
Design for Dependability and Autonomy of a
Wearable Cardiac and Coronary Monitor
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Abstract—Wearable vital signals monitoring systems are pro-
moting new assistance approaches in the healthcare system and
are essential for the future connected health paradigm. The
present work addresses the design of a cardiac and coronary
monitoring system taking into consideration dependability and
autonomy issues. A fuzzy logic approach is used to determine, in
case deviations in the captured electrocardiogram are detected,
whether these are occurring in the patient or in the system. As
for autonomy, the use of data compression versus extra data
processing balance is analysed to find operating conditions for
which compression is worth to be used.

I. INTRODUCTION

New, prevention based, healthcare paradigms can be ac-

complished after continuously monitoring vital signals with

wearable systems. These provide information on the wearers’

health status and allow for a faster and eventually more correct

intervention of emergency medical technicians.

According to the European Council Directive 90/385/EEC,

active implantable medical devices “... must be designed and
manufactured in such a way that (. . . ) their use does not
compromise the clinical condition or the safety of patients.
They must not present any risk to the persons implanting them
or, where applicable, to other persons.” [1].

The dependability of a system is determined by different

attributes (e.g., availability, security and maintainability), risks

(defects and failures), and means (of prevention, detection and

fault tolerance) and its analysis enables for developing efficient

testing and maintenance methodologies.

The first step in the development of a medical monitoring

device is identifying the risks of not achieving acceptable

levels of dependability. After this, fault detection and fault

tolerance/reconfiguration techniques can be used to detect

system malfunctions and correct them [2].

Autonomy also compromises dependability. Low-power is

achieved after using power efficient devices and by means

of adaptively managing power consumption during system

operation. E. g., data sampling and transmission rates can be

reduced in case the wearer is in a normal health condition, or

different priorities can be dynamically assigned to capture and

transmit vital signals according to patients’ condition [3].

This paper presents the design for dependability and auton-

omy of a combined cardiac and coronary surveillance system

(section II), aiming at developing a wearable cardiac monitor

for post-EVAR (endovascular aneurysm repair) surveillance.

The developments presented here regard the dependability

Fig. 1: a) SIVIC system b) The 12-lead ECG data

acquisition and transmission module.

strategy (section III) relying on data fusion techniques and

the use of data compression to reduce the volume of data to

be transmitted and thus increase the system autonomy (sec-

tion IV). The main conclusions are highlighted in section V.

II. COMBINED CARDIAC AND CORONARY SURVEILLANCE

SYSTEM

The wearable combined cardiac and coronary surveillance

(SIVIC) system (Figure 1) provides the synchronous capture

of the ECG (electrocardiogram) and of the pressure in the

abdominal aneurysm sac. Wireless pressure sensors are used

to capture the intra-sac aneurysm pressure [4]. An electronic

readout unit (ERU) capable of energizing the sensors and

capture the pressure data is placed on the chest of the patient.

Data is transmitted to a smartphone for further processing,

data display, and eventual communication with a healthcare

center.

Figure 1.b) shows the customized 12-lead ECG data acqui-

sition and transmission (DAT) module prototype. It comprises

an ECG acquisition analogue front-end (AFE) based on the

low-power (0.75 mW/channel) TI 24-bit ADS1298 chip and

a PAN1740 Bluetooth Low Energy (BLE) module based on

the Dialog DA14580 SoC. This SoC includes a 32 bit ARM
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Cortex M0 microcontroller (μC) running at 16 MHz, that is

used to perform all the necessary processing operations. The

BLE module presents an advertised power consumption of 4.9

mA when transmitting/receiving.

Wireless ECG monitoring systems with a high number of

leads (e.g. 12-lead) are usually designed for clinical usage,

being systems with a lower number of leads (e.g. 1 to 3

leads) commonly used in ambulatory cases [5]. Our system

was designed having in mind its use in both scenarios and thus

the number of ECG data acquisition channels is reconfigurable.

