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a b s t r a c t 

When planning a selling season, a car rental company must decide on the number and type of vehicles 

in the fleet to meet demand. The demand for the rental products is uncertain and highly price-sensitive, 

and thus capacity and pricing decisions are interconnected. Moreover, since the products are rentals, ca- 

pacity “returns”. This creates a link between capacity with fleet deployment and other tools that allow 

the company to meet demand, such as upgrades, transferring vehicles between locations or temporarily 

leasing additional vehicles. 

We propose a methodology that aims to support decision-makers with different risk profiles plan a 

season, providing good solutions and outlining their ability to deal with uncertainty when little infor- 

mation about it is available. This matheuristic is based on a co-evolutionary genetic algorithm, where 

parallel populations of solutions and scenarios co-evolve. The fitness of a solution depends on the risk 

profile of the decision-maker and its performance against the scenarios, which is obtained by solving a 

mathematical programming model. The fitness of a scenario is based on its contribution in making the 

scenario population representative and diverse. This is measured by the impact the scenarios have on the 

solutions. 

Computational experiments show the potential of this methodology regarding the quality of the so- 

lutions obtained and the diversity and representativeness of the set of scenarios generated. Its main 

advantages are that no information regarding probability distributions is required, it supports differ- 

ent decision-making risk profiles, and it provides a set of good solutions for an innovative complex 

application. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

When planning a selling season, a car rental company must de-

ide on the fleet size and mix, i.e., the capacity it will have to meet

emand throughout the season and rental locations. The demand is

ncertain and highly price-sensitive. Therefore, the prices charged

y a company are connected with and should influence the capac-

ty decisions. Capacity decisions are also connected with other in-

truments that allow the company to “meet” its demand, which

ange from offering upgrades to transferring vehicles between lo-

ations or temporarily leasing additional vehicles. 

The goal of this work is to provide decision-makers with prof-

table solutions to capacity and pricing decisions, assessing and

ncreasing their ability to deal with the different realizations

f uncertainty, represented by scenarios, when little information
∗ Corresponding author. 
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egarding those is available. The methodology developed is based

n a co-evolutionary genetic algorithm, where parallel populations

f solutions and scenarios co-evolve, depending on each other for

he fitness evaluation of their individuals. On the one hand, this

ethod aims at obtaining a representative and diverse population

f scenarios, measured according to the impact they have on the

opulation of solutions. On the other hand, the solutions evolve

ccording to different decision-making risk profiles that assess its

erformance against the population of scenarios. 

.1. Previous works 

This work deals with the integration of capacity and pricing de-

isions under uncertainty within the context of the car rental busi-

ess. In this section, the relevance of the application and method-

logical scope of the work will be discussed. Firstly, the recently

rowing body of research on car rental fleet management and

ricing will be briefly reviewed. This is an innovative and differ-

nt application because the capacity is rented rather than sold.

https://doi.org/10.1016/j.ejor.2019.01.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.01.015&domain=pdf
mailto:beatriz.b.oliveira@inescporto.pt
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However, previous works that tackled the integration of pricing

and capacity, although not directly applicable, can bring relevant

insights to this problem. A stochastic approach to the problem

is considered, where the uncertainty is represented by scenar-

ios. Stochastic problems with similar characteristics are briefly re-

viewed regarding methodological approaches. Moreover, previous

fundamental works that laid the foundation for the methodologi-

cal idea developed in this paper will be presented. 

1.1.1. Car rental fleet management and pricing 

The car rental fleet management problem is initially struc-

tured in Pachon, Iakovou, Ip, and Aboudi (2003) and Pachon,

Iakovou, and Ip (2006) . Fink and Reiners (2006) extends the

operational issues within fleet management and deployment,

considering essential and realistic practical needs. In Oliveira,

Carravilla, and Oliveira (2017c) , the link with revenue management

issues is introduced, and the body of research developed in this

field is reviewed and structured. Existing gaps and relevant future

research directions are discussed, including the integration of pric-

ing and/or capacity allocation (revenue management issues) with

operational decisions related to fleet size/mix and deployment. The

need to consider uncertainty in demand in order to approximate

the model to reality is also highlighted. 

In a previous paper – Oliveira, Carravilla, and Oliveira (2018) –

we tackled the first research direction. A mathematical model for

the deterministic integration of dynamic pricing and capacity de-

cisions was proposed. Due to the complexity of the problem, a

matheuristic was proposed. This matheuristic is based on a decom-

position of the problem, where the price decisions are directly en-

coded in the chromosomes, and the remaining decisions and the

fitness of the full solution are obtained by solving a mathematical

programming model. Moreover, some performance-boosting initial

population generation procedures were proposed. 

In this work, we propose to tackle the even more complex

problem that arises when uncertainty is incorporated. Moreover,

additional realistic requirements (such as price hierarchy) are in-

cluded, and demand is modeled considering its relationship with

competitor prices. 

1.1.2. Integration of capacity, inventory and pricing decisions 

Pricing decisions have often been tackled independently of ca-

pacity and inventory decisions. A recent and growing body of re-

search on the integration of these topics has been arising. 

Den Boer (2015) presents an interesting and thorough litera-

ture review on the topic of dynamic pricing, primarily focused on

learning processes. Following the structure proposed by the author,

the car rental pricing problem herein considered can be seen as a

dynamic pricing problem with inventory effects, more specifically

“jointly determining selling prices and inventory–procurement”. In

Gallego and van Ryzin (1994) , the dynamic pricing problem for

inventories with price-sensitive and stochastic demand is tack-

led, including an extension where the initial stock is considered

as a decision variable. The rental facet of the problem at hand

hinders the direct application of the insights drawn. Focusing on

perishable assets, a dynamic pricing problem under competition

is studied in Gallego and Hu (2014) . Here, the dynamics of an

oligopoly are considered, dealing with substitutability among as-

sets. These characteristics are more similar to the car rental mar-

ket, where vehicles that are available at a particular day (or the

corresponding available days-of-use) “expire” since they cannot be

used in a future time period. Relevant results are obtained re-

garding dynamic pricing strategies. As this, other important works

have dealt with similar environments with insightful outcomes.

Adida and Perakis (2010) present an interesting work, where differ-

ent joint dynamic pricing and inventory control models that deal

with demand uncertainty (which depends linearly on price) are
onsidered, within a make-to-stock manufacturing context. This

ork compares stochastic and robust optimization approaches, in-

roduces different formulations and compares their computational

erformance. 

Nevertheless, the car rental business is characterized by the re-

urn of its “sold inventory” in a pre-determined future time pe-

iod and location. This causes significant changes to the problem

tructure and renders the problem even more complex to solve. In

liveira, Carravilla, and Oliveira (2017a) , a dynamic programming

pproach is developed for a deterministic and simpler version of

his problem and this question is further discussed. 

In innovative transportation systems based on the sharing

aradigm, this issue is also present. Bike-sharing, for example, has

een a key driver of research on managing capacity to meet de-

and better, considering variations throughout time and space.

elevant works have focused on capacity reallocation, such as

reund, Henderson, and Shmoys (2017) , yet only a few works have

ocused on the role of pricing in influencing demand, like Chemla,

eunier, Pradeau, Calvo, and Yahiaoui (2013) . Nevertheless, this

obility system shows some differences to the car rental busi-

ess, which hinder the direct application of the developed tech-

iques, such as the homogeneity of the fleet, the design of the

epositioning schemes and the motivations (and consequent distri-

ution) of demand, among others. Other innovative businesses are

lso driving research in this field, such as ride-sharing or e-hailing

latforms such as Uber. For example, in Bimpikis, Candogan, and

aban (2016) , pricing decisions for a ride-sharing system are intro-

uced to manage the supply-demand balance considering not only

ariations in time but also the geographical distribution of demand

nd supply. As the car rental business, the vehicles are shared and

hus capacity “returns” to be used by another client. However, the

apacity decisions are not centralized in the same decision-maker,

s the pricing itself may induce more or less supply of drivers, de-

ending on the business format of the e-hailing platform. 

Additionally, the relationship between demand and price in the

ontext of car rental is distinctive and challenging to determine

ue to the effect of competition and to the myriad of products of-

ered (rental types) that share the same resources (vehicle fleet).

herefore, new approaches are needed to tackle this problem. 

.1.3. Representing uncertainty by scenarios 

Scenarios can be important tools for companies dealing with

elevant uncertainties. Moreover, the process of scenario genera-

ion is critical for the practical relevance of the results obtained. 

Scenario generation consists of defining discrete outcomes (re-

lizations) for all random variables and time periods ( Høyland

 Wallace, 2001 ), especially useful for stochastic problems. Mitra

nd Di Domenica (2010) review the scenario generation methods

pplied in the literature for stochastic programming models, in-

luding sampling-based generation (e.g., Monte Carlo, bootstrap or

onditional sampling methods), statistical methods (e.g., property

atching or regressions) and simulation-based generation (e.g.,

ector Auto Regressive methods), as well as other less used meth-

ds (e.g., hybrid methods). The authors discuss relevant, desirable

haracteristics that all scenario generation methods should incor-

orate: including a variety of factors and existing correlations, con-

idering the purpose of the model (to understand e.g., if it is more

elevant to capture variance or higher moments), being consistent

ith any theory and with empirical data observations. Kaut and

allace (2003) evaluate different scenario generation methods and

ropose two properties (and corresponding methodologies to test

hem) that a method should satisfy to be applicable and relevant to

 given problem. Most of these techniques involve a considerable

mount of knowledge about the uncertainty and random variables,

.g., their probability distribution. 
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.1.4. Methodological approaches 

Solving integer stochastic mathematical programming models is

ecoming a promising approach to obtain good and accurate so-

utions for complex real-world situations, such as hazard manage-

ent of post-fire debris flows or transportation network protection

gainst extreme events such as earth-quakes ( Krasko & Rebennack,

017; Lu, Gupte, & Huang, 2018 ). Often, solution approaches are

equired to deal with the inherent complexity, such as decomposi-

ion or (meta)heuristics ( Özcan, 2010; Puga & Tancrez, 2017; Yan,

ang, & Fu, 2008 ). 

Genetic algorithms have been proposed to tackle complex

tochastic problems ( Gu, Gu, Cao, & Gu, 2010; Wang, Makond,

 Liu, 2011 ). In these works, random variables are often associ-

ted with probability distributions; thus scenarios are generated

y random sampling or simulation. Furthermore, the hybridization

f genetic algorithms and linear programming has been success-

ully used to develop alternative stochastic methodologies ( Reis,

alters, Savic, & Chaudhry, 2005 ). 

