,

[
x
(3)
i

h

]
∈ C2

(2)

In this step we are defining the two binary prob-
lems as a single binary problem in the augmented
feature space. A linear two-class classifier can now
be applied on the extended dataset, yielding a hy-
perplane separating the two classes, see Fig. 4(c).
The intersection of this hyperplane with each of
the subspace replicas can be used to derive the
boundaries in the original dataset, as illustrated in
Fig. 4(d).

To predict the class of an unseen example, clas-
sify both replicas of the example in the extended
dataset with the binary classifier. From the se-
quence of binary labels one can infer the predicted

label on the original ordinal classes

C1,C1 =⇒ C1 C2,C1 =⇒ C2 C2,C2 =⇒ C3

Note that only three sequences are possible [8].
The generalization for any problem in Rd, with K
ordinal classes and nonlinear boundaries can be
found in [8].

Summing up, (K − 1) replicas in a Rp+K−2 di-
mensional space are used to train a binary classi-
fier. The target class of an unseen example can be
obtained by adding one to the number of C2 labels
in the sequence of binary labels resulting from the
classification of the (K−1) replicas of the example.

4.2. The Data Replication Method for Detecting
Reject Regions

The scenario of designing a classifier with re-
ject option shares many characteristics with the
classification of ordinal data. It is also reason-
able to assume for the reject option scenario that
the three output classes are naturally ordered as
C1,Creject,C2. As the intersection point of the
two boundaries would indicate an example with
the three classes equally probable—one would be
equally uncertain between assigning C1 or Creject
and between assigning Creject or C2—it is plausi-
ble to adopt a strategy imposing non-intersecting
boundaries. In fact, as reviewed in Section 2, meth-
ods have been proposed with exactly such as-
sumption. In the scenario of designing a classi-
fier with reject option, we are interested on find-
ing two boundaries: a boundary discriminating C1

from {Creject,C2} and a boundary discriminating
{C1,Creject} from C2.

We proceed exactly as in the data replication
method for ordinal data. We start by transform-
ing the data from the initial space to an extended
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space, replicating the data, according to the rule
(see Fig. 5(a) and Fig. 5(b)):

x ∈ Rd↗↘

[ x
h ] ∈ Rd+1

[ x
0 ] ∈ Rd+1

, where h = const ∈ R+

If we design a binary classifier on the extended
training data, without further considerations, one
would obtain the same classification boundary in
both data replicas. Therefore, we modify the mis-
classification cost of the observations according to
the data replica they belong to. In the first replica
(the extension feature assumes the value zero), we
will discriminate C1 from {Creject,C2}; therefore
we give higher costs to observations belonging to
class C2 than to observations belonging to class C1.
This will bias the boundary towards the minimiza-
tion of errors in C2. In the second replica (the ex-
tension feature assumes the value h), we will dis-
criminate {C1,Creject} from C2; therefore we give
higher costs to observations belonging to class C1

than to observations belonging to class C2. This
will bias the boundary towards the minimization
of errors in C1. In Fig. 5(c) this procedure is illus-
trated by filling the marks of the observations with
higher costs. Table 1 summarizes this procedure.

Replica # points from C1 points from C2

1 −1;C` +1;Ch

2 −1;Ch +1;C`

Table 1

Labels and costs (C` and Ch represent a low and a high

cost value, respectively) for points in different replicas in

the extended dataset.

A two-class classifier can now be applied on the
extended dataset, yielding a boundary separating
the two classes, see Fig. 5(d). The intersection of
this boundary with each of the subspace replicas
can be used to derive the boundaries in the original
dataset, as illustrated in Fig. 5(e).

Summing up, with a proper choice of costs, the
data replication method can be used to learn a re-
ject region, defined by two non-intersecting bound-
aries. Note that the reject region is optimized dur-
ing training and not heuristically defined after-
ward. Nonlinear (and non-intersecting) boundaries
are treated exactly as the ordinal data scenario.
Likewise, prediction follows the same rationale.

(a) Original binary

dataset in R2.

(b) Dataset in R3, with

samples replicated (h =
1).

(c) Binary problem in

R3, with filled points
representing observations

with higher cost of mis-

classification.

(d) Solution to the bi-

nary problem in R3.

(e) Solution with reject

region in the original

dataset.

Fig. 5. Proposed reject option model in a toy example.

