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Spatial–Temporal Solar Power Forecasting
for Smart Grids
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Abstract—The solar power penetration in distribution grids
is growing fast during the last years, particularly at the low-
voltage (LV) level, which introduces new challenges when oper-
ating distribution grids. Across the world, distribution system
operators (DSO) are developing the smart grid concept, and
one key tool for this new paradigm is solar power forecasting.
This paper presents a new spatial–temporal forecasting method
based on the vector autoregression framework, which combines
observations of solar generation collected by smart meters and
distribution transformer controllers. The scope is 6-h-ahead fore-
casts at the residential solar photovoltaic and medium-voltage
(MV)/LV substation levels. This framework has been tested in
the smart grid pilot of Évora, Portugal, and using data from 44
microgeneration units and 10 MV/LV substations. A benchmark
comparison was made with the autoregressive forecasting model
(AR—univariate model) leading to an improvement on average
between 8% and 10%.

Index Terms—Distribution network, forecasting, smart grid,
smart metering, solar power, spatial–temporal.

I. INTRODUCTION

T HE PENETRATION of solar-based generation is reach-
ing nonmarginal levels is numerous power systems. For

example, by the end of 2012, the installed solar power in
Germany, Italy and Japan was around 32.6, 16.7, and 6.9 GW,
respectively. In fact, the global solar photovoltaic (PV) capac-
ity has grown from around 1.4 GW in 2000 to over 102 GW
in 2012, with 78 GW installed during the 2010–2012 period
[1]. In terms of cost, PV is reaching grid parity in many coun-
tries, meaning that it can generate electricity at a levelized cost
less than or equal than the electricity retailing tariffs [2]. In this
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context, the deployment of solar PV will likely continue even if
financial subsidies are withdrawn.

The majority of this installed capacity is connected to the
medium- and low-voltage (MV and LV) distribution grids. The
roll-out of the Smart Grid infrastructure provides additional
capabilities for monitoring and controlling assets at the dis-
tribution grid level and fosters demand-side management and
renewable energy integration [3]. This creates conditions to
develop a new generation of management tools that maximize
the integration of distributed generation at the MV and LV lev-
els [4], such as boosted voltage control [5], state-estimation
[6] algorithms, and energy management systems (including an
optimal power flow and machine learning algorithms) [7].

Furthermore, a massive deployment of small-scale storage at
the residential level (e.g., thermal storage and batteries) might
occur if governments create incentives for such goal [8]. For
instance, Germany has created financial incentives for owners
of solar systems with batteries. At the building and microgrid
level, solar PV can be combined with storage (e.g., supercapac-
itors) and nonrenewable energy microturbines (e.g., gas) using
centralized and local energy management functions [9].

The new management tools, and the joint coordination of
PV generation and storage at the building and micro-grid lev-
els, require the use of solar and load power forecasts for
several hours ahead. The time-horizon of interest for power
system operations and electricity markets can be divided into
two classes [10]: 1) very short-term; (up to 6 h ahead); and
2) short-term (up to 3 days ahead).

For short-term load forecast in a smart grid environment,
Borges et al. [11] propose three different methods: (top-down)
adding up single-observed consumptions and perform a global
forecast; (bottom-up) adding up the sum of individual forecasts
for each load in order to create a global forecast; (regression
method) regression of the individual loads recorded by the
meters. The main goal was to evaluate combined forecasting.

In recent publications about solar PV, several works com-
bine statistical/machine learning algorithms with numerical
weather predictions (NWP) to produce solar power forecasts
for the short-term horizon. Bacher et al. [12] describe a two-
stage forecasting approach. First, a clear sky model, based
on weighted quantile regression, is proposed to remove the
diurnal component of solar generation and global irradiance.
Then, an autoregressive model with exogenous inputs (ARX) is
used to combine past observations of solar power with NWP.
According to the authors, up to 2 h ahead, the most impor-
tant inputs are the past observations, while for a horizon up to
36 h ahead, the NWP prevail. Fernandez-Jimenez et al. [13]
also used NWP as input in several machine-learning algorithms
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(i.e., autoregressive-integrated moving average (ARIMA),
k-nearest neighbors (kNNs), neural networks (NN), and
adaptive neurofuzzy models) to produce solar power fore-
casts for the next 39 h. The best performance was obtained
with a NN.

For the very short-term horizon, which is addressed in this
paper, two different classes of models can be found. The first
class is based on satellite images. Hammer et al. [14] describe
an algorithm based on cloud-index images that are predicted
with motion vector fields derived from two consecutive images.

The second class consists of univariate time-series models.
Pedro and Coimbra [15] compared the performance of different
machine-learning algorithms (i.e., ARIMA, kNNs, NN, and NN
optimized by genetic algorithms), which only use past obser-
vations of the time-series as inputs. The NN, combined with
genetic algorithms, obtained the best performance. Huang et al.
[16] combine an AR model with a dynamical system model
(i.e., resonating model introduced by Lucheroni) for 1-h-ahead
forecast of global solar radiation. The proposed method out-
performed other methods such as NN and time-delay NN. An
extended overview for the solar power forecast literature can be
found in [17].

