A Short Note on Type-Inhabitation:
Formula-Trees vs. Game Semantics !

S. Alves, S. Broda
CRACS/INESCTEC & CMUP, DCC-FC, University of Porto

Abstract

This short note compares two different methods for exploring type-inhabitation
in the simply typed lambda-calculus, highlighting their similarities.

Keywords. Lambda calculus; Game semantics; Type-inhabitation.

1. Introduction

In the simply typed A-calculus, the problem of associating to a type a term
that inhabits it, known as type inhabitation, has been a major focus of research
over the years. Through Curry-Howard’s isomorphism the problem is equivalent
to provability in the implicational fragment of propositional logic. As such,
algorithms for type-inhabitation can be used to indirectly decide provability.

In [5, 7] a new formal method for exploring type inhabitation, called Formula-
Tree Method, has been presented, which proved to be effective in establishing
new results as well as simplifying existing proofs [6, 7, 8]. More recently, an-
other method for studying type inhabitation was given through the use of game
semantics [4], where inhabitants are seen as the interpretation of winning strate-
gies in the arena given by a typing. The aim of this note is to clarify the close
relationship between the two methods. This will be done by consistently in-
stantiating the used concepts with a fixed type 6, given in Example 1. A formal
exposition of all introduced notions and detailed proofs of the correspondence
between the methods, stated in Section 5, can be found in [1].

2. Preliminaries

We assume familiarity with basic results on the simply typed A-calculus,
c.f. 9, 2], denoting type-variables by a,b,c,... and types by a,8,v... A §-
normal inhabitant M of a type « is called a long normal inhabitant of ~ iff

IPartially funded by FCT, Portuguese Foundation for Science and Technology within
project UID/EEA/50014/2013 and CMUP (UID/MAT/00144/2013), which is funded by FCT
with national (MEC) and European structural funds through the programs FEDER, under
the partnership agreement PT2020.

Preprint submitted to Elsevier May 12, 2015

every variable-occurrence z in M is followed by the longest sequence of argu-
ments, allowed by its type. Ben-Yelles [3, 9], showed that when studying normal
inhabitants of a type, one might focus on the set of its long normal inhabitants
from which all normal inhabitants can be obtained by n-reduction.

Every type vy = v1 — --+ = v, — a, with n > 0, can be uniquely repre-
sented by an ordered tree t., such that a labels the root, which has n subtrees
corresponding to the trees of 1, ...,7v,, respectively. Then, one can associate
to each node in the tree of v a unique position s € N% , i.e. a finite sequence of
elements of Ny = {1,2,...}, as follows: € is the position of the root, and the
root of the ith subtree of another node whose position is s, has position s - i.

Example 1 Let 6 = ((a =+ b) - a — b) = (a = b) — a — b. Its tree ty as
well as the association of positions to nodes can be depicted as follows.

b €
D 0@ 0 o ¢

/N ‘
b/ \a N 11 12 21

A 111

The Bohm tree of a S-normal form M = Azy...z,.yNy... Ny, n,m > 0,
denoted by BT(M), is the tree with root Az;y...=z,.y, and m > 0 subtrees
BT(Ny),...,BT(N,,). Given a S-normal inhabitant M of a type +, there is
exactly one deduction assigning type v to M, and in this unique deduction
every variable and subterm is given a type. Furthermore, in this deduction all
occurrences of a variable z correspond to one occurrence of a subtype 7, in 7.
This particular occurrence of 7, as well as the corresponding node s; in the tree
t, of v can be easily determined, c.f. [7].

Example 2 The term M = \zyz.z(Au.z(Av.yv)u)z is a long normal inhabitant
of type 6 from Example 1. For z, y, u and v one has, v, = (a - b) > a — b
and s, =1,y =a—=band s, =2, v, =7, =a and s, = 5, = 111.

3. The Formula-Tree Method

In the formula-tree method types are represented by formula-trees as follows.
The formula-tree of a type v, denoted by F'T,, is obtained from t., by splitting
it into primitive parts, which are formed by the nodes whose positions are of
odd length and their direct descendants. If the root node of a primitive part
has position s in t,, then we associate to it the identifier p;. Additionally, we
consider a primitive part with identifier p., consisting of the root node of FT,.

Example 3 The formula-tree F'T of 6 from Example 1 is the following.