In this field, scenario generation is heavily dependent on the

nowledge of probability distributions for the random variables

nd consists on selecting a small set of scenarios that repre-

ent it well, which is highly complicated in the multivariate case

 Löhndorf, 2016 ). The author presents an empirical analysis of

opular scenario generation methods for stochastic optimization.

tate-of-the-art methods are compared regarding solution quality,

sing a problem where analytical solutions are available. Their ade-

uacy is dependent on the problem characteristics and probability

istributions. Guastaroba, Mansini, and Speranza (2009) focus on

ptimal portfolio selection problem and compare scenario gener-

tion techniques for this problem. One of the conclusions is that

he adequacy of the method depends on the risk profile of the

ecision-maker. 

.1.5. Core methodological previous works 

For this problem, using scenarios to represent uncertainty has a

ractical interest concerning the application of the method, since

cenarios can be useful to help decision-makers understand and

ct upon the outputs. Nevertheless, the only information regarding

he uncertain parameters available for this problem is the bounds

n the values they can take. Therefore, a methodology that tackles

his lack of information is needed. 

Herrmann (1999) proposes a metaheuristic based on genetic al-

orithms that is especially adequate for problems where the set of

cenarios is too large for each element to be evaluated individually,

r even known. In this work, the author proposes the co-evolution

f solutions and scenarios in two parallel spaces, as follows. 

Considering that SO is the set of all solutions and SC the

et of all possible scenarios, the value obtained by a solution

 ∈ SO when scenario j ∈ SC occurs is given by F ( i , j ). In this

ork, the goal was to find the solution that performs best for the

orst-case, which is translated (in a minimization problem) to:

in i ∈ SO max j∈ SC F (i, j) . The author thus proposes a two-space ge-

etic algorithm where scenarios ( SC ) and solutions ( SO ) co-evolve

n different populations ( P SO and P SC ) composed of individuals

hose fitness depends not only on its characteristics but also on

he characteristics of the other population. This genetic algorithm

avors solutions with better worst-case performances and scenar-

os with worse “best solutions”. The fitness of a solution i 0 is eval-

ated as max j∈ P SC F (i 0 , j) (worst scenario for this solution), while

he fitness of a scenario j 0 is evaluated as min i ∈ P SO F (i, j 0 ) (best

olution for this scenario). The groundbreaking idea in this work

s that using efficient genetic algorithms to evolve populations of

cenarios requires only an initial sample that will evolve and is

hus expected to adequately represent the full set, which would

therwise take significantly more effort to explore. Simultaneously,

he solutions evolve to perform increasingly better. This work is
ontinued by other authors, namely Jensen (2001) who proposes a

anking-based evaluation for scenario fitness that performs better

nd fixes symmetry and bias issues of the original approach. 

We aim to extend the idea of a two-space genetic algorithm

o evolve solutions and scenarios to other decision-making risk

rofiles beyond the limitation of the worst-case perspective in

errmann (1999) . Considering the expected value as the goal to

valuate solutions (stochastic approach) rather than the worst-case

alue significantly impacts the evolution of the scenario popula-

ion. This focuses the evolutionary drive in obtaining a represen-

ative population, rather than converging to the worst-case sce-

ario. To achieve this, recent developments on the field of instance

eneration were considered. In Gao, Nallaperuma, and Neumann

2016) , an evolutionary algorithm is proposed for generating in-

tances that are diverse with respect to different f eatures of the

roblem. It aims to “diversify” points in N -dimensions by ranking

andidates based on distance to nearest neighbors in each axis. Us-

ng this technique with elitism leads to new children being added

o the population only if they extend the extreme values or lie in

 large gap between existing points. Also in Deb, Agrawal, Pratap,

nd Meyarivan (2002) , the concept of crowding distance is used

o estimate the density of solutions surrounding a particular point

n a population. It compares to the largest cuboid enclosing the

oint without enclosing any other points, with a similar reference

o nearest neighbors in each axis. 

.2. Contributions 

The main contributions of this paper are related to the mathe-

atical model and the solution methodology proposed. 

• We propose a new two-stage stochastic model, extending the

deterministic model proposed in Oliveira et al. (2018) : 

– Its main innovative feature is that the stochastic capacity-

pricing problem for car rentals is modeled. Few papers focus

on the integration of pricing with capacity decisions, using

tactical information and uncertainty to deal with strategic

decisions, especially in the complex rental context, where

inventory is not depleted but only temporarily unavailable. 

– The issue of vehicle group price hierarchy is included, on a

more realistic approach to the problem. 

– Demand uncertainty and price-sensitivity are modeled in an

innovative and efficient way, with a significant fit with the

problem at hand and its strategic scope. The model is adapt-

able to different shapes of the demand-price function, con-

sidering the effect of competition. 
• We propose an innovative solution method to tackle the prob-

lem, based on the decomposition of the stochastic model in

first-stage and second-stage decisions: 

– Solutions to the first-stage decisions and scenarios are gen-

erated in parallel with mutual impact on fitness evaluation,

requiring little information on random variables to do so. 

– The fitness depends on the profit obtained by each pair (so-

lution, scenario), which is calculated using a mathematical

programming model. 

– The methodology is easily adaptable to different decision-

making risk profiles. 

– Specific problem know-how can be used in the initial pop-

ulations to boost the evolutionary procedure (e.g., providing

extreme scenarios). 

– It can be implemented and run in a reasonable time in a

decision-support system. 

Overall, this methodology has a proper fit with the problem at

and, making it useful in real-world applications. Moreover, it is a
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methodology that can be easily extended to other problems where

information regarding uncertainty is scarce. 

1.3. Paper structure 

This paper is structured as follow. Firstly, the problem will be

stated and the mathematical model presented ( Section 2 ). Then,

Section 3 presents the co-evolutionary matheuristic developed and

in Section 4 the results of the computational tests are discussed.

Finally, conclusions are drawn and future work and promising re-

search directions are discussed ( Section 5 ). 

2. Problem definition 

Car rental companies preparing a season must decide on the

size and mix of their fleet, i.e., the capacity they will have to face

demand in that season. In order for this capacity to be used ef-

ficiently, some operational issues that will take place during the

season must be considered, as well as the uncertain demand. 

A car rental company has several rental stations that share the

same fleet. Within the scope of this problem, these stations are of-

ten aggregated in regions or locations such that transferring a ve-

hicle between stations within the same region is negligible regard-

ing time or cost, unlike transfers from one region to another. Also,

the unit of time considered can be seen as an aggregated measure

within this scope, e.g., one week. 

The fleet is composed of distinct vehicles, aggregated in vehicle

groups that differ in several aspects, namely customer valuation.

Nevertheless, the “products” that car rental companies “trade” are

rental types . Each rental type is characterized not only by the ve-

hicle group requested by the customer but also by start and end

time periods and start and end locations (which may be different).

Different rental types (products) “compete” for the same fleet (ca-

pacity). Moreover, if not conflicting in time, two rental types can

use the same vehicle. The demand for each rental type is uncer-

tain and highly price-sensitive. Since it is increasingly easier for

customers to compare the prices of all companies offering a cer-

tain rental type, brand loyalty plays a relevant role, and if it is

not a dominant effect for a certain company, demand is usually

mostly attracted by having the lowest price in the market. Due to

consumer value perception, the company must also consider con-

straints on the hierarchy of prices for rental types that are similar

in all characteristics except for the vehicle group requested. That is

to say, price hierarchy for rentals that start and end at the same

time and place must respect the hierarchy of vehicle value, i.e.,

all other parameters being equal, depending on the vehicle groups

considered, a rental price for a more-valued vehicle cannot be less

than the price of less-valued one. 

Before the season starts, the company must decide on how

many vehicles of each group to purchase to meet the (uncer-

tain) demand and where to make them available at the start of

the season. Since the pricing strategy heavily influences demand,

the company must also decide previously the price it will charge

for each rental type. After the season starts and demand is re-

vealed, the company has other tools to meet demand that must

be considered since they impact the capacity decisions. On the

one hand, since two rentals can use the same vehicle as long as

they do not overlap in time, it is critical to decide on fleet de-

ployment throughout the season and network of locations. This

deployment is achieved either by actual rentals that start and

end in different locations (whose number, limited by demand

and capacity, is decided by the company) or by empty transfer-

ring vehicles by truck or driver. Pricing is a relevant tool to in-

fluence demand and, consequently, fleet deployment and utiliza-

tion. Also, the company has the possibility to upgrade rentals: of-

fering a more-valued vehicle than requested for the same price.
pgrades are a common practice in this business. Nevertheless,

hey are used sporadically as a “last resource” to avoid the situ-

tion where customers request a less-valued vehicle because they

re expecting an upgrade. Finally, to meet temporary peaks in de-

and, the company may lease more vehicles for a significantly

igher cost. 

This problem is here modeled as a two-stage stochastic model,

here the uncertain parameters are related to demand and com-

etitors’ prices. The decisions made before the season starts define

he first-stage and, after uncertainty is revealed, the recourse ac-

ions or second-stage decisions include the deployment decisions,

pgrading, and leasing. The objective of this work is to provide

ecision-makers with profitable solutions to the first stage deci-

ions, describing their ability to deal with the different realizations

f uncertainty, represented by scenarios. The main goal is to obtain

ood capacity decisions, which will last for a full season. Due to

his more strategic setting, aggregated levels of demand and prices

re considered. In fact, in this problem, operational decisions such

s pricing and its impact on demand are used to get better infor-

ation for the strategic decisions of capacity, such as fleet size,

hich cannot be changed throughout the season. Therefore, the

roblem of updating the pricing policy as the season unrolls – in

n “online” manner and considering a fixed capacity – is not con-

idered in the scope of this work. 

.1. Problem modeling 

In this section, the uncertain integrated pricing and capacity

roblem in car rental is fully defined using a mathematical pro-

ramming model. This model is extended from the determinis-

ic model presented in Oliveira et al. (2018) . However, this model

iffers not only because it considers some parameters to be un-

ertain but also because it models more accurately the relation-

hips between demand, the price decided and the minimum price

n the market. Moreover, it considers that the price charged for

 rental requiring a vehicle of a certain group may be limited

y the price charged for a rental that only differs on the vehicle

roup requested (price hierarchy). The notation used is presented

n Table 1 . 

.1.1. Demand modeling 

A generalized relationship between demand, the price decision

nd the competitors’ prices for each rental type is proposed, based

n the following assumptions, for each rental type: 

1. The demand for a rental type depends on its price, following a

given relationship (e.g., a common demand function could fol-

low a linearly inverse relationship with price). 

2. If a company has the lowest price in the market, comparing to

competitors, it will attract more customers than in the opposite

case. 

3. For each situation (price above or below minimum competitor

price), there is a relationship described by a function dependent

on price (see item 1). 

4. For each possible price, the demand is higher if the company

has the lowest price in the market. 