Inputs not used to capture ECG signals can be used to acquire

other biosignals.

The chosen 250 Hz ECG sampling frequency provides a

good balance in terms of data accuracy and power consump-

tion. While no significant difference is found between ECGs

sampled at 500 Hz and 250 Hz, that is not the case with the

difference between ECG traces sampled at 250 Hz and 125

Hz as a significant difference can be detected in terms of peak

amplitude reduction and interval measurement.

The system has three main states of operation: initialization,

wait for connection, and running. In the running mode, the

μC receives an interruption from the ADS1298 every 4 ms,

indicating the presence of new samples. That initiates an SPI

communication to get the samples from the N (≤ 8) captured

channels and store them in a buffer. Each T ms, where T can be

defined, an application task is executed to check if the buffer

size reached 120 bytes. When that is the case, data is copied to

the BLE Attribute Protocol (ATT) database and a notification

is sent to the mobile phone to initialize the data transmission

procedure. The final ECG data processing operations (e. g.,

decompression, QRS and T-wave detection algorithms) are

implemented in the mobile phone.

It is commonly accepted that a wireless ECG capture system

should ensure a data transmission of 4 kbps and a maximum

latency of 500 ms should be verified in the transmission of

each data packet. This allows us to adapt T according to the

most convenient interval.

Figure 2 shows (blue bars) the power supply current

(VDD = 3.3 V) of the DAT module in three modes of

operation. The Running value corresponds to the case of the

DAT performing its mission with a T interval of 10 ms. An

autonomy of about 1.5 days would be obtained with a 100

mAh battery. The orange bars give the current consumed when

the three main tasks are performed isolated, i. e., the same

operation is performed sequentially in a loop. Transmitting
Data: continuously send data to the mobile phone – consump-

tion dominated by the BLE module; Only Processing – the

ADS1298 is turned off and the μC performs sum operations;

Lower Power State– the ADS1298 is turned off and the μC

is in sleep mode. It can be seen that, although a BLE link is

used, data transmission is the operation with the highest power

consumption – about 3.5 times more than processing.

III. FUZZY LOGIC BASED DEPENDABILITY STRATEGY

The morphologies (amplitude and interval/segment length)

taken by the three main events of an ECG cycle, the P wave,

Fig. 2: Power consumption of each one of and main tasks.

the QRS complex, and the T wave vary according to a person’s

physiological condition.

Since wearable devices are more affected by noise, filtering

of the ECG is a necessary pre-processing step to reduce noise

components while preserving the QRS complex shape, in order

the heart rate (HR) – in beats per minute (bpm) – can be

accurately measured. The Pan-Tompkins algorithm is used for

ECG filtering and the HR calculation [6].

The availability of different sensors in wearable systems

allows for fusing the respective data to formulate better

decisions from the captured data. Other biosignals, such as

the blood pressure (BP), defined by the systolic (maximum)

and diastolic (minimum) pressures, can provide information on

the patient condition, eventually affected by physical activity

or diseases. Accelerometers enable tracking the wearer activity

that might influence the heart activity. The SIVIC system also

includes an electrode-skin impedance measuring circuit, which

allows detecting if the electrodes are connected to the patient

or are loose/disconnected.

Data fusion techniques have been applied as a means

for combined analysis of several physiological signals that

can potentially provide additional information on a patient’s

condition. Kenneth et. al performed the fusion of ECG, blood

pressure, saturated oxygen content and respiratory data to

achieve improved clinical diagnosis of patients in cardiac care

units [7]. In our case, as a first approach, a fuzzy logic system

is used to fuse data due to its probability assignment based

on rules. Since the values of the features extracted from the

biosignals can be assigned in regions well defined in the

medical domain, defining rules is relatively straightforward

(Table I).