4.2.1. Selecting the Misclassification Costs
In the reject option scheme, one aims to ob-

tain a minimum error while minimizing the num-
ber of rejected cases. However, when the number
of rejected cases decreases the classification error
increases, and to decrease the classification error
one typically has to increase the reject region. The
right balance between these two conflicting goals
depends on the relation of the associated costs.

Let C
(k)
i,q represent the cost of erring a point xi

from class k in data replica q (or, equivalently, by
hyperplane q). Points from class C1 misclassified
by the first hyperplane (wtx+b1 = 0) but correctly
classified by the second hyperplane (wtx + b2 = 0)

incur in a loss C
(1)
i,1 ; points from class C1 misclassi-

fied by both hyperplanes incur in a loss C
(1)
i,1 +C

(1)
i,2 .

Likewise, points from class C2 misclassified by the
hyperplane 2 (wtx + b2 = 0) but correctly classi-
fied by the first hyperplane (wtx + b1 = 0) incur

in a loss C
(2)
i,2 ; points from class C2 misclassified by
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both hyperplanes incur in a loss C
(2)
i,1 + C

(2)
i,2 . The

resulting loss matrix is given by

predicted
C1 Creject C2

true
C1 0 C

(1)
i,1 C

(1)
i,1 + C

(1)
i,2

C2 C
(2)
i,1 + C

(2)
i,2 C

(2)
i,2 0

The typical adoption of the same cost for erring
and rejecting on the two classes leads to the fol-
lowing simplified loss matrix:

predicted
C1 Creject C2

true
C1 0 Cl Ch
C2 Ch Cl 0

Therefore, Creject = Cl

Ch
= wr is the cost of reject-

ing (normalized by the cost of erring). The data
replication method with reject option tries to mini-
mize the empirical risk wrR+E, where R accounts
for the rejection rate and E for the misclassifica-
tion rate.

We conclude this section by highlighting that, in
applications with asymmetric cost matrices (differ-
ent errors have consequences of very different grav-
ity), one can work directly with the original cost
matrix, defining different costs in each replica of
the data. In data case, the tradeoff between erring
in C1 and rejecting will be different from the equiv-
alent tradeoff for C2, biasing the reject region in
one direction.

4.2.2. Prediction
To predict the class of an unseen example, clas-

sify both replicas of the example in the extended
dataset with the binary classifier. From the se-
quence of binary labels one can infer the predicted
label on the original ordinal classes

C1,C1 =⇒ C1 C2,C1 =⇒ Creject C2,C2 =⇒ C2

Henceforth, the target class can be obtained by
counting the number of C2 labels in the sequence,
NC2

: if NC2
/2 + 1 is integer, it yields the target

class; otherwise the option is to reject.

4.3. Mapping the Data Replication Method to
Learning Algorithms

In this section the method just introduced is in-
stantiated in two important machine learning al-
gorithms: support vector machines and multilayer
perceptrons.

4.3.1. Mapping the Data Replication Method with
Reject Option to SVMs

The learning task in a classification problem is
to select a prediction function f(x, α) from a fam-
ily of possible functions that minimizes the ex-
pected loss, where α is a parameter denoting a
particular function in the set.

The SVM classification technique has been origi-
nally derived by applying the SRM (structural risk
minimization) principle to a two-class problem us-
ing the 0/1 (indicator) loss function:

L(x, α, y) =

{
0, if f(x, α) = y

1, if f(x, α) 6= y

The simplest generalization of the indicator loss
function to classification with reject option is the
following loss function

L(x, α, y) =


0, if f(x, α) = y

wr, if f(x, α) = reject

1, if f(x, α) 6= y and f(x, α) 6= reject

where wr denotes the cost of rejection (with the
cost of erring normalized to 1). Obviously 0 ≤
wr ≤ 1. The corresponding expected risk is

R = wrP (reject) + P (error)

as derived in Equation (1) in Section 3. The ex-
pression of the empirical risk (Remp) is

Remp = wrR+ E (3)

Let us formulate the problem of classifying with
reject option in the spirit of SVMs. Starting from
the generalization of the two-class separating hy-
perplane presented in the beginning of previous
section, let us look for 2 parallel hyperplanes rep-
resented by vector w ∈ Rd and scalars b1, b2, such
that the feature space is divided into 3 regions by
the decision boundaries wtx + br = 0, r = 1, 2.