5. The minimum competitor price in the market is an uncertain

parameter, within a limited range. 

6. The parameters that define the demand functions are unknown

(although the shape of the relationship is known). 

These assumptions aim to capture and adapt to the scope of

his work the price-sensitive and uncertain nature of car rental de-

and. Fig. 1 graphically represents these assumptions, when the

hape of the demand functions is linear. Ainscough, Trocchia, and

um (2009) present an interesting, although limited, survey on car

ental consumers where the effects of rental agency brand and
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Table 1 

Notation. 

Indices, parameters and other notation 

θ = { 1 , . . . , �} Index for the set of scenarios 

t , t ′ = { 0 , . . . , T } Indices for the set T of time periods 1 

g, g1 , g2 = { 1 , . . . , G } Indices for the set G of vehicle groups 

s, s 1 , s 2 , c = { 1 , . . . , S} Indices for the set S of rental stations 

r, r ′ = { 1 , . . . , R } Indices for the set R of rental types (characterized by check-out station and time period, check-in station and time period, and group 

requested) 

so r Check-out station of rental type r 

do r Check-out time period of rental type r 

si r Check-in station of rental type r 

di r Check-in time period of rental type r 

gr r Vehicle group requested by rental type r 

p r = { 1 , . . . , P r } Index for the set P r of price levels allowed for rental type r 

LBP r Lower bound on prices for rentals of type r 

UPB r Upper bound on prices for rentals of type r 

PRI rp Pecuniary value charged for rental type r related with price level p . The value for p = 1 corresponds to the lower bound on price ( LBP r ) 

and for p = P r corresponds to the upper bound on price ( UBP r ). The intermediate levels are a discretization of this range. 

COM r θ Minimum price charged by the competitors for rental type r in scenario θ

˜ DEM 

A 

rθ (p) Demand function for rental type r in scenario θ , dependent on price level p ; valid when price is a bove the minimum price in the market 

for a similar product COM r θ

˜ DEM 

B 

rθ (p) Demand function for rental type r in scenario θ , dependent on price level p ; valid when price is b elow the minimum price in the market 

for a similar product COM r θ , with ˜ DEM 

A 

rθ (p) ≤ ˜ DEM 

B 

rθ (p) , ∀ p
MGP Marginal price difference 

PLM g 1 g 2 Whether the price charged for a vehicle of group g 1 should be lesser than or equal to the price charged for a vehicle of group g 2, 

considering the same check-out and check-in locations and time periods, ( = 1 ) or not ( = 0 ) 

COS g Buying cost of a vehicle of group g . The value considered is the net cost: purchase gross cost minus salvage value derived from its sale 

after one year 

OWN g Ownership cost per time unit of a vehicle of group g 

LEA g Leasing cost (per time unit) of a vehicle of group g 

LP g Leasing period for a a vehicle of group g 

PYL g Penalty charged for each day that a leasing return of group g is late 

PYU rg Penalty charged for each upgrade to vehicle group g applied to rental type r 

UPG g 1 g 2 Whether a vehicle of group g 1 can be upgraded to a vehicle of group g 2 ( = 1 ) or not ( = 0 ) 

TT s 1 s 2 Transfer time from station s 1 to station s 2 

TC gs 1 s 2 Transfer cost of a vehicle of group g from station s 1 to station s 2 

BUD Total budget for the purchase of vehicles 

M Big-M large enough coefficient 

E θ Mathematical expectation with respect to scenarios θ

Inputs from previous periods 

Assumption : For all periods, T , G, S, R are the same, as well as rental types r ∈ R . 

INX O gs Initial number of owned ( O ) vehicles of group g located at station s , at the beginning of the time period ( t = 0 ) 

ONY L/O 
gts Number of owned ( O ) or leased ( L ) vehicles of group g on on-going transportation (previously decided), being transferred to station s , 

arriving at time t 

ONU L/O 
gts Number of owned ( O ) or leased ( L ) vehicles of group g on on-going rentals (previously decided), being returned to station s at time t 

Other sets 

R 

g − Rental types that do not require group g 

R 

in 
st Rental types whose check-in is at station s at time t 

R 

out 
st Rental types whose check-out is at station s at time t 

R 

use 
t Rental types that require a vehicle to be in use at time t 

1 t = 0 represents the initial conditions of the time period and “overlaps” with t = T for the previous period. 
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2
rice are studied. It concluded that the rental agency brand has

 positive impact on willingness to rent. These assumptions may

hus be suitable for companies with different levels of brand recog-

ition and loyalty, by allowing for different shapes in the demand

unctions. Furthermore, in the study, the conclusions support the

ypothesis that higher prices lead to lower willingness to rent,

ith no support that they lead to a higher perception of service

uality. These conclusions sustain the relatively simple assump-

ions made within the strategic scope of this model. Lastly, one

hould notice that different functions may model the demand for

ach different rental type; nevertheless, the model proposed en-

ures the interconnection between different vehicle groups arising

rom possible upgrades and price hierarchy rules. 

These assumptions also allow establishing a level of potential

xogenous demand. For specific rental types (or all), it might be

seful to consider a share of demand that is not influenced by the

rices charged by the company. Functions where the value of de-

and is higher than zero for the entire price domain allow mod-

ling this type of customers. 
.1.2. Mathematical model 

Decision variables: 

w 

O 
gs Number of vehicles of group g acquired for the owned fleet 

available at time t = 0 in station s 

q rp = 1 if the price charged for rental type r is associated with 

price level p; = 0 otherwise 

w 

L 
gtsθ

Number of vehicles of group g acquired by leasing at time t to 

be available at station s in scenario θ

y L/O 

s 1 s 2 gtθ
Number of leased ( L ) or owned ( O ) vehicles of group g

transferred from station s 1 to station s 2 in scenario θ ; the 

transfer begins at t

u L/O 

rgpθ
Number of rentals of type r that are served by a leased ( L ) or 

owned ( O ) vehicle of group g with a corresponding price of 

level p in scenario θ

x L/O 

gtsθ
Number of leased ( L ) or owned ( O ) vehicles of group g located 

at station s at the start of time period t in scenario θ
f L 
gtθ

Auxiliary variable: total leased fleet of group g at time t in 

scenario θ
z rθ Auxiliary variable: = 1 if the price charged for rental type r is 

above the minimum value in the market in scenario θ ; = 0 

otherwise 
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Fig. 1. Relationship between the price decision for a specific rental type r and 

the minimum competitor price and demand functions, which are dependent on 

scenario θ. 
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Optimization model: 

max −
G ∑ 

g=1 

( S ∑ 

s =1 

w 

O 
gs 

)(
COS g + T × OW N g 

)

+ E θ

[
R ∑ 

r=1 

P r ∑ 

p=1 

P RI rp 

G ∑ 

g=1 

(
u 

L 
rgpθ + u 

O 
rgpθ

)
−

G ∑ 

g=1 

( T ∑ 

t=1 

f L gtθ

)
LEA g 

−
S ∑ 

s 1=1 

S ∑ 

s 2=1 

G ∑ 

g=1 

( T ∑ 

t=1 

(
y L s 1 s 2 gtθ + y O s 1 s 2 gtθ

))
T C gs 1 s 2 

−
G ∑ 

g=1 

∑ 

r∈R 

g −

P r ∑ 

p=1 

(
u 

L 
rgpθ + u 

O 
rgpθ

)
P Y U rg 

]
(1)

s.t. 

S ∑ 

s =1 

G ∑ 

g=1 

w 

O 
gs COS g ≤ BUD (2)

P r ∑ 

p=1 

q rp = 1 ∀ r (3)

P r ∑ 

p=1 

q rp P RI rp ≤
P r ∑ 

p=1 

q r ′ p P RI r ′ p ∀ r, r ′ : 
{ 

so r = so r ′ ∧ si r = si r ′ 

∧ d o r = d o r ′ ∧ d i r = d i r ′ 

∧ P LM gr r ,gr r ′ = 1 

} 

(4)

G ∑ 

g=1 

(
u 

L 
rgpθ + u 

O 
rgpθ

)
≤ q rp ˜ DEM 

B 

rθ (p) ∀ r, p, θ (5)

G ∑ 

g=1 

(
u 

L 
rgpθ + u 

O 
rgpθ

)
≤ ˜ DEM 

A 

rθ (p) 

+ 

(
˜ DEM 

B 

rθ (p) − ˜ DEM 

A 

rθ (p) 
)
(1 − z rθ ) ∀ r, p, θ (6)

OM rθ ≥
P r ∑ 

p=1 

q rp P RI rp − Mz rθ ∀ r, θ (7)

∑ 

r∈R 

out 
st 

P r ∑ 

p=1 

u 

L/O 

rgpθ
+ 

S ∑ 

c=1 

y L/O 

scgtθ
≤ x L/O 

gtsθ
∀ g, t, s, θ (8)

u 

L 
rgpθ + u 

O 
rgpθ ≤ UP G gr r ,g × M ∀ r, g, p, θ (9)
 

O 
g0 sθ = INX 

O 
gs + w 

O 
gs ∀ g, s, θ (10)

 

L 
g0 sθ = 0 ∀ g, s, θ (11)

 

O 
gtsθ = x O g,t−1 ,s,θ + ONY O gts + ONU 

O 
gts 

+ 

∑ 

r∈R 

in 
s,t−1 

P r ∑ 

p=1 

u 

O 
rgpθ −

∑ 

r∈R 

out 
s,t−1 

P r ∑ 

p=1 

u 

O 
rgpθ

+ 

S ∑ 

c=1 

y O c,s,g,t−T T cs −1 ,θ −
S ∑ 

c=1 

y O s,c,g,t−1 ,θ ∀ g, t > 0 , s, θ (12)

 

L 
gtsθ = x L g,t−1 ,s,θ + ONY L gts + ONU 

L 
gts 

+ 

∑ 

r∈R 

in 
s,t−1 

P r ∑ 

p=1 

u 

L 
rgpθ −

∑ 

r∈R 

out 
s,t−1 

P r ∑ 

p=1 

u 

L 
rgpθ

+ 

S ∑ 

c=1 

y L c,s,g,t−T T cs −1 ,θ −
S ∑ 

c=1 

y L s,c,g,t−1 ,θ

+ w 

L 
gtsθ ∀ g, 0 < t < LP g , s, θ (13)

 