P111la
\

A proof-tree for a type 7 is a tree PT, labelled with primitive parts of F7T',, that
satisfies the following conditions:

e p. labels the root of PT and every occurrence of a primitive part ps in PT,
with n > 0 leafs a4, ..., ay, has exactly n direct descendants ps,,...,Dps,
whose roots are respectively aq, ..., a,.

e Every node in PT with label p,, such that s = s’ -7 - j, occurs in the ith
subtree of some ancestor node in PT with label p .

Example 4 The following proof-tree is constructed from FTy of Example 3.

b

Pe 7N

p1
VRN \
/\ i ;

P2 Pi11 a

P111 |

From long normal inhabitants to proof-trees and back. Given a long
normal inhabitant M of a type 7y, we can easily construct a corresponding proof-
tree tys, by replacing every label Az;...z,.y in the Bohm tree of M by ps,,
where s, is the position corresponding to y in t., and adding an extra node
with label p. at the root of this tree.

Conversely, given a proof-tree t of -y, we compute a finite set of long nor-
mal inhabitants Terms(t) as follows. First let Ny be the term-scheme whose
Bohm tree is obtained from t by: first substituting every node labelled with
ps, and descending from the ith leaf of another primitive part py in t, by
ATgri1 ... Tgr4.0.25, Where [> 0 is the biggest value such that s’ -7 -1 is a posi-
tion in t,; then, removing the top node labelled with p.. Finally, we obtain the
finite set Terms(t) from Ny by renaming all variables in abstraction sequences
with identical names, and renaming free occurrences of these variables in the
scope of these abstraction sequences in all possible ways, c.f. [7].

Example 5 The proof-tree t,; corresponding to M from Example 2 can be
obtained from its Béhm tree below and is exactly the one depicted in Example 4.
For this, just recall that s, =1, sy, =2, s, = 3 and s, = s, = 111.

Aryz.x

COHVQI‘SGly, we have NtM =)\331%‘2.133.331(/\%‘111.])1 ()\.73111..732%‘111).73111)$3, and

Terms(ty) = {Azmizozs.ai(Az111.21(AT111-Z22111)2111) T3,
Az1zoxs.z1(Az111.21 (Azh 11 w22 11) 2111)23 }
=o {Pzyzz(Auz(Av.yu)u)z, Azyz.z(Au.xz(Av.yv)u)z }.

4. Type Inhabitation through Game Semantics

In the method for studying type-inhabitation based on game-semantics,
types and positions are respectively represented by arenas and moves.

Let v be a simple type. The arena associated to v is Ay = (M., T,), where
M, = { s | sis a position of a node in t } is called a set of moves and 7 :
M, — A is a typing function mapping each move s to the type-variable at
position s in t,. A move s € M, is called a player move (P-move) if s is of odd
length, and an opponent move (O-move), otherwise.

Example 6 The arena Ag = (Mpy,79) of 6 from Example 1 is given by My =
{€,1,11,12,111,2,21,3} and 719(e) = 79(1) = 719(11) = 79(2) = b and 79(12) =
7’9(111) = 79(21) = 79(3) = a.

Then, proofs are represented by winning strategies, each winning strategy
consisting of a finite set of legal positions. Unlike [4], we only consider se-
quences of even length to be legal, without any influence on the remaining
exposition/results. Consider an arena A = (M, 7). A legal position in A is a
non-empty sequence of pairs S € (M x Ny)* of the form

(50,0) - (86,70) - (51,1) - (81,41) <+ - (8n,m) - (8h,0n),

where n > 0, s9 = € and for each k € {0,...,n}, s is an O-move, s}, is a
P-move, i) € {0,...,k}, and s}, = s;, - j for some j € Ni. Furthermore, k < n
implies that sy41 = s}, - j, for some j € Ny.

A finite non-empty set X of legal positions in A, closed w.r.t. prefixes of even
length, is a typing strategy iff S- (sg, k) (s}, k), S (5K, k) - (S}, ik,) € X, with
S € (M x Ny)*, imply that s}, = s}, ix, = ik,, and 7(sx) = 7(s,).