A pair of parallel hyperplanes which minimizes
the empirical risk can be obtained by minimizing
the following functional (where sgn (x) returns
+1 if x is greater than zero; 0 if x equals zero; −1
if x is less than zero)

min
w,bi,ξi

1

2
wtw +

2∑
q=1

2∑
k=1

`k∑
i=1

C
(k)
i,q sgn (ξ

(k)
i,q ) (4)
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under the constraints

−(wtx
(1)
i + b1) ≥ +1− ξ(1)i,1

+(wtx
(2)
i + b1) ≥ +1− ξ(2)i,1

−(wtx
(1)
i + b2) ≥ +1− ξ(1)i,2

+(wtx
(2)
i + b2) ≥ +1− ξ(2)i,2

ξ
(k)
i,q ≥ 0

In practice the regularization term sgn (ξ
(k)
i,q ) is

usually replaced by ξ
(k)
i,q mainly for computational

efficiency.
It is important to note that, although the formu-

lation was constructed from the two-class SVM, it
is no longer solvable with the same algorithms. Let
us now examine the mapping of the data replica-
tion method with reject option on SVMs, which is
solvable with a single standard binary SVM clas-
sifier.

The rejoSVM The insight gained from studying
the toy example paves the way for the formal pre-
sentation of the instantiation of the data replica-
tion method with reject region in SVMs, rejoSVM.

Following the same procedure delineated in [8],
it is straightforward to conclude that the formu-
lation corresponding to the mapping of the data
replication method with reject option in SVMs re-
sults in

min
w,bi,ξi

1

2
wtw +

1

2

1

h2
(b2 − b1)2+

2∑
q=1

2∑
k=1

`k∑
i=1

C
(k)
i,q sgn (ξ

(k)
i,q ) (5)

with b2 = b1 + wp+1h and with the same set of
constraints as in (4).

This formulation for the high-dimensional dataset
matches the previous formulation (4) up to an
additional regularization member in the objective
function. This additional member is responsible for
the unique determination of the thresholds [8]. We
see that the rejoSVM captures the essence of the
SRM of SVMs, while being solvable with existing
binary SVM classifiers.

4.3.2. Mapping the Data Replication Method with
Reject Option to Neural Networks

The mapping of the data replication method
with reject option to NNs, rejoNN, is easily accom-

plished with the architecture proposed for ordinal
data in [8]. Nonintersecting boundaries were en-
forced by making use of a partially linear function
G(x) = G(x) + wtei defined in the extended space
(where ei equals the vector [0 0 · · · 0 h 0 · · · 0]t

with dimension K − 2 and h > 0 in the i-th posi-
tion). Setting G(x) as the output of a neural net-
work, a flexible architecture for classification with
reject option can be devised, as represented dia-
grammatically in Fig. 6.

For the mapping of the data replication method
with reject option in SVMs and NNs, rejoSVM and
rejoNN, if we allow the samples in all the classes
to contribute to each threshold, the order inequal-
ities on the thresholds are satisfied automatically,
in spite of the fact that such constraints on the
thresholds are not explicitly included in the for-
mulation. The proof follows closely the derivation
presented in [8] for the oNN algorithm.

4.4. Classifying ordinal data with reject
option—a general framework

Although the reject option is usually only con-
sidered on binary data, it makes sense to extend it
to multiclass data. In particular, the proposed ap-
proach extends nicely to ordinal data. In settings
where we have K ordered classes, it may be inter-
esting to define K−1 reject regions, between class
k and class k + 1, k = 1, . . . ,K − 1.

In the standard data replication method for or-
dinal data, one would have a data replica for each
boundary to be defined (K − 1 data replicas),
requiring K − 2 extension features. Now, as we
need to have two boundaries between consecutive
classes, we will use 2(K−1) data replicas, requiring
2(K−1)−1 extension features. The goal is to find
2(K−1) boundaries wtx+ bi, i = 1, . . . , 2(K−1),
with reject regions defined between boundaries
2j − 1 and 2j, j = 1, . . . ,K − 1.

Replicas q and q + 1, q = 1, 3, 5, . . . will have
exactly the same binary labels, but different costs.
Replicas q and q + 1, q = 2, 4, 6, . . . will have
exactly the same costs, but different binary la-
bels. The boundaries obtained from replicas 2q−1
and 2q will both discriminate C1, . . . ,Ci against
Ci+1, . . . ,CK . Table 2 summarizes this setting.