Our approach also includes features that characterize the

system functionality to estimate the Global Status. The signal-

to-noise ratio (SNR) of bioelectrical signals is known to

be related to the electrode-skin impedance [8]. Since this

impedance varies for each person and is affected by fac-

tors like temperature and applied pressure, the electrode-skin

impedance is measured when the system is switched on and

is monitored periodically to establish a normal region for

the impedance values for which the acquired ECG quality is

considered acceptable. These values are then used to assess the

measured impedance during normal operation of the system. In

case the impedance values are higher than expected, signalling

a potential loose connected electrodes situation, the fuzzy logic

system updates the System Status.
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TABLE I: Fusion rules for patient condition diagnosis.

Signals Condition Rule

ECG

Normal HR between 60 and 100 bpm
Asystole No QRS for at least 4 seconds

Extreme Bradycardia
HR lower than 40 bpm for 5
consecutive beats

Extreme Tachycardia
HR higher than 140 bpm for 17
consecutive beats

BP

Normal
systolic: 90-139 mmHg
diastolic: 60-89 mmHg

Hypotension
systolic: < 90 mmHg
diastolic: < 60 mmHg

Hypertension
systolic: > 140 mmHg
diastolic: > 90mmHg

A fuzzy logic system comprises 4 main components: fuzzy

rules (knowledge base), fuzzy sets, fuzzy inference engine

and defuzzification [9]. The inputs are the features previously

extracted from the measured signals. The outputs are the

quantities Patient Status, System Status and the Global Status.

These provide a system diagnosis assessment from which a

final decision is taken – i. e., either the patient has a health

condition or the monitoring system is malfunctioning. The

outputs are determined based on the input values of the fuzzy

sets and the assigned rules for each output. The rules to define

the Patient Status are based in medical data, the rules for the

System Status are defined from the system specifications, and

the rules for the Global Status include both. The fuzzy sets

include the HR for each channel, the blood pressure (systolic

and diastolic), the contact resistance, and can also include

the acceleration if this data is available. Acceleration data

increases the robustness of the fuzzy system, making it more

flexible for an unobtrusive use.

A trapezoidal curve was chosen for the membership func-

tion. This is a function of a vector x, and depends on four

scalar parameters a, b, c, and d (equation 1). The parameters

a and d locate the ”feet” of the trapezoid and the parameters

b and c locate the ”shoulders”.

μtrapezoidal(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x < a or x > d
x− a

b− a
, a ≤ x ≤ b

1, b ≤ x ≤ c
d− x

d− c
, c ≤ x ≤ d

(1)

Table I shows the normal values for the HR and BP, and

some examples of pathologies.

Data from the MIT Multiparameter database (MGH/MF)

was used to test the fuzzy logic system using Matlab [10],

[11]. The features from ECG signals (leads I, II and V) and the

arterial blood pressure (ART) were extracted and feed to the

fuzzy logic system. The ECG provides the HR information and

the ART waveform is used to know the systolic and diastolic

pressures. Also an impedance signal was added to the set in

order to test for possible faults.

The fuzzy logic was evaluated for 3 situations:

1) One of the ECG channels (lead I) does not provide useful

information, most likely due to a faulty contact. The other

channels (leads II and V) enable the detection of the HR. The

electrode-skin impedance value enables detecting the problem

is related to the electrode. Result: Patient Status: 81; System

Status: 18; Global Status: 81.

2) The recorded signals show SNR values good enough to

identify relevant features, but the patient’s blood pressure is

very high (record MGH085 from the MGH/MF database). The

System Status is ok, but the Patient Status indicates a health

problem. Result: Patient Status: 14; System Status: 86; Global

Status: 86.

3) Atrial flutter (arrhythmia) is recognized on an ECG by

the presence of higher frequency waves superimposed to the

normal beating (Figure 3). In this case the HR is calculated

using lead V, and the ART waveform is also used for a more

reliable HR estimation, since these signals are related. Result:

Patient Status: 14; System Status: 86; Global Status: 86.