Let max(X) C ¥ be the set of sequences in ¥ which are maximal with respect
to prefixes. A typing strategy ¥ in A = (M, 1), is a called a winning strategy iff
3} satisfies the following conditions.

e For all S (s,,n) - (s),,in) € max(X) the position s, is maximal in M,
i.e. there is no j € Ny such that s, - j € M.

o If S (sk, k) - (s),1r) € ¥ and there is some position s}, - j € M, then there
is some S - (sg, k) - (s}, %) - (8}, - 4, kb + 1) - (Shy1,ik41) € 2.

Every winning strategy ¥ is completely determined by max(X), since it is closed
w.r.t. prefixes of even length.

Example 7 Consider again type 8 as before and its arena given in Example 6.
A winning strategy X for 6 is given by
)+ (

max(2) = { (6,0) - (1,0) - (11,1) - (1,0) - (11,2) - (2,0) - (21,3) - (111,2),
(,0) - (1,0) - (11,1) - (1,0) - (12,2) - (111,1),
(,0) - (1,0) - (12,1) - (3,0)}.

From winning strategies to long normal inhabitants and back. The
arborescent reading Ty, of a winning strategy ¥ in A = (M, 7) is a tree obtained
from max(X) as follows. For every (so,0) - (s(,%0) - - (Sn,n) - (8},,in) € max(X)
there is a branch in Ty, with n+ 1 nodes, labelled respectively by (so,0)- (s, 70),
oo (8pym) - (87,,0n). Also, if S+ (sg, k) - (sp,0k) - (85 - gy k+1) - (841, ik41) - S" €
max(X), then the node with label (s}, - j,k + 1) - (8} 1,%x+1) is the root of the
Jjth subtree of the node labelled with (sg, k) - (s}, ix)-

Finally, the interpretation [X] of ¥ is the term whose Bohm tree is ob-
tained from Ty by substituting every label (sy,k) - (s},ix) by a new label
)\m’:k,l ... x?k_lk.xi’z, where [, > 0 is the biggest value such that sy -l € M.
Example 8 For X from Example 7, Ty, and the Bohm tree of [X] are depicted
below. Note that we have precisely [X] =, M, for M from Example 2.

(6,0) - (1,0) A2y xf
(11,1) - (1,0) (12,1) - (3,0) Aa:hl/.x? \xg
(11,2)-(2,0) (12,2)-(111,1) Azt ad T
(21,3) -‘(111,2) zlh

It was proved in [4] that given a winning strategy > on an arena A, the
term [X] is a long inhabitant of 4. Conversely, given a long inhabitant M a
winning strategy ¥ can be defined such that [X] =g, M, c.f. [4].

5. Winning Strategies and Proof Trees

In this section we establish the close relationship that exists between winning
strategies and proof-trees. In fact, it is straightforward to define transformation
algorithms from one approach to the other and back.

Let v be a type and ¥ a winning strategy in Ay = (M., 7). The tree PTy, is
obtained by substituting in the arborescent reading Ty, every label (_,_)- (s, -)
by ps and adding an additional root-node with label p..

Proposition 9 If 3 is a winning strategy in A, then PTyx is a proof-tree for .

We now present the inverse transformation that given a proof-tree PT for
~ constructs a finite set of winning strategies in the arena A, = (M, 7,). In
the first step we compute a tree Tpr such that each node is labelled with two
pairs (s©,d) - (s, {dy,...,di}), where s and s* are respectively an O-move
and a P-move, d is the reference of this node, and {di,...,dx} is the set of all
references to nodes that can enable the P-move s? in this path.

The construction of Tpr is done top-down, creating for each node ps # pe
in PT that descends from the i-th leaf of another primitive part ps in PT, a
node labelled by (s’ -, depth) - (s, Ref), where depth is the depth of this node
in Tpr and Ref is the set containing all references d, such that there is some
ancestor of this node with label (s7,d), (L,) with s~ - j = s, for some j € N4,
as well as the reference depth, whenever s’ -4 - j = s, for some j € N,.

Then, the set of winning strategies WS(PT) is the set of strategies ¥ with
arborescent reading Ty consistent with Tpr, meaning that Ty has the same
structure as Tpr and such that each node labelled with (s©,d)-(s*, {dy,...,d.})
in Tpr is labelled with (s, d) - (s¥,d;) in Tx, where i € {1,...,k}.

Proposition 10 If PT is a proof-tree for v, then
WS(PT) = { ¥ | ¥ is a winning strategy in A, such that PTy, = PT }.