Similarly to the binary case, the prediction of
the target class for an unseen examples uses the
sequence of 2(K − 1) labels ∈ {C1,C2}2(K−1) by
classifying each of the 2(K − 1) replicas in the ex-
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Fig. 6. Data replication method for neural networks with reject option (adapted from [8]).

Replica # points from C1 points from C2 . . . points from CK−1 CK

1 −1;C` +1;Ch +1;Ch +1;Ch +1;Ch

2 −1;Ch +1;C` +1;Ch +1;Ch +1;Ch

· · ·
2(K-1)-1 −1;Ch −1;Ch −1;Ch −1;C` +1;Ch

2(K-1) −1;Ch −1;Ch −1;Ch −1;Ch +1;C`

Table 2

Labels and costs (C` and Ch represent a low and a high
cost value, respectively) for points in different replicas in

the extended dataset.

tended dataset with the binary classifier. The tar-
get class can be obtained by counting the num-
ber of C2 labels in the sequence, NC2

: if NC2
/2 + 1

is integer, is yields the target class; otherwise the
option is to reject.

5. Two classifiers approach for ordinal data with
reject option

In this section, and for experimental compar-
ison purposes, we introduce an extension to or-
dinal data of the two-classifier approach for bi-
nary data with reject option. The extension in-
volves a simple adaptation of the method for or-
dinal data presented in [14]. Frank and Hall [14]
proposed to use (K−1) standard binary classifiers
to address the K-class ordinal data problem. To-
ward that end, the training of the ith classifier is
performed by converting the ordinal dataset with
classes C1, . . . ,CK into a binary dataset, discrimi-
nating C1, . . . ,Ci against Ci+1, . . . ,CK (see Fig. 7).

{C1} {C2, . . . ,CK}

{C1, . . . ,Ci} {Ci+1, . . . ,CK}

{C1, . . . ,CK−1} {CK}

Fig. 7. Transformation of an ordinal data classification

problem in (K-1) binary problems.

The ith classifier represents the test Cx > Ci. To
predict the class value of an unseen instance, the
K − 1 binary outputs are combined to produce a
single estimation. The extension of the two clas-
sifiers approach for reject option to ordinal data
involves replacing the ith classifier in Frank and
Hall method by two classifiers, both discriminating
C1, . . . ,Ci against Ci+1, . . . ,CK but trained with
different costs, exactly as given in Table 2 for our
proposal. Observe that, under our approach, the
(2i− 1)th and (2i)th boundaries are also discrimi-
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nating C1, . . . ,Ci against Ci+1, . . . ,CK ; the major
difference lies in the independence of the bound-
aries found with Frank and Hall’s method. This in-
dependence is likely to lead to intersecting bound-
aries.

6. Implementation

In the following subsections we will outline three
algorithms regarding the reject option approaches
identified in Section 2. First we present in Sec-
tion 6.1 and in Section 6.2 the datasets used in our
experimental study. In Section 6.3 we outline the
general setup of the experiments conducted in this
work. In Section 6.4 and in Section 6.5 we present
the algorithms for the two and one classifier ap-
proach extended to the multiclass ordinal problem
according to the description given in Section 5. Fi-
nally, in Section 6.6 it is presented the algorithm
for the method for learning the reject region in an
ordinal setting proposed in this paper. Before all
these, we describe the benchmark datasets.

6.1. Benchmark binary datasets

The performance of the classification methods
were assessed over four binary datasets. The first
two were synthetically generated; the remaining
two datasets include real data from diverse appli-
cations.

Fig. 8. Sample of 100 examples from syntheticI dataset.

For the first synthetic dataset—henceforth called
syntheticI—, we began by generating 400 ex-
ample points x = [x1 x2]t in the unit square
[0, 1]× [0, 1] ⊂ R2 according to a uniform distribu-
tion. Then, we assigned to each example x a class
y ∈ {−1,+1} corresponding to

(b−2, b−1, b0, b1) = (−∞;−0.5; 0.25; +∞)

ε1 ∼ N(0, 0.1252)

α = 10(x1 − 0.5)(x2 − 0.5)

t = min
r∈{−1,0,+1}

{r : br−1 < α+ ε1 < br}

ε2 ∼ Uniform(b−1, b0)

y =


t, t 6= 0

+1, t = 0 ∧ ε2 < α

−1, t = 0 ∧ ε2 > α

This distribution creates two plateau uniformly
distributed and a transition zone of linearly de-
creasing probability, delimited by hyperbolic bound-
aries. Fig. 8 depicts a sample of 100 examples
drawn according to this distribution. The two
boundaries correspond to α = b−1 and α = b0.