L 
gtsθ = x L g,t−1 ,s,θ + ONY L gts + ONU 

L 
gts 

+ 

∑ 

r∈R 

in 
s,t−1 

P r ∑ 

p=1 

u 

L 
rgpθ −

∑ 

r∈R 

out 
s,t−1 

P r ∑ 

p=1 

u 

L 
rgpθ

+ 

S ∑ 

c=1 

y L c,s,g,t−T T cs −1 ,θ −
S ∑ 

c=1 

y L s,c,g,t−1 ,θ

+ w 

L 
gtsθ − w 

L 
g,t−LP g ,s,θ

∀ g, t ≥ LP g , s, θ (14)

f L gtθ = 

S ∑ 

s =1 

x L gtsθ + 

∑ 

r∈R 

use 
t 

P r ∑ 

p=1 

u 

L 
rgpθ

+ 

S ∑ 

s 1=1 

S ∑ 

s 2=1 

t−1 ∑ 

t ′ = max { 0 ,t−T T s 1 s 2 } 
y L s 1 ,s 2 ,g,t ′ ,θ ∀ g, t, θ (15)

w 

O 
gs ∈ Z 

+ 
0 ∀ g, s 

q rp ∈ { 0 , 1 } ∀ r 

w 

L 
gtsθ ∈ Z 

+ 
0 ∀ g, t, s, θ

 

L/O 

s 1 s 2 gtθ
∈ Z 

+ 
0 ∀ s 1 , s 2 , g, t, θ

x L/O 

gtsθ
∈ Z 

+ 
0 ∀ g, t, s, θ

u 

L/O 

rgpθ
∈ Z 

+ 
0 ∀ r, g, p, θ

f L gtθ ∈ Z 

+ 
0 ∀ g, t, θ

z rθ ∈ { 0 , 1 } ∀ r, θ (16)

The objective function ( Eq. (1) ) represents the profit obtained

y the fulfilled rentals. It considers: the one-time cost of pur-

hasing vehicles and the cost per time period of maintaining this

wned fleet, the revenue earned with the rentals fulfilled, and

ther costs such leasing vehicles, performing empty transfers be-

ween stations and an artificial cost to penalize upgrades. The

ental revenue is calculated by multiplying the number of rentals

ulfilled for a given price level by the pecuniary value associated

ith that price level. Constraints ( 5 ) ensure that the number of
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DEMB
rθ

DEMA
rθ

COMrθ

Fig. 2. Relationship between the price decision for a specific rental type r and the 

minimum competitor price and demand values, which are dependent on scenario 

θ. 
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entals is only positive if the corresponding price level is selected.

ith this, non-linearity in the objective function is avoided. 

Constraint ( 2 ) establishes the purchasing budget. Constraints ( 3 )

imit the selection of price levels to a single level per rental type

lower and upper bounds on price are guaranteed by the definition

f the PRI pr parameters, as explained in the notation section). 

A novel issue introduced in this model is the hierarchy among

ehicle groups concerning price. Besides being an essential require-

ent from the business perspective, it introduces some changes to

he structure of the problem, relevant for the methodology. More

pecifically, it is required that the prices for rental types that are

imilar in everything except vehicle group required follow some hi-

rarchical rules. The goal is to avoid that a luxury vehicle is sold

or a smaller price than a compact vehicle, for the same dates and

ocations. The unitary matrix P LM r r ′ describes the relationship be-

ween groups, indicating whether the price of a group is limited

y the price of other. Constraints ( 4 ) translate this requirement. 

The following constraints have been added or significantly al-

ered compared to the model in Oliveira et al. (2018) , based on

he assumptions presented and Fig. 1 . As mentioned before, Con-

traints ( 5 ) support the modeling of a linear objective function.

onstraints ( 6 ) limit the number of rentals fulfilled to the exist-

ng demand and Constraints ( 7 ) relate the price charged for the

ental type, the minimum price that the competitors are charging

nd the demand levels, using binary variables z r θ . 

For the remainder of the paper, it was decided to use constant-

haped demand functions, in order to describe a company that is

ot a market leader operating on a significantly competitive mar-

et. That is to say, it is assumed that if the company prices a

ental marginally lower than the minimum price in the market for

 given scenario ( z rθ = 0 ), it will attract a major slice of the market.

f not ( z rθ = 1 ), it will secure only a residual share of the market,

s demonstrated in Fig. 2 , with the following adaptation of Con-

traints ( 5 ) and ( 6 ), where DEM 

A 
rθ

and DEM 

B 
rθ

are parameters: 

G 
 

g=1 

(
u 

L 
rgpθ + u 

O 
rgpθ

)
≤ q rp DEM 

B 
rθ ∀ r, p, θ (17) 

G 
 

g=1 

(
u 

L 
rgpθ + u 

O 
rgpθ

)
≤DEM 

A 
rθ + 

(
DEM 

B 
rθ −DEM 

A 
rθ

)
(1 − z rθ ) ∀ r, p, θ

(18) 

Since the rental types share the same resources (vehicles) and

here are price hierarchy and substitution issues between groups,

uch as upgrades, these demand functions still involve a pricing

ecision and not only a “sell/no-sell” decision, i.e., being above or

elow the threshold price. Nevertheless, any relationship or shape
an be considered for these demand functions. In Section 4.5 , a

ifferent shape and function will be used to validate this feature. 

Constraints ( 8 ) limit the vehicles that exit a certain station in a

ime period by the stock available. Constraints ( 9 ) reflect the up-

rading policies. Following what is set by the binary parameter

P G gr r ,g , they define which vehicle groups requested in the rental

ype ( gr r ) can be upgraded to which vehicle groups ( g ). 

Constraints ( 10 )–( 14 ) define the evolution of the stock variables,

s in the previous work. At the beginning of the time period, the

tock of owned fleet is given by the initial purchases (10) , and

here is no stock of leasing fleet (11) . For later time periods, in each

tation and for each rental group, the stock of owned fleet in each

cenario is given by the previous stock, increased by the arrival

f transfers and rentals from the previous season (parameters) and

rom previous time periods of the current season and decreased by

thers that start on this time period (12) . For the leasing fleet, the

tock is also changed by leasing acquisitions (13) and, when the

easing period expires, removals from the fleet (14) . It is assumed

hat the removal takes place in the same station as the acquisition.

Finally, the auxiliary variables that summarize total leased fleet

er group and time period are calculated (Constraints ( 15 )) and the

omain of all decisions variables is established (Constraints ( 16 )). 

. Solution method 

Two main issues underline the need for a specific solution

ethod to solve the mathematical model presented in the previ-

us section. First, the number of decision variables in a real-world-

ized instance is significantly large in this problem. Even in a small

ase study, a significant amount of rental types (different combi-

ations of starting/ending times and locations) leads to an even

igher number of (binary) decision variables, which makes it dif-

cult to solve this model to optimality. However, even if this is-

ue could be overcome for some specific instances with signifi-

ant computational power, a second issue is related to the need

o define and generate valid scenarios for this problem properly.

n this work, we propose a methodology that simultaneously gen-

rates scenarios and achieves good solutions for the problem. This

ethodology is based on genetic algorithms, since it is grounded

n the previous work by Herrmann (1999) presented in Section 1 . 

As presented, the methodology proposed in this work is based

n the idea of co-evolution between a population of solutions and

 population of scenarios to achieve solutions that have a good per-

ormance across a diverse set of scenarios. The evolutionary com-

onents of the algorithm are based on a biased random-key ge-

etic algorithm (BRKGA) framework ( Gonçalves & Resende, 2011 ),

ince it is a widely used and well-performing genetic algorithm,

hich is structured so that the evolutionary procedures are inde-

endent of the problem and is available on an API ( Toso & Resende,

015 ). Appendix A.1, in the Supplementary materials, details the

daptations made to the “problem-independent” part of the origi-

al BRKGA framework in order to establish two parallel spaces of

volution. 

In this section, the basic co-evolutionary procedures will be dis-

ussed, and the problem-dependent parts of the genetic algorithm

decoding chromosomes and calculating fitness – will be detailed

or both types of populations. 

.1. Co-evolution of solutions and scenarios 

The primary goal of this solution method is to obtain good solu-

ions for the stochastic problem defined in Section 2 , for which the

nly information regarding uncertain parameters are the lower and

pper bounds that their values can take. In order to obtain scenar-

os that have a diverse impact on the solutions, a set of scenarios
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Fig. 3. Definition of price range (hatched area) and corresponding price levels (dot- 

ted lines in gray and red lines – the bounds), for a rental type r , whose price is 

limited by rental type r ′ . The price decided for r ′ is here represented as price r ′ for 

simplicity. (For interpretation of the references to color in this figure legend, the 
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Fig. 4. Structure of a segment of the solution chromosome, corresponding to owned 

fleet purchase decisions; example for 2 stations and 3 vehicle groups. 
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will be generated by an evolutionary procedure that is parallel to

the procedure of the solutions. 

The specific goal of the evolution of the solution population

is to obtain values for the first-stage decisions of the stochastic

model in Section 2.1 that lead to good performance concerning to-

tal profit, when compared with the scenario population. The def-

inition of “good performance” depends on the risk profile of the

decision-maker and different alternatives will be discussed later in

this section. The goal of the evolution of the scenario population is

to diversify the impact of its elements on the profit of solutions. 

Therefore, the link between these two types of populations is

in the calculation of total profit, which involves calculating (or ap-

proximating) the second-stage value function . For this, the profit re-

sulting from each < first-stage solution, scenario > pair is com-

puted. This process will be further discussed in the remainder of

Section 3 . 

3.2. Solution population 

3.2.1. Decoder 

Solution chromosomes encode solutions to the first-stage de-

cision variables, which must be decided before uncertainty is re-

vealed. These comprehend the purchase of vehicles for the owned

fleet and the pricing decisions. When deciding the structure of

these chromosomes, it was decided to favor feasibility, i.e., to en-

sure that the structure always leads to feasible solutions. The first

segment of the chromosome refers to the pricing decisions ( q rp 

variables), and it is organized by time period. For each time pe-

riod t , there is a gene corresponding to each rental type that starts

in t . These rental types are ordered so that rental types that re-

quire vehicle groups that limit (regarding price) other rental types

are decoded first. 

Considering the bounds and other limits on prices, some rele-

vant pre-processing steps are applied to the definition of the pos-

sible price levels per rental. Let r and r ′ be two rental types similar

in all requirements except for vehicle group and whose vehicle re-

quired by r ′ limits the price of the vehicle group required by r (i.e.,

r sout = r ′ sout ∧ r sin = r ′ 
sin 

∧ r dout = r ′ 
dout 

∧ r din = r ′ 
din 

∧ P LM r g ,r ′ g = 1 ). Let

the parameter IPL be the price level interval between levels (e.g. 1

monetary unit). Due to the order of the chromosome, the price for

rental type r ′ is calculated before r . 

The maximum value to charge will be given by the smaller

value among the upper bound for the specific rental or the price

charged for the rental r ′ that limits it. The minimum value is de-

termined by the lower bound of the rental type. After defining the

range of possible prices, the discretization depends on parameter

IPL . Considering that this range may not be divisible by IPL , it was

decided that this value will space the first |P r | − 1 levels, while the

latter level |P r | will correspond to the higher limit, no matter what

the distance is to the previous level. 