Fig. 3: MGH023 record: Atrial flutter. (Grid intervals: time 0.2 s,
ECG 0.5 mV, ART 25 mmHg)

When the data fusion model detects that the System Status

is degraded, built-in self tests can be performed to determine

the cause. The smartphone sends an order for specific tests to

be performed depending on the signals features. For instance,

if an ECG channel presents a behaviour similar to the atrial

flutter condition, but the remaining channels are normal, the

origin of the flutter could be an oscillation in the ECG

amplifier rather than the patient’s heart. A simple test would

be to interconnect both inputs of the amplifier and observe if

the flutter persists. If not, in case the signal is really displaying

a health condition that is then more visible in this particular

ECG channel.

IV. DATA COMPRESSION FOR INCREASED AUTONOMY

In data compression a common approach is to use a mix

of lossy and lossless methods so that the best compres-

sion combination can be achieved. The performance of an

ECG compression algorithm is commonly evaluated after

two parameters [12]: the compression ratio (CR) – the ratio

between the length of the output stream and the length of

the original stream; and the percentage root-square difference

(PRD) between the original signal and the reconstructed

one (equation 2), which actually corresponds to a distortion

measurement.

PRD =

√√√√
∑N−1

0 (xn − x̂n)2∑N−1
0 x2

n

× 100 (2)
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TABLE II: a) Compression and distortion levels obtained

with three transforms. b) Compression levels after coding.

(a)

Transform CR [%] PRD [%]

Wavelet 87.5 0.39
Cosine 62.3 12.3
Fourier 6.5 0.01

(b)

Algorithm CR [%]

Ziv-Lempel 81.3
Huffman 75.7
RLE 67.2

In order to evaluate the best modelling approach to compress

the captured ECG before transmission, three transforms were

evaluated – Wavelets, Cosine, and Fourier. Table II(a) shows

the CR and PRD values obtained after applying these trans-

forms to the original ECG signal. It can be seen that the best

relation between CR and PRD is achieved with the Wavelet

transform.

As for the coder the dictionary-based Ziv-Lempel, Huffman,

and the Run Length Encoding (RLE) methods were evaluated.

In the three cases the input data was obtained after a 3-

level Haar Wavelet transform. The results in Table II(b) show

that the highest compression would be obtained with the Ziv-

Lempel algorithm, but with this algorithm, as well as with

Huffman’s, besides the resulting compressed stream, it would

be necessary to transmit also the constructed dictionaries so

that encoded signals can be recovered at the receiving device.

Also, when comparing the complexity of the codes and the

time needed to process them, it was found that the Huffman

and the RLE algorithms are processed 45.3 % and 89.9 %,

respectively, faster than for Ziv-Lempel. For this reason it is

considered that the Wavelet-RLE approach is the best choice

for our system. Introducing data compression each 256 bytes

of data are compressed to 54 bytes. After reception in the

smartphone the ECG is recovered with a PRD of 1.21 %.

Figure 4 shows that a reduction of about 7% in the power

consumption is obtained after using compression. It is also

shown that power consumption does not vary significantly

with the time interval imposed between transmissions. As the

global power consumption is dominated by the AFE of the

data acquisition process, in this case the use of compression

does not contribute significantly to save energy.

Fig. 4: Current consumed before and after data compression.

V. CONCLUSION

The present work shows how data fusion, notably fuzzy

logic, can be explored to improve the dependability of a

cardiac and coronary monitoring wearable system, after pro-

viding a means to diagnose whether deviations detected in

the acquired signals are due to a disease or condition of the

patient, or actually to a fault in the system. It is also a tool

that can help the process of identifying test operations needed

to improve the system’s diagnosability.

Wearable systems are also required to present high auton-

omy levels. Although data compression has been proposed as

an approach to reduce wireless communication transactions,

it is shown that, in case continuous monitoring is required,

energy savings obtained after data compression can be minimal

comparing to the extra data processing and particularly the

consumption imposed by the analogue front-end.
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