A second synthetic dataset of 400 points—
syntheticII—was generated from two Gaussian

in R2: y−1 ∼ N

([
−2
−2

]
,

[
9 0
0 9

])
+ ε and y+1 ∼

N

([
+2
+2

]
,

[
25 0
0 25

])
+ ε corresponding to classes

{−1,+1} respectively, where ε follows a uniform
distribution in [0.025, 0.25].

The third dataset, encompassing 1144 observa-
tions, expresses the aesthetic evaluation of Breast
Cancer Conservative Treatment [7,25]. For each
patient submitted to BCCT, 30 measurements
were recorded, capturing visible skin alterations
or changes in breast volume or shape. In this
work we used only 4 measures as identified in [25]
as the most relevant ones. The aesthetic out-
come of the treatment for each and every pa-
tient was classified in one of the four categories:
Excellent�Good�Fair�Poor. For the experimen-
tal work with binary models, the multiclass prob-
lem was transformed into a binary one, by ag-
gregating Excellent and Good in one class, and
the Fair and Poor cases in another class. Another
dataset consisting of the English alphabet, pub-
licly available on the UCI machine learning repos-
itory, is composed of 20, 000 instances with 16 fea-
tures describing the 26 capital letters. Each in-
stance is mainly defined by statistical moments
and edge counts. In our experiments we used a
subset of the whole dataset comprehending only
the discrimination of the letter A versus the letter
H.
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6.2. Benchmark multiclass datasets

To evaluate the generalization of our approach,
we extended the syntheticI dataset into another
different dataset, syntheticIII, generated simi-
larly as syntheticI but now with five classes.

(b0.5, b1, b1.5, b2, b2.5, b3, b3.5, b4, b4.5, b5)

= (−∞;−1.5;−1.25;−1;−0.5;−0.1; 0.1, 0.5; 1.1; +∞)

Another dataset named syntheticIV was used
in our experiments. This dataset is an extension
of the syntheticII with one additional class gen-
erated accordingly to the Gaussian distribution
with mean [7 7]t and covariance Σ = 4I, where
I is the identity matrix. Regarding to the BCCT

dataset, we used the original multiclass problem:
Excellent�Good�Fair�Poor. Finally, we also used
the LEV[4] dataset which contains examples of
anonymous lecturer evaluations, taken at the end
of MBA courses and is composed by 4 features and
5 classes.

6.3. Methodology

We randomly split each dataset into training
and test sets; in order to study the effect of vary-
ing the size of the training set, we considered three
possibilities: 5%, 25% and 40% of all the data avail-
able. The splitting of the data into training and
test sets was repeated 50 times in order to ob-
tain more stable results for accuracy by averag-
ing and also to assess the variability of this mea-
sure. The best parametrization of each model was
found by ‘grid-search’, based on a 5-fold cross val-
idation scheme conducted on the training set. Fi-
nally, the error of the model was estimated on
the test set. The ‘grid-search’ was performed over
the C = 2−5, . . . , 23 and γ = 2−3, . . . , 21 values
when using the RBF kernel for the SVMs meth-
ods on the BCCT (multiclass) and LEV datasets and
polynomial of degree 2 for the synthetic datasets.
For the neural network techniques, we performed
a ‘grid-search’ over the number of neurons (5 to
25) with one-hidden layer. Regarding specifically
to rejoNN, we also had to tune the h and s pa-
rameters. The s parameter controls the size of the
extended dataset, by controlling the classes that
are present in each replica [7]. The range of tested
values were 1, 1.5 and 2 for h, and 2 and 4 for

s in the binary datasets. We fixed the values for

h = 10 and s = 3 in the ordinal datasets. To train

the networks on all methods we used the resilient

back-propagation algorithm available in MATLAB
TM. For the binary datasets the number of epochs

for all methods was set to be 15 whereas for the

ordinal datasets we had to tune the best number

without degrading the overall results. We experi-

mentally verified that the number of epochs never

exceeded 100 for rejoNN and the remaining MLP

techniques. We have also used a network with K

outputs, one corresponding to each class, and tar-

get values of 1 for the correct class and 0 other-

wise.