Therefore, the number of price levels for rental type r is given

by: 

|P r | = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ 

min 

(∑ 

p∈P r ′ q r ′ p P RI r ′ p , UBP r 

)
− LBP r 

IP L 
+ 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ 

(19)

The values associated with each price level p ∈ P r are: 

P RI rp = 

{ 

LBP r + (p − 1) IP L, p < |P r | 
min 

(∑ 

p∈P r ′ q r ′ p P RI r ′ p , UBP r 

)
, p = |P r | 

This process is exemplified in Fig. 3 . 

The decoding procedure consists of dividing [0,1[ in |P r | equal

intervals. Based on the value of the gene g and in which interval
i 
t falls, the price is selected. This fulfills Constraints ( 3 ). 

p = 

⌊ 

g i 
1 

|P r | 

⌋ 

⇒ q rp = 1 (20)

The following segment of the chromosome, |S| × |G| + 1 genes,

orresponds to purchase decisions ( w 

O 
gs variables). Each gene g i cor-

esponds to a combination of station and vehicle group, as exem-

lified in Fig. 4 . The fraction of its value over the sum of the values

f the chromosomes in the purchases segment W corresponds to

he fraction of the budget that will be assigned to purchase ve-

icles of this group to be available at this station. The extra gene

orresponds to the non-assigned budget. The values are thus given

y: 

 

O 
gs = 

⌊(
g i ∑ 

j∈W 

g j 
B 

)
/ COS g 

⌋
(21)

Including the budget as a limit on the purchases incorporates

onstraints ( 2 ) on the decoding procedure, thus contributing to

easibility goal mentioned above. Nevertheless, it requires these

egments of the chromosome to be read twice (once for the cal-

ulation of the denominator and once for each numerator), which

an lead to a poorer efficiency of the algorithm. 

.2.2. Fitness evaluation 

The fitness of an individual determines its ability to survive in

 population. For solutions, the goal is to favor those that perform

ell when faced with the scenario population. 

erformance of a solution vs. a specific scenario. As previously intro-

uced, the performance of a specific set of first-stage decisions (a

olution) when a specific scenario is revealed is measured by the
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Fig. 5. Structure of a scenario chromosome, for 3 rental types. 

Fig. 6. Exponential relationship between genes of type c θ r and the uncertain pa- 

rameter COM r θ (and its lower and upper bounds LBC r and UBC r ), exemplified for 

λ = 5 and λ = 10 , compared with a linear relationship. 
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rofit resulting from solving to optimality (or approximately) the

econd-stage problem. That is to say, by deciding the best number

f rentals to be fulfilled and the best plan for fleet deployment, ve-

icle leasing and empty transfers – the recourse decisions, which

re made after uncertainty is revealed in the form of a scenario –

nd establishing the resulting profit. By fixing the first-stage de-

isions encoded in the solution chromosome in the mathematical

odel presented in Section 2.1 , it becomes a smaller model (for

he sake of brevity, henceforth designated as second-stage MIP),

hich is easier to solve. Nevertheless, to speed up the process, an

pproximation was considered that results from relaxing the inte-

rality constraints on all decision variables of the second-stage MIP,

esulting in an LP formulation. The validity of this approximation

ill be further discussed on Section 4.1 . 

erformance of a solution across scenarios. Since we lack informa-

ion regarding the probability distribution of the scenarios, the

erformance of a solution across all scenarios in the scenario

opulation is computed as the non-weighted average of its perfor-

ance for each scenario. Nevertheless, decision-makers with dif-

erent risk profiles value different metrics of performance. There-

ore, in order to enrich the information that can be given to the

ecision-maker, three different decision criteria for solution fitness

ere established. Consider SO and SC to be the set of solutions

nd scenarios, respectively, within the corresponding populations.

onsider F ( i , j ) to be the profit obtained by solution i ∈ SO when

cenario j ∈ SC is revealed: 

• Laplace criterion : This is the baseline criterion of expected value

in a stochastic approach. As previously explained, due to lack of

probability information, the non-weighted average of the total

profit obtained for all scenarios is considered as the fitness of a

solution i : 

fitness i = 

∑ 

j∈ SC 
F (i, j) 

| SC | (22) 

• Pessimist criterion : Some robust approaches to decision-making

favor solutions that perform well when the worst-case scenario

is revealed. Since this is a maximization problem, the fitness of

a solution according to this criterion is the worst (minimum)

profit it obtains across scenarios: 

fitness i = min 

j∈ SC 
F (i, j) (23) 

• Optimist criterion : An optimist approach is also considered,

where the fitness of a solution is the best (maximum) profit

it obtains across scenarios: 

fitness i = max 
j∈ SC 

F (i, j) (24) 

.3. Scenario population 

.3.1. Decoder 

Scenario chromosomes encompass information on the uncertain

arameters discussed in Section 2 : for each rental type, the level of

emand if the price is above the minimum in the market ( DEM 

A 
rθ

),

he level if the price is below ( DEM 

B 
rθ

) and the minimum price of

he competitors in the market ( COM r θ ). In this decoding procedure,

t is assumed that the demand-price relationships for each rental

ype are independent. Due to the aggregate measure of time and

pace used when defining rental types (e.g., weeks and regions),

otential correlations between rentals that start and end in timely

nd geographical proximity are mitigated. Moreover, the fact that

he typical car rental is associated with a previously booked flight

ourney also weakens the correlation between demand levels for

ifferent dates and locations. As Fig. 5 exemplifies, in each scenario
, each rental type r is associated with three genes: a θ r , b θ r and

 θ r . Therefore, a scenario chromosome has 3 |R| genes. A typical in-

tance of this problem considers 40 0–20 0 0 rental types, therefore

he chromosome size can be a limitation. To decode this chromo-

ome, the following additional inputs are required: 

DF r Demand forecast for the market of rental type r. It is an upper 

bound on DEM 

B 
rθ

, the demand achieved if the price is the lowest 

in the market; 

�max Maximum difference between the forecasted demand ( DF r ) and 

DEM 

B 
rθ

; 

�A −B Maximum difference between DEM 

A 
rθ

and DEM 

B 
rθ

; 

LBC r Lower bound on possible competitor prices; 

UBC r Upper bound on possible competitor prices; 

λ Parameter to scale the exponential relation between competitor 

price and the gene value. 

The genes of type b θ r are related with uncertain parameter

EM 

B 
rθ

and define the fraction of �max that is considered in this

cenario. Genes of type a θ r define a similar fraction for �A −B . As

or the minimum competitor price COM r θ , it is non-linearly related

ith genes of type c θ r , as represented in Fig. 6 . The parameter c θ r 

epresents the distance between the minimum competitor price,

n the scenario, to its lower bound (considering its full range). As

here are several competitors and the minimum prices tend to be

onsistently closer to their lower bound than to their upper bound,

his connection is modeled by an exponential function. In this fig-

re, the impact of using an exponential relationship in the decod-

ng is exemplified, as well as of the choice of parameter λ. For

 gene with value c θ r = 0 . 5 , if a “direct translation” were to be

sed the percentual distance of COM r θ to its lower bound would

e 50% (straight dashed line in Fig. 6 ). Using an exponential rela-

ionship ( λ = 5 ), this value reduces to 8.2%, and increasing λ will

ead to even smaller values. As shown in Fig. 6 , with this exponen-

ial mapping the probability that the price is closer to the lower

ound than to the upper bound is increased. 

Summarizing, for each rental type r , based on the genes of the

hromosome as presented in Fig. 5 , the values of the uncertain pa-

ameters are thus obtained: 

EM 

B 
rθ = DF r (1 − a θ r �

max ) (25) 
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Fig. 7. Example of fitness calculation and distance quantification for the scenario 

population. 
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DEM 

A 
rθ = DEM 

B 
r (1 − b θ r �

A −B ) (26)

OM rθ = LBC r + (UBC r − LBC r ) e 
λ(c θ r −1) (27)

Theoretically extreme cases. In this specific problem, it is possible

to define the theoretically extreme cases. In theory, the best sce-

nario is the one where demand is always the highest possible and

competitor prices are the lowest (and vice-versa for the worst sce-

nario). These two extreme scenarios, TBS (Theoretically Best Sce-

nario) and TWS (Theoretically Worst Scenario) are included in the

first generation of the scenario population, which is otherwise

randomly generated. When using this method with other real-

world problems, if some scenarios but not the totality of them are

known, they can also be added to the initial scenario generation.

Also, if the extreme cases are not previously known, the evolution

of the scenario population is expected to converge to include those

values. 

3.3.2. Fitness 

Having established the goal of obtaining a diverse and repre-

sentative population of scenarios, the fitness evaluation must en-

sure that individuals that contribute the most for this goal survive

in the population. Diversity is considered regarding the impact that

the scenarios have on the profit of the solutions. A diverse scenario

population consists of scenarios that result in different profits for

the same set of solutions. 

The fitness of an individual scenario translates its contribution

to the population diversity and is based on the distance to other

scenarios, regarding the difference in total profit obtained by the

solutions. The methodology to compute distance is based on re-

search in feature-based diversity optimization for instance genera-

tion discussed in Section 1 . 

Each scenario j is mapped on a bi-dimensional space, according

to two correlated features: the best value obtained by a solution

when it is unveiled max i ∈ SO F (i, j) and the worst value obtained

min i ∈ SO F (i, j) . Fig. 7 exemplifies this procedure. For each feature,

or axis, the scenarios that represent extremes are given a very high

fitness value, in order to favor scenarios that broaden the “space”

occupied by population. For the remaining scenarios, the nearest

neighbors are identified and the product between the distances to
ach of the neighbors is computed. The fitness of a scenario is thus

he maximum value between the product of distances in both axes.

ith this, scenarios that “fill in gaps” within the space the popu-

ation occupies are favored. Algorithm 1 details the steps of this

alculation. 

lgorithm 1 Pseudocode for scenario fitness calculation 

equire: Matrix | SO | × | SC | of profit values F (i, j) 

tuple B (id, best) ← ∅ 
tuple W (id, worst) ← ∅ 
for all j ∈ SC do 

B j ← ( j, max i ∈ SO F (i, j)) 

W j ← ( j, min i ∈ SO F (i, j)) 

end for 

sort B in ascending order 

sort W in ascending order 

Bdist ← ∅ 
W dist ← ∅ 
for all j ∈ { 2 , . . . , | SC | − 1 } do 

Bdist B j .id ← (B j+1 .best − B j .best) × (B j .best − B j−1 .best) 

W dist W j .id 
← (W j+1 .worst − B j .worst) × (B j .worst −

B j−1 .worst) 

end for 

fitness ← ∅ 
for all j ∈ SC do 

if j = B 1 .id OR j = B | SC | .id OR j = W 1 .id OR j = W | SC | .id
then fitness j ← + ∞ 

else fitness j ← max (Bd ist j , W d ist j ) 

end if 

end for 

return fitness 

In this case, evaluating the fitness of a scenario j ′ implies know-

ng not only the value of F ( i , j ′ ) for all i ∈ SO but also the F value

f the other scenarios j ∈ SC for all i ∈ SO . This highlights the rel-

vance of firstly computing the matrix F ( i , j ) for each combination

f solution and scenario and afterwards calculate the fitness val-

es (see Fig. 14(b) in Appendix A.1), so as to apply Eq. (1) only

nce per pair ( i , j ). 