Example 11 It is easy to see that the proof-tree PTy, corresponding to X from
Example 7 and its arborescent reading Ty in Example 8, is the proof-tree tjs
given in Example 4. On the other hand, the tree Tpr, corresponding to PT = ty
is the tree below on the left. Thus WS(PT) = {X1,X2}, where 37 = ¥ is the
winning strategy from Example 7 and the arborescent reading of ¥y is the tree
below on the right. These two strategies represent precisely the two A-terms
computed in Example 4.

(¢,0)-(1,{0}) (¢,0)-(1,0)
(11,1) - (1,{0}) (12,1) - (3,4{0}) (11,1) - (1,0) (12,1) - (3,0)
(11,2)-(2,{0}) (12,2)- (111,{1}) (11,2)-(2,0) (12,2)-(111,1)
(21,3) .‘(1117 {1,2}) (21,3) - (111,1)

Some considerations on the expressiveness of both methods. We saw
that the notions of proof-tree and winning strategy are essentially the same,
but for references to preceding primitive parts/O-moves, which are present in
winning strategies and missing in proof-trees. In fact, a winning strategy rep-
resents exactly one long normal inhabitant and consequently a finite family of
normal inhabitants of a type. On the other hand, a proof-tree represents a finite
set of long normal inhabitants, corresponding to a possibly bigger finite family
of normal inhabitants, which share important properties such as principality,
etc. (c.f. [5]). As such, it is natural that in the past both methods have been
used for similar purposes. For instance, the formula-tree method was used in

2000, c.f. [5], to characterize principal typings of S-normal terms. An equiv-
alent characterization in terms of game-semantics was given in 2011, c.f. [4].
Also, both methods have been used (respectively in 2002 and 2011) to present
a concise proof of Aoto’s theorem, which states that negatively non-duplicating
types have at most one normal inhabitant (c.f. [6] and [4]). In fact, it seems as
if most notions in the game-semantics approach translate easily to the formula-
tree approach. On the other hand, results that depend on the absence/presence
of references to enabling variables cannot be transferred directly from one world
to the other. As an example, it was shown in [10] that it is possible to de-
scribe the set of normal inhabitants of a type using an infinitary extension of
the concept of context-free grammar, which allows for an infinite number of
non-terminal symbols as well as production rules. Later, using the formula-tree
approach, it has been shown, c.f. [7], that for every type v there is in fact a
finite context-free grammar G, from which all normal inhabitants of v can be
obtained. The existence of this grammar relies on the absence of references and
it seems that there is no straightforward counterpart to the construction of a
finite grammar in terms of game-semantics. In fact, and in spite of the fact that
the two approaches are equivalent, the two methods are not completely identical
and different problems may benefit from the features of one or the other.

6. Bibliography
References

[1] S. Alves and S. Broda. Type-Inhabitation: Formula-Trees vs. Game Se-
mantics, (http://www.dcc.fc.up.pt/Pubs/treports.html). Technical Report
DCC-2014-08, DCC-FCUP, December 2014.

[2] H.P. Barendregt. Lambda Calculi with Types. In Handbook of Logic in
Computer Science, volume 2, pages 117-309. Clar. Press, Oxford, 1992.

[3] Ch. Ben-Yelles. Type Assignment in the Lambda-Calculus: Syntax and
Semantics. PhD thesis, University College of Swansea, September 1979.

[4] P. Bourreau and S. Salvati. Game semantics and uniqueness of type inhabi-
tance in the simply-typed A-calculus. In TLCA’11, LNCS 6690:61-75,2011.

[5] S. Broda and L. Damas. On the structure of normal A-terms having a
certain type. In Proc. 7th WoLLIC"2000, pages 33-43, 2000.

[6] S. Broda and L. Damas. Studying provability in implicational intuitionistic
logic: the formula tree approach. ENTCS, 67:131-147, 2002.

[7] S. Broda and L. Damas. On long normal inhabitants of a type. J. Log. and
Comput., 15:353-390, June 2005.

[8] S. Broda, L. Damas, M. Finger, and P. Silva e Silva. The decidability of a
fragment of BB'TW-logic. Theor. Comput. Sci., 318(3):373-408, 2004.

[9] J.R. Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1997.

[10] M. Takahashi, Y. Akama, and S. Hirokawa. Normal proofs and their gram-
mar. Information and Computation, 125(2):144-153, 1996.