6.4. Design of two independent classifiers

One of the standard procedures identified in Sec-

tion 2 to define the reject region is through the de-

sign of independent classifiers. This approach can

be straightforwardly extended to the ordinal prob-

lems and is described in Algorithm 1. We first train

a first classifier with a set of weights heavily pe-

nalizing the false negative errors in order to ob-

tain truly negative predictions; then, train a sec-

ond classifier with a set of weights heavily penal-

izing the false positive errors in order to obtain

truly positive predictions—see Table 2 (here the

replicas correspond to the different discriminants).

In the end, we will have two classifiers, each one

specialized in a given class.

6.5. Design of a single classifier

The algorithm structure for learning the reject

region with a single classifier is described in Algo-

rithm 2.

First we train a model and the reject region

is determined only after. If the classifier provides

some approximation to the posterior class proba-

bilities, then a pattern is rejected if the maximum

of the two posterior probabilities is lower than a

given threshold. Otherwise, it is used a rejection

threshold targeted to a particular classifier.
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Algorithm 1. Algorithm structure for the two classifiers approach.

1: Input: D = {X,Y},D∗ = {X∗,Y∗} the training and testing datasets, respectively (D,D∗ are disjoin
datasets).

2: Output: Y∗wr
testing set prediction ∀wr ∈]0, . . . , 0.5[.

3: for wr ∈]0, . . . , 0.5[ do
4: for all possible combinations of model parameters, pi do
5: Split D in 5 equal partitions, D(v) = {X(v),Y(v)}, v = {1, . . . , 5}, such that D(1), . . . ,D(5) are

disjoin sets
6: for v ← 1, 5 do
7: for k ← 1, K − 1 do
8: costs ← set costs according Table 2
9: Yo ← {}

10: for all y ∈ Y(1,...,5)\v do
11: if y ≤ k then Yo ← Yo ∪ {−1}
12: elseYo ← Yo ∪ {+1}
13: end if
14: end for
15: M2k−1 ← TrainModel(X,Yo,costs)
16: M2k ← TrainModel(X,Yo,costs)
17: end for
18: validate M1 ∪ . . . ∪M2(K−1) performance according to Equation (3) given Dv

19: end for
20: save the parametrization resulting of the best mean validation performance
21: end for
22: train the 2(K-1) models, Mk, with dataset D according lines 7–17
23: Yk ← {}
24: for all models Mk, k = {1, . . . , 2(K − 1)} do . predict and change negative responses to zero
25: Yk ← Yk∪ TestModel(X∗,Mk)
26: end for
27: if mod

(∑2(K−1)
k=1 Yk, 2

)
equals 0 then Y∗wr

← 1 +
(∑2(K−1)

k=1 Yk

)
/2

28: elseY∗wr
← Reject

29: end if
30: end for

Algorithm 2. Algorithm structure for the one classifier approach.

1: Input: D = {X,Y} the training dataset and X∗ the testing set.
2: Output: Y∗wr

testing set prediction ∀wr ∈]0, . . . , 0.5[.
3: M←TrainModel(X,Y) . train model according a standard 5 fold cross-validation procedure to find

best model parametrization
4: Obtain the posterior probabilities (P1, . . . ,PK) of X given model M
5: for wr ∈]0, . . . , 0.5[ do
6: obtain bestthreshold ∈ [0.5, . . . , 1], that minimizes Equation (3) given D and P

7: (Ypred,Pmax)← TestModel(X∗,M), where Pmax = max (P1, . . . ,PK)
8: if Pmax < bestthreshold then Y∗wr

←Reject
9: elseY∗wr

← Ypred
10: end if
11: end for
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Algorithm 3. Algorithm structure for the rejoSVM classifier approach.