The forecasting framework presented in this paper addresses
the very short-term horizon and is included in the second class
of models. Compared to [15] and [16], the main advantage is
that the new proposed method is spatial–temporal, since it com-
bines the past observations of time-series distributed in space
(i.e., collected by smart meters) in order to capture the effect of
cloud movement. On the other hand, compared to models based
on NWP (such as [13]), the accuracy for time horizons greater
than 4 h is lower. Thus, it is only suitable for very short-term
horizons. The use of satellite images (like in [14]) can provide
information about cloud movement in the local area for very
short-term horizons, which also improves the forecasting accu-
racy during the first few hours. However, the main constraint
is that satellite images must be available in almost real time
and it might be more complex (and expensive) to operationalize
such forecasting service. It should be stressed that information
from spatially distributed smart meters (or sensors) is readily
available in a smart grid and it can be combined with satellite
information.

To our knowledge, only two works combined informa-
tion from neighboring sites to improve solar power forecast.
Berdugo et al. [18] described a method based on searching
similar local and global current states, considering neighbor
sites. Compared to our proposed method, the main disadvantage
is that the goal is not to produce the “optimal” forecast (i.e.,
with minimum error); instead, it is to handle distributed data
streams and maintains power measurements’ privacy. In this
sense, our approach also handles data streaming but seeks, at
the same time, the “best” forecast accuracy. Yang and Xie [19]
proposed an ARX model for each solar site where the exoge-
nous variables are measurements from neighbor sites. The main
disadvantage, compared to our method, is that the relevant
exogenous variables are not selected and the vector autoregres-
sion (VAR) framework is not explored. Therefore, this paper
proposes three original contributions:

1) a new forecasting method, constructed on the top of a
smart grid infrastructure, that combines VAR and gradient

Fig. 1. Smart grid architecture in Portugal.

boosting (GB) frameworks to explore information from
the distributed PV panels;

2) improved accuracy, at the MV/LV level, by introducing
exogenous variables to the model, i.e., observations from
microgeneration smart meters;

3) an online fitting method, based on recursive least squares
(RLS), for the VAR framework. A sparse model, in terms
of model’s coefficients, is also explored with the GB
approach.

This forecasting framework will be applied to produce 6-h-
ahead forecasts for each residential PV and secondary substa-
tion (i.e., MV/LV substation). The proposed method can operate
as a centralized forecasting system to be used by a distribu-
tion system operator (DSO) for managing distributed energy
resources or by a solar power aggregator for participating in
intraday electricity markets.

The paper is organized as follows. Section II presents the
smart grid infrastructure in Portugal. Section III describes the
solar power forecasting framework. The test case results are
presented in Section IV. Section V presents the conclusion and
future work.

II. SMART GRID ARCHITECTURE IN PORTUGAL

As a followup of Smart Grid pilots conducted by sev-
eral DSO, a generalized deployment of these technological
solutions is expected for the following years. An exam-
ple is the InovGrid Project in Portugal [20], promoted by
Energias de Portugal (EDP) Distribution, aiming to develop
new Information and Communications Technology (ICT) and
computational tools for automating network management and
to create a full smart distribution grid. This project resulted in a
large-scale demonstration pilot in the city of Évora in Portugal,
named InovCity [21]. This city is also one demonstration site
of the EU Project SuSTAINABLE [4].

The main components of this infrastructure, depicted in
Fig. 1, are the EDP Box (EB) and the distribution transformer
controller (DTC). The EB is a smart meter device installed at
the consumer/producer premises that include a measurement
module, control module, and communications module. It can
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interact with other devices through a home area network. The
DTC is a local control equipment located at the secondary sub-
station level, comprising components for measurement, remote
control, and communication actions. Its main functions are col-
lecting data from EB and MV/LV substation, data analysis
functions, grid monitoring, and interface with commercial and
technical central systems.

Both the EB and the DTC are part of a hierarchical control
and communication architecture. Each EB has a bidirectional
communication with the corresponding DTC through General
Packet Radio Service (GPRS) or Power Line Communications,
and the DTC communicates with the System Control and Data
Acquisition/Distribution Management System (SCADA/DMS)
through a wide-area network based on GPRS [21]. Further
communication technologies, such as radio frequency mesh
modules, can be explored in this architecture.

At the primary substation level (i.e., HV/MV substation), a
Smart Substation Controller (SSC) is installed, which is respon-
sible for aggregating and managing the operational data from
EB and DTC, and for applying demand/generation management
and self-healing strategies. In this hierarchical architecture, the
SSC is responsible for managing the MV grid and commu-
nicates with the DSO central system via the SCADA/DMS
system.

On the top of these technologies, there are data management
services capable of handling large volumes of data and, at the
same time, providing an overview of all existing devices.

In this architecture, the forecasting system is installed at the
central management level and explores time-series information
from DTC and EB connected to different primary/secondary
substations.

The outputs are forecasts for each DTC (groups of consumers
with PV generation) and EB point (individual consumer with
PV panels). For the forecast at the DTC level