. Computational experiments, results and discussion 

The goal of the computational experiments discussed in this

ection is to validate the value of the methodology proposed in

erms of: (i) the quality of the solutions proposed, (ii) the diver-

ity and representativeness of the generated set of scenarios, which

upport the “robustness” of the solutions, and (iii) the applicability

nd utility of the method when integrated in a decision-support

ystem. Additionally, to validate the simple adaptation needed to

se a different shape for the demand function, some tests with lin-

ar functions are run and the results compared. 

nstances. To test the methodology proposed, a set of instances

ere adapted from the set of realistic instances for the (deter-

inistic) car rental capacity-pricing problem, available in Oliveira,

arravilla, and Oliveira (2017b) . These instances are based on real

ata provided by a car rental company and the adaptation pro-

edure, detailed in Appendix A.2 in the Supplementary materials,

aintains the key characteristics and size of the information re-

arding fleet and rentals. 

In the intensive computational tests, the instances are run with

en different seeds for each of the three different solution fitness

riteria. The first eight instances from the original set were used

or the comprehensive tests (30 runs per instances). Six other in-

tances (selected to represent different sizes) were run once (for
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Table 2 

Main characteristics of the instances. 

Instance Size indicator 
(|R| × |G| ) Market size factor # runs 

1 428 Small 30 

2 428 Large 30 

3 486 Small 30 

4 486 Large 30 

5 517 Small 30 

6 517 Large 30 

7 1124 Small 30 

8 1124 Large 30 

17 2772 Small 1 

18 2772 Large 1 

29 4184 Small 1 

30 4184 Large 1 

37 6170 Small 1 

38 6170 Large 1 
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ne seed and one fitness direction criterion) in order to draw some

onclusions regarding computational time. This will be further

iscussed later in this section. Table 2 presents the main charac-

eristics of the instances used. The size of the instance is approxi-

ated by the number of rental types and vehicle groups it consid-

rs. For the same size indicator, two different market size factors

re considered: small and large. The difference between these two

nstances is that the reference values for the demand, as well as

he budget, are in a large market 100 times larger than in a small

arket . As will be discussed throughout this section, this has a sig-

ificant impact on the complexity of the instances. 

arameters. The stopping criterion for the genetic algorithm is the

aximum number of generations and was set to 30 0 0. The num-

er of chromosomes in the solution and scenario populations were

et to 20 after preliminary tests showed that these values allowed

or the algorithm to perform well. The genetic algorithm was based

n the brkgaAPI released (see Appendix A.1 for the specific al-

erations) and the remaining parameters were set to match the

roposed default parameters ( Gonçalves & Resende, 2011; Toso &

esende, 2015 ). 

echnical details. The tests were run on a server Intel(R) Xeon(R)

5690 with 3.46 gigahertz (2 processors), and 48 gigabytes RAM.

he MIP and LP solver used was CPLEX 12.6.3 and the algorithm

as coded in C++. 

.1. Preliminary tests: validating the LP approximation on fitness 

alculations 

In order to speed up the solution method proposed, an approxi-

ation was considered for calculating the best profit that a specific

olution can achieve if a certain scenario is realized. This approx-

mation consists of relaxing the integrality constraints on all deci-

ion variables of the second-stage MIP that provides the optimum

rofit value required, resulting in a linear program (LP). The goal

f these preliminary tests is to validate this approximation. 

The most relevant impact of using an approximation is not on

he profit values obtained per se but on the differences caused

n the rank of the solutions and scenarios according to their fit-

ess. Therefore, to validate this approximation, the fitness of the

ast generation of solutions and scenarios was calculated based on

he LP and the second-stage MIP, for each run of the first eight in-

tances. The consequent order of the solutions and scenarios was

ompared for both cases. The order according to which the individ-

als were ranked was the same using the two approaches, for both

olution and scenario populations. Moreover, the differences in fit-

ess value were negligible, with no significant differences between
olution fitness criteria. Table 12 in Appendix A.3, in the Supple-

entary materials, presents the detailed results. This validates the

pproximation considered in this solution method. 

.2. Solution evolution 

The goal of the tests presented in this subsection is to assess

he ability of the method to generate good solutions. For this, we

tudy the solution fitness improvement over generations and over-

ll run times. To further understand the quality of these solutions,

pproximations of the Expected Value of Perfect Information (EVPI)

nd the Value of the Stochastic Solution (VSS) are analyzed. 

Table 3 presents the main results associated with the evolution

f the solution populations, as well as the overall computing times.

he fitness of the solutions is assessed according to the different

riteria presented in Section 3.2 , as well as the final best value. As

entioned before, the fitness value is computed by solving the LP

pproximation of the second-stage MIP, while the final best values

resented result from solving the MIP models of the last genera-

ion of the genetic algorithm to optimality. It is possible to observe

hat there is a higher standard deviation in the results obtained

hen the Laplace criterion is used. This is primarily due to the

mpact of the different scenario populations generated in each run.

his effect will be further discussed when comparing the evolution

f solution fitness throughout generations. 

The percent improvement on solution fitness throughout the

enetic algorithm is also presented. It is possible to observe that

his metric is influenced by the fitness criterion selected. For runs

here the Pessimist criterion guided the solution evolution, this

mprovement is significantly larger in average (380% vs. 62% and

9%). This effect is consistently present in all instances. This dif-

erence can be explained by the characteristics of the problem,

amely the impact on profit of fleet utilization levels, linked with

he random construction of the initial generation of solutions. If

emand and market prices are high (in the best scenarios), ran-

om solutions, at worst, lead to a fleet smaller than what it should

e. Nevertheless, there is a high level of utilization of the small

eet capacity and all vehicles tend to generate profit. However, if

emand and market prices are low (in the worst scenarios), sim-

lar random solutions will overestimate fleet capacity, which will

ead to lower utilization of the fleet and consequently higher costs

or lower revenues. Therefore, the room for improvement is larger

hen considering the performance on worse scenarios. 

Fig. 8 shows an example of solution fitness evolution through-

ut the genetic algorithm. Three runs with different solution fit-

ess criteria are compared. As expected, the scale of the fitness

alues is significantly different for each criterion. Nevertheless, it

s possible to observe the evolution and convergence of the fitness

alues. For Laplace criterion, despite significant oscillations, there

s a convergence around an average value. These oscillations are

elated to changes in the scenario population, which is also evolv-

ng. For Pessimist and Optimist criteria, the evolution profile is not

scillating since the extreme scenarios (TWS and TBS) are known

or this problem, and were included in the initial generation of the

cenario population (see Section 3.3 ). 

Table 3 also quantifies the average computational times. It is

ossible to see they are influenced by instance size and market size

actor. Despite this increase in runtime, it is important to notice

hat, due to the strategic scope of the decisions here considered,

hese values are reasonable for the application of this methodology

s a decision-support tool. This issue will be further discussed on

ection 4.4 . 

Finally, to further validate the performance of this method as

ar as the quality of the solutions generated is concerned, the

esults obtained for a fixed scenario population were compared

ith the optimal solutions for the three different fitness criteria. A
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Table 3 

Overall results of best solution fitness and final value and computational times. 

Instance Solution fitness 

criteria 

Improvement on solution 

fitness (last vs. initial 

generation) 

Final best value (according to 

fitness criterion) 

Std deviation of final 

best value 

Time (seconds) 

1 Laplace 76% 37,728 .8 13% 1,288 

Pessimist 1026% 5,777 .5 3% 1,407 

Optimist 54% 80,555 .2 0% 1,310 

2 Laplace 24% 4,037,570 .0 8% 2,450 

Pessimist 83% 1,001,230 .0 1% 2,413 

Optimist 54% 8,067,420 .0 0% 2,451 

3 Laplace 59% 45,993 .1 16% 1,458 

Pessimist 441% 8,039 .4 3% 1,593 

Optimist 51% 98,043 .0 0% 1,493 

4 Laplace 25% 4,933,750 .0 13% 2,950 

Pessimist 76% 1,309,700 .0 1% 2,928 

Optimist 55% 9,797,250 .0 0% 2,914 

5 Laplace 54% 55,429 .3 24% 1,641 

Pessimist 239% 10,395 .6 3% 1,787 

Optimist 51% 119,184 .0 0% 1,673 

6 Laplace 25% 6,071,930 .0 14% 3,155 

Pessimist 70% 1,681,320 .0 1% 3,110 

Optimist 52% 11,925,700 .0 0% 3,150 

7 Laplace 187% 32,385 .5 19% 8,915 

Pessimist 991% 3,965 .8 7% 9,353 

Optimist 79% 67,439 .3 1% 9,018 

8 Laplace 44% 3,476,0 0 0 .0 14% 16,191 

Pessimist 116% 778,926 .0 1% 16,195 

Optimist 75% 6,784,230 .0 1% 16,238 

Laplace average: 62% 

Pessimist average: 380% 

Optimist average: 59% 

Fig. 8. Evolution of solution fitness, for the different solution fitness criteria (exam- 

ple from instance 7). 
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smaller instance was developed to enable CPLEX to achieve the op-

timal solution within a reasonable time. This instance was adapted

from Instance 1 and is similar to it in all aspects except for the

rental types considered, resulting in a size indicator of 100 (con-

front with Table 2 ). The same fixed set of scenarios was considered

both for the solver and for the heuristic runs. For each fitness cri-

terion, the solver reached the optimal solution, and the proposed

solution method was run with ten different seeds, resulting in an

average final best value less than 1% below the optimum. More
pecifically, the difference between the average final best value and

he optimum was of −0.2%, −0.4%, and −0.6% for Laplace, Pes-

imist, and Optimist criteria, respectively. Even though one of the

ain advantages of the matheuristic proposed is the simultaneous

eneration of scenarios, which is not assessed in this experiment,

his result supports the assertion that the solution method is able

o achieve good solutions for this problem. 

.2.1. Expected value of perfect information (EVPI) and value of the 

tochastic solution (VSS) 

The solution method is a matheuristic procedure and thus the

esults it obtains – concerning solutions and scenarios – are not

roven to be optimal. Nevertheless, interesting insights can be

rawn by developing an approximated measure of the Expected

alue of Perfect Information (EVPI) and the Value of the Stochastic

olution (VSS), assuming the set of scenarios generated is repre-

entative. In this context, the terms EVPI and VSS, as well as other

erminology from Stochastic Programming such as recourse prob-

em value or wait-and-see solutions, will be loosely used for sim-

licity, representing an approximation derived from a non-exact

ethodology. Fig. 9 presents the framework for obtaining these

alues. The goal is to obtain an approximation of how important it

s to have good forecasts in this problem (EVPI) and of how much

 company can profit from applying this stochastic method instead

f a deterministic one (VSS). 

EVPI is the difference between the best value obtained by the

tochastic method or recourse problem (RP) and the wait-and-

ee value (WS). We use the Laplace criterion for solution fit-

ess when computing the RP throughout this section, in order

o be comparable with the other values that are also results of

he (non-weighted) average of scenarios. The WS is the average

or all scenarios of the profit values obtained if the decisions
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Fig. 9. Framework for calculating VSS and EVPI, considering the Laplace criterion for solution fitness (for a maximization problem). 

Table 4 

Average measures of Expected Value of Perfect Information (EVPI) and Value of the Stochastic Solution (VSS), using indicators 

of Recourse Problem value (RP), Wait-and-See value (WS) and Expectation of using Expected Value solution (EEV). 

Instance RP WS EEV EVPI = WS −RP EVPI % EVPI/RP VSS = RP −EEV VSS % VSS/EEV 

1 37,729 40,991 30,506 3,263 9% 7,223 24% 

2 4,037,570 4,244,760 3,730,540 207,190 5% 307,030 8% 

3 45,993 49,663 37,902 3,670 8% 8,091 21% 

4 4,933,750 5,183,560 4,530,280 249,810 5% 403,470 9% 

5 55,429 59,697 45,522 4,268 8% 9,907 22% 

6 6,071,930 6,335,700 5,506,880 263,770 4% 565,050 10% 
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ere made knowing the scenario in advance (perfect information).

he stochastic method is a matheuristic that consists on evolv-

ng a Two-Space BRKGA where solutions and scenarios co-evolve

nd, for the last generation populations, solving MIP models to

alculate the exact impact of each scenario on each solution. In

rder to obtain a comparable value, a similar matheuristic was

un to generate wait-and-see solutions. The difference is that this

ne-Space BRKGA evolves only the solution population, consider-

ng a fixed scenario (deterministic). 

VSS compares the best value obtained by the stochastic method

RP) with the expected result across scenarios of applying a de-

erministic solution that results from considering only an average

cenario (EEV). A similar One-Space BRKGA was also used to gener-

te the expected value solution. The impact of this solution across

cenarios was computed by solving MIP models. 

For this computation, the first six instances, which are similar

n size, were used. Table 4 presents the results obtained. 

Regarding the EVPI, it is possible to conclude that, assuming the

et of scenarios is representative and considering that genetic al-

orithms as described above are used to make decisions, improve-

ents between 4% and 9% can be expected if the uncertainty is

e  
emoved. This value is helpful for companies to understand how

uch to invest in better forecasting methods, for example. 

As for the VSS, it measures more directly the impact of using

his stochastic method instead of a similar deterministic one. The

nstances’ market size factor significantly impacts these values. For

maller market sizes (instances 1, 3 and 5), considering uncertainty

esults on 21–24% improvements on expected profit. Large market

nstances (2, 4 and 6) show less significant results, with nonethe-

ess significant improvements of 8–10%. 

.3. Scenario evolution 

The goal of the tests presented in this subsection is to assess

he quality of the final scenario population obtained by the pro-

osed method. In these computational experiments, each popula-

ion consists of 20 scenarios. For this, two main characteristics are

tudied: diversity – how different the scenarios in the population

re, and representativeness – how well the set of scenarios repre-

ents the possible ranges of impact on the solutions. 

As mentioned when discussing the results of solution fitness

volution on Section 4.2 , the oscillation on solution fitness when
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Fig. 10. Representation of the scenarios in the initial and final generation of the 

scenario population (example from instance 3, run with Laplace solution fitness 

criterion). The two axes refer to the best and the worst values achieved by the 

solutions in the solution population for each scenario. Considering the notation in- 

troduced in Section 3.2 , for a scenario j : max i ∈ SO F (i, j) and min i ∈ SO F (i, j) , corre- 

spondingly. The hatched area represents an a fortiori impossible region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Difference in average profit obtained by the best 

solution when facing all scenarios generated in 

different runs (of the same solution fitness direc- 

tion) vs. facing co-generated scenarios. 

Percent increase in average profit 

Solution fitness criteria 

Instance Laplace Pessimist Optimist 

1 1.6% 0.7% 1.3% 

2 0.6% 0.2% 0.5% 

3 2.6% 1.0% 6.0% 

4 1.9% 0.5% 1.0% 

5 6.0% 3.5% 2.9% 

6 1.8% 1.7% 2.0% 

7 4.1% 4.1% 1.9% 

8 2.2% 0.7% 3.3% 
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using the Laplace criterion (see Fig. 8 ) is caused by the non-

monotonous evolution of the scenario population. In fact, due to

the strategy for increasing diversity on the scenario population,

scenarios are ranked regarding how different is the impact they

have on the solutions. This means that a single individual enter-

ing or leaving the population can cause the fitness of another in-

dividual to change drastically. However, in this work, quantifying

the value or fitness of each scenario is a means to evolve towards

a population with certain characteristics. The focus is not the in-

dividual fitness of scenarios but on the structure of the population

as a whole. Two main characteristics of the scenario population are

considered: 

• Diversity, since the goal is to obtain scenarios that are different

concerning the impact they have on the solutions, and 

• Representativeness, since the scenario population does not

comprise all possible scenarios and we need to ensure that the

performance of the solutions against these is indicative of their

performance against all possible scenarios. 

4.3.1. Diversity 

The diversity of a scenario population is connected with the

scenario fitness calculation presented in Section 3.3 . Fig. 10 is

based on the bi-dimensional system previously introduced (exem-

plified in Fig. 7 ), where each scenario in a population is mapped

according to the worst and the best values it “causes” on the so-

lution population. Fig. 10 compares the initial and last generation

of the scenario population. The initial population (green triangles)

has two clear extreme points (TWS and TBS – see Section 3.3 ) and

the remaining scenarios, which were randomly generated, are close

to each other. The last generation (gray circles) is spread between

these two extremes, showing the effect of evolution. The hatched

area represents an a fortiori impossible region (the worst value

cannot be better than the best value obtained). The fact the pop-

ulation is not spread across the remaining space is due to the fact

that the two features that are used to map scenarios are correlated,

i.e., the higher the worst value is, the higher the best value tends

to be. Especially considering that the solution population converges

to similar and well-performing solutions, in the last generation it

is not expected that a single scenario is simultaneously adverse for

one solution and favorable for other. Based on this mapping, a pos-

sible measure of population diversity is the average Euclidean dis-
ance between the coordinates of the scenarios projected in this

-axes system. There is an average fourfold increase in this met-

ic when comparing initial and final populations for all runs. Table

3 in Appendix A.4, in the Supplementary materials, details these

esults. 

.3.2. Representativeness 

Since there is no better information available regarding uncer-

ainty than the bounds used in the scenario decoder, it is difficult

o evaluate the representativeness of scenario populations concern-

ng the accuracy of the generation method. Nevertheless, it is pos-

ible to evaluate it in terms of its precision . Representative sce-

ario populations should have a similar impact on the solutions.

o test this, the best solutions found for each instance were evalu-

ted against the last generation of 20 scenarios from the same run

nd against the scenarios generated in different runs (for the same

nstance and solution fitness criterion). This last set of scenarios

s composed of 200 elements, corresponding to the last genera-

ions of 20 scenarios for each of the 10 runs. The average values

f the profit obtained by solving the second-stage MIP problems

cross the two different sets of scenarios were compared. Table 5

resents the results per instance and solution fitness direction. On

verage, the impact is similar, ranging from 0% to 6%. Nevertheless,

here is a slight tendency of the co-generated scenarios to underes-

imate profit obtained. Although the average values in Table 5 are

ll positive, for some runs/seeds the difference is negative. There-

ore, the fact that a single run of the method results in scenarios

hat slightly underestimate profit for the best solution is an aver-

ge trend rather than a general output. 

Besides analyzing the precision of the scenario population re-

arding the average impact on profit, it is important to evaluate

his precision on its impact across scenarios . For this, the solution

tness criteria play an important role, since the criterion used sig-

ificantly influences the structure of the final solutions generated.

or the Pessimist and Optimist criteria, the performance across all

cenarios is not considered at any point of the evolutionary pro-

edure and it becomes an essential point of study in this section.

hen considering the problem at hand, a relevant first-stage de-

ision that is critical for this performance is the fleet size. If the

ecision is made solely considering the worst-case scenario (Pes-

imist criterion) – where demand is lower – the company will tend

o acquire a smaller fleet so that it does not incur in costs with the

on-utilized fleet. Therefore, if the demand increases considerably

best-case scenarios), the company may not be able to seize all the

ossible revenue due to the lack of vehicles. In the opposite case,

ptimist decisions lead the higher fleet size decisions, causing un-

ecessary costs in scenarios where demand is lower. 
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Fig. 11. Resulting profit of applying the best solutions generated in each run against 

the full set of scenarios that were generated considering the same solution fitness 

criterion (instance 7 – small market). 
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Fig. 11 presents how the best solutions generated in instance 7

erform across all scenarios generated for the same solution fitness

riterion. The conclusions drawn are similar for all instances. 

The solutions perform similarly across all scenarios when the

olution fitness criterion is the same. This supports the represen-

ativeness of the scenario populations generated by this method
oncerning the impact they have on the “robustness” of solutions.

hat is to say, a solution co-generated with a small set of scenarios

as the same behavior than a solution co-generated with another

et of scenarios. This effect is more visible on solutions generated

y the Laplace and Optimist criteria (for simplicity, henceforward

amed as “Laplace solutions” and “Optimist solutions”). For those

enerated by the Pessimist criterion (“Pessimist solutions”), as the

cenarios get closer to the best case, differences between solutions

ecome more evident. Since the solution evaluation depends only

n the performance in the worst case, it is expected that the evolu-

ion of solutions leads to different performances on the best cases.

There is also an observable difference between the performance

rofile of Pessimist solutions when compared to those of Optimist

r Laplace solutions, which is related to the goal of each evolution

trategy. Pessimist solutions perform better than Laplace and Opti-

ist solutions in the worst cases yet not in the best cases or on av-

rage. This observation is coherent with the previous discussion on

he solution fitness criteria impact on fleet size decisions. In fact,

hroughout all best solutions retrieved from all instances, there is

 relevant difference between the non-used budget on Pessimist

olutions (21%) and Laplace and Optimist solutions (both 1%). For

aplace solutions, the budget is expected to be used similarly to

ptimist solutions, since the best scenarios only compensate the

ad in average if the company has enough cars to sell when de-

and increases. 

Moreover, the similarity between Laplace and Optimist solu-

ions is visible not only on performance but in part of the solution

tructure as well. Fig. 12 shows how the solutions in Fig. 11 trans-

ate into fleet purchase decisions. Besides performing similarly

cross scenarios, Laplace solutions have a similar structure among

hemselves regarding fleet size and mix decisions, as well as Op-

imist solutions. Also, there is some similarity between the struc-

ure of solutions generated by these two criteria. Pessimist solu-

ions, however, have a distinct structure from Laplace and Opti-

ist solutions (concerning the vehicles purchased for Location 1,

or example). Moreover, they show larger differences among them-

elves, including total fleet size values. These differences are, as

iscussed, a clear indicator of performance dissimilarity in scenar-

os with higher demand. 

.4. Decision support 

Ultimately, the goal of this methodology is to support decision-

akers, by providing a set of good solutions that are appropri-

te for different risk profiles and by helping the visualization

f the different impact uncertainty can have on these solutions.

n this section, the outputs of the method that are relevant for

ecision-makers are discussed, as well as possible computational

imitations. 

The number of solutions that the decision-maker can obtain

ith this method depends on the time or computational resources

vailable. Even if these are scarce, with only one run per solu-

ion fitness criterion, three different and good solutions can be

ompared. As an example, Fig. 13 shows the best results achieved

n these conditions for instance 8. The vertical axis represents

he resulting profit from each of the best solutions if each sce-

ario occurs. Following the direction of improvement of scenarios,

ertical lines show points where the lead among the three best

olutions changes. For the worst scenarios, the Pessimist solution

erforms slightly better than the others. Then, there are a few sce-

arios where the resulting profit is similar among the three solu-

ions. These scenarios are followed by a significant portion of sce-

arios where the Laplace solution outperforms the others. Finally,

or the best scenarios, the Optimist solution has the best results,

losely followed by the Laplace solution, while the Pessimist solu-

ion falls behind. 
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Fig. 12. Fleet size/mix decisions for the solutions presented in Fig. 11 : number of vehicles to purchase per vehicle group and available location. 

Fig. 13. Final best solutions generated (example from instance 8). 
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In order to make a decision, it is important to understand what

ifferentiates the structure of these solutions. Table 6 presents the

ain characteristics of the three solutions exemplified in Fig. 13 ,

oncerning the capacity decisions. It is possible to see that the Pes-

imist solution has a higher percentage of the budget that is not

sed for purchases, leading to a smaller fleet size. This partly ex-

lains why this solution is not able to perform as well in scenarios

ith high demands. Other structural insights are related to the ve-

icle groups. It is possible to see that all solutions favor Group 1

the less-valued vehicle group), yet this effect is magnified for Op-

imist and Laplace solutions. As for the rental locations where the

urchased vehicles are made available, in this case, there are only

light differences between solutions. Nevertheless, this metric can

e relevant for the decision-maker in other situations. 

The tools developed in this methodology can be applied in in-

eresting features of a decision-support system. For example, it

ould be possible for a decision-maker to change the solutions

ound and test these new solutions against the pool of scenarios

hat were generated in the process. Also, the decision-maker can

eed some scenarios to the initial population. Nevertheless, some

imitations must apply, namely the need to maintain a minimum

umber of randomly generated individuals on the population. 
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Table 6 

Characteristics of fleet capacity spending for the solutions presented in Fig. 13 . 

Solutions in Fig. 13 

Laplace Pessimist Optimist 

Non-allocated budget 1% 30% 1% 

Weight of vehicle group in purchases Group 1 74% 68% 79% 

Group 2 26% 32% 21% 

Weight of locations as destinations of purchased vehicles Location 1 30% 28% 25% 

Location 2 32% 28% 29% 

Location 3 19% 17% 20% 

Location 4 20% 27% 26% 

Table 7 

Average run times. 

Instance Size indicator 
(|R| × |G| ) Market size factor Average time (seconds) 

1 428 Small 1,335 

2 428 Large 2,438 

3 486 Small 1,515 

4 486 Large 2,931 

5 517 Small 1,700 

6 517 Large 3,138 

7 1,124 Small 9,096 

8 1,124 Large 16,208 

17 2,772 Small 26,982* 

18 2,772 Large 69,480* 

29 4,184 Small 32,607* 

30 4,184 Large 43,021* 

37 6,170 Small 46,072* 

38 6,170 Large 43,591* 

∗Based on a single run. 
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A possible drawback of the applicability of this methodology

s the significant increase of computational effort required if the

ize of the instances increase. As mentioned at the beginning of

ection 4 , the intensive computational tests performed required in-

tances to be run with ten different seeds for each of the three

ifferent solution fitness criteria. All instances available are realis-

ic yet different in size. In order to assess the computational time

equired for larger instances, six instances with larger and differ-

nt sizes were run once (for one seed and one fitness direction

riterion only). These include the largest instances available. 

Table 7 summarizes these results. As expected, the runtime in-

reases not only with the size of the instance but also for large

arkets, with higher demand. Nevertheless, considering the strate-

ic scope of the problem at hand, this methodology could still be

mployed for these extreme cases, probably with a limitation on

he number of runs. However, it could be argued that for more

omplex seasons and markets, such decision-support tools are even

ore needed. Even if a decision support tool takes 12 hours or a

ay, it is providing needed support for a season-lasting decision

uch as fleet size and mix and it may still be useful. 

.5. Variations of the demand function 

In order to validate the possibility of using different de-

and functions in the mathematical programming model pro-

osed, namely in Constraints ( 5 ) and ( 6 ), and to demonstrate the

asiness to adapt the solution methodology, a variation of the de-

and function was considered. The variation consisted of changing

he piece-wise linear shape represented in Fig. 2 to a continuous

inear shape, such as the one represented in Fig. 1 . This enables

he representation of companies where the market position and

rand loyalty allow for a “softer” impact of changing pricing po-

itions. Note that even “softer” impacts could be easily modeled

sing, e.g., an S-curve shape. 
The scenario decoder is easily changed, by replacing

qs. (25) and ( 26 ) for the following line equations dependent

n price p ′ . m 

∗ and s ∗ represent, correspondingly, the slope and

ntersect values, which are based on previous assumptions plus

dditional assumptions on the effect on the known price bounds.

ore specifically, the highest price possible ( UBP r ) is assumed to

ead to zero demand and the lowest price possible ( LBP r ) to the

ull demand forecast ( DF r ). 

EM 

B 
rθ (p ′ ) = m 

B 
rθ × p ′ + s B rθ (28) 

EM 

A 
rθ (p ′ ) = m 

A 
rθ × p ′ + s A rθ (29) 

here m 

B 
rθ = 

DF r × a θ r �
max 

LBP r − COM rθ
, s B rθ = DF r − m 

B 
rθ × LBP r (30) 

 

A 
rθ = 

DF r (1 − a θ r �
max )(1 − b θ r �

A −B ) 

COM rθ − UBP r 
, s A rθ = −m 

A 
rθ × UBP r (31) 

The eight instances used for the comprehensive tests were run

onsidering this variation in the demand function (also with ten

ifferent seeds and three solution fitness criteria). Table 8 summa-

izes the main results found. 

As far as the final best value is concerned, for the Laplace crite-

ia, for nearly all instances the final best value achieved decrease.

ith the Pessimist criterion, the trend was opposite depending on

hether the market size was small or large, while there were vir-

ually no changes when the Optimist criterion was considered. 

The average changes in rental prices allow understanding if

hese changes in final value result from significant differences in

he structure of the solutions obtained. For the Pessimist crite-

ion, the increase/decrease on best value depending on market size

an be explained by a corresponding increase/decrease in average

rices, which is a direct result of the different demand function
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Table 8 

Variation of best final value and average rental price. 

Instance Final best value variation vs. original demand function Average rental price variation vs. original demand function 

Laplace Pessimist Optimist Laplace Pessimist Optimist 

1 0% 29% 0% 0% 32% 0% 

2 −14% −15% 0% −7% −22% 0% 

3 −13% 13% 0% 2% 25% 0% 

4 −14% −19% 0% −5% −20% 0% 

5 −9% 7% 0% 1% 25% 0% 

6 −23% −24% 0% −4% −23% 0% 

7 −16% 59% 0% 2% 21% 1% 

8 −7% −7% 0% −1% −9% 0% 
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shape. For the Laplace criterion, however, the percent variations in

the rental prices were smaller and did not match in trend the vari-

ation in final best value. 

This analysis allowed to shed some light on the impact of a dif-

ferent demand function shape for this specific problem, and the

impact of the solution fitness criterion selected and the market

size considered. Nevertheless, it is important in the future to fur-

ther analyze this topic in more detail. Also importantly, it demon-

strated how to adapt the method to different assumptions easily. 

5. Conclusions 

This study presents not only a new approach to deal with

an innovative application, but also methodological contributions

that can be applied beyond this scope. This methodology can be

adapted to provide good solutions to complex two-stage stochastic

problems where the information on uncertainty is scarce. It does

not require the decision-maker to define the scenarios or probabil-

ities associated with them, but only to establish upper and lower

bounds for the uncertain parameters. The scenarios are generated

and evolve alongside the solutions, and are fine-tuned to be repre-

sentative and diverse concerning these solutions. This is of partic-

ular interest in practical applications where the number of uncer-

tain parameters is large and the explicit definition of uncertainty

scenarios is difficult to obtain. Moreover, this method provides the

decision-maker with a set of possible solutions, clearly associated

with the impact that the different scenarios have on them. 

In the future, regarding this innovative application, the model

can be extended towards a more tactical (possibly weekly) scope,

in order to develop a decision-making support tool for the deci-

sions not considered here. In the car rental problem, this could re-

fer to decisions regarding multi-stage-oriented pricing and deploy-

ment actions. Additionally, the work here developed considering

the car rental business can be extended to be applied in innova-

tive mobility systems such as car sharing, where the impact of the

pricing-demand relationship on the capacity decisions poses some

similarities. 

Moreover, this methodology can be further developed. If

adapted to thoroughly-tested problems with known analytical so-

lutions, intensive computational tests can help improve the effi-

ciency of the genetic algorithm regarding the quality of the solu-

tions achieved and runtime, as well as to validate the conclusions

drawn in this work. 
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