1: Input: D = {X,Y} the training dataset and X∗ the testing set composed by N instances.
2: Output: Y∗wr

testing set prediction ∀wr ∈]0, . . . , 0.5[.
3: for all wr ∈]0, . . . , 0.5[ do

4: (Xrep,Yrep, Crep)← replicate dataset D according Table 2 . Crep is all the C
(k)
i,j as represented

in Table 2 and in Equation (5)
5: (X∗rep)← replicate dataset D∗ . Optimize function from Equation (5) or the NN represented in

Fig. 6
6: M← TrainModel(Xrep,Yrep, Crep)
7: Y1 ← TestModel(X∗rep,M) . convert Y1 replicas prediction to a single K class

8: Y
∗(j)
wr ← 1 +

∑p+K−2
i=1 y

(i)
1 , ∀j = 1, . . . , N, y1 ∈ Y1

9: end for

6.6. Design of rejoSVM and rejoNN

To learn the reject option based on the data
replication method proposed in [8], we have to
modify the misclassification costs of the observa-
tions according to the data replica they belong to.
Such is performed according Table 2 as already
mentioned in Section 4.2. This can be easily done
by adjusting the C tradeoff with the misclassifica-
tion costs as represented in Equation (5).

For the neural network approach, rejoNN, we
changed the error function, ek(n), where we mod-
ify the misclassification costs according to the data
replica as before. Formally,

ek(n) = (dk(n)− yk(n))Cn (6)

where dk(n) is the response given by output neu-
ron k for the input pattern n and yk(n) the desired
response (true label). Cn corresponds to a given

C
(k)
i,q from Equation (5) represented here for syntax

simplicity.
The algorithm structure for learning the reject

region as proposed in this paper is described in
Algorithm 3.

Function TrainModel in line 6 of Algorithm 3
can be a single binary classifier according to Equa-
tion (5) in the case of a binary SVM. The formu-
lation for the multiclass case can be found in [8]
subject to the costs present in Table 2.

7. Experimental Results

In the following subsections, experimental re-
sults are provided for several models based on
SVMs and NNs, when applied to diverse datasets,

ranging from synthetic to real data, for binary

and ordinal data. The set of models under com-

parison include the proposed rejoSVM and re-

joNN methods, the “one classifier” approach and

“two classifiers” approach (SVM and Multi-Layer

Perceptrons—MLPs), and Fumera [16] method.

The major reason for comparing our proposal

(rejoSVM, rejoNN) against Fumera [16] resides on

the most fundamental principles which both meth-

ods share. The minimization of the empirical risk

with the optimum reject rule proposed by Chow [9]

as succinctly presented in Section 3 represents the

same basis for both methods. However, and to the

best of our knowledge, the most recent works do

not explore this concept and hence a fair compar-

ison would not be possible.

“One classifier” and “two classifiers” are näıve

reject option learning schemes as referred in Sec-

tion 2. The “one classifier” was also used in

Fumera [16] as baseline. As a remark, the “two

classifiers” approach is formed by 2(K-1) classi-

fiers. However, and for the sake of simplicity, we

will refer to it only as “two classifiers” approach

as mentioned in Section 5.

The work was performed in a reproducible re-

search manner, and the MATLAB TMcode needed

to reproduce all reported results is available

at http://www.dcc.fc.up.pt/~rsousa. The pro-

posed rejoSVM is based on the binary SVM from

the Bioinformatics Toolbox and the rejoNN is

based on the Neural Network Toolbox. We thank

G. Fumera for providing the source code (in

C/C++) of his method. Note that this method is

for SVMs only and the provided implementation

works only with linear kernels.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. The A-R curves for the syntheticI dataset. (a)–(c): SVM methods only; (d)–(f): NN methods only. 5%, 25% and

40% of training data, respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 10. The A-R curves for the syntheticII dataset. (a)–(c): SVM methods only; (d)–(f) NN methods only. 5%, 25% and

40% of training data, respectively.
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(a) (b) (c)

(d) (e) (f)

Fig. 11. The A-R curves for the letter AH dataset. (a)–(c): SVM methods only; (d)–(f) NN methods only. 5%, 25% and 40%

of training data, respectively.

7.1. Results

The performance of a classifier with reject op-
tion can be represented by the classification ac-
curacy achieved for any value of the reject rate
(the so-called Accuracy-Reject curve). The trade-
off between errors and rejections depends on the
rejection cost wr. Meaning that the wr parameter
(corresponding to each breaking-point in the A-R
curves) is associated to the cost of rejecting an in-
stance in a given problem producing thus different
reject rates. We considered values of wr less than
0.5, as above this value it is preferable to just try
to guess randomly [9]. In some cases, only three
values of wr were used due to computational is-
sues.

Fig. 9 to Fig. 16 summarize the results ob-
tained for all datasets. A first main assertion is
that in overall rejoSVM and rejoNN performed
better than any of the other methods under com-
parison, over the full range of values for wr, spe-
cially, on the binary datasets. Moreover, since only
linear kernels were implemented in the Fumera
method, we extended the datasets with second or-
der terms xixj when evaluating this method. In
this extended space, the optimal solutions for the

synthetic datasets are indeed linear. On the ordi-
nal datasets, rejoSVM and rejoNN achieved com-
petitive results with standard procedures.

With the increase of the training dataset size, as
expected, we see that none of the methods outper-
form the others. A major conclusion based on this
empirical analysis is that rejoSVM performs well
with few training instances. Nonetheless, this can
cause some irregularities on the curves, specially
on neural networks, as can be depicted in Fig. 9(d)
and Fig. 10(d). In Fig. 11 it is shown the evo-

(a) (b)

Fig. 12. The A-R curves for the binary BCCT dataset. (a)
SVM methods, and (b) NN methods only with 40% of train-

ing data.

lution of the different reject methodologies with
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the real-world dataset Letter A vs. H. The perfor-
mance trend of rejoSVM and rejoNN in compar-
ison with the other approaches shows the benefit
of capturing the reject regions during the train-
ing phases. In terms of the applicability on the
incorporation of the reject option in medical aid-
ing systems, one can verify that rejecting roughly
20% of the training set size (5% of 1144 observa-
tions) one can attain an accuracy on the order of
90%—see Fig. 12(a). Fig. 13 shows a clear gain

(a) (b)

Fig. 13. The A-R curves for the syntheticIII dataset. (a)
SVM methods, and (b) NN methods only with 40% of train-

ing data.

of rejoSVM whereas rejoNN presents competitive
results. The same conclusions can be drawn by
analysing Fig. 14 and Fig. 16. On the full BCCT

class set depicted in Fig. 15, despite all methods
performing increasingly better with an increasing
training dataset size, “one classifier” approach at-
tains the best results. However, in the Neural Net-
work approaches, rejoNN achieves competitive re-
sults.

It is also observable that, in general, SVM based
methods outperform the neural network counter-
parts, in line with the current view in the re-
search community. When restricting the attention
to neural network methods, the proposed rejoNN

(a) (b)

Fig. 14. The A-R curves for the syntheticIV dataset. (a)
SVM methods, and (b) NN methods only with 40% of train-
ing data.

(a) (b)

Fig. 15. The A-R curves for the multiclass BCCT dataset.
(a) SVM methods and, (b) NN methods only with 40% of

training data.

exhibits often the best performance. Moreover, it
is important to emphasize that rejoSVM and re-
joNN approaches have the advantage of simplic-
ity, using a single direction for all boundaries, and
interpretability. The insight of looking to the re-
ject option problem as an ordinal class setting can
promote new lines of research.

Finally, we highlight that the proposed frame-
work: 1) has the capability to detect reject regions
with a single standard binary classifier; 2) does not
required the addition of any confidence level, or
thresholds, to define the trust regions; and 3) does
not generate ambiguity regions as the “two classi-
fiers” approach, as it was presented in Fig. 2(a).

8. Conclusion

Despite the myriad of techniques that handle
the incorporation of a reject option in their ap-
proaches, many of them do not fully account the
pioneer work of [9]. In this paper, we proposed an
extension of the data replication method [8] that
directly embeds reject option. This extension was
derived by taking a new perspective of the clas-
sification with reject option problem, viewing the
three output classes as naturally ordered. A pair of
non-intersecting boundaries delimits the rejection
region provided by our model. Our proposal has
the advantages of using a standard binary classi-
fier and embedding the design of the reject region
during the training process. Moreover, the method
allows a flexible definition of the position and ori-
entation of the boundaries, which can change for
different values of the cost of rejections wr. This
method was mapped into neural networks and sup-
port vector machines with very positive results.
This work can be a useful contribution in the area
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(a) (b) (c)

(d) (e) (f)

Fig. 16. The A-R curves for the LEV dataset. (c): SVM methods only; (f): NN methods only. 5%, 25% and 40% of training

data, respectively.

and the availability of the code under the repro-
ducible research guidelines can encourage others
to make use of and to build on it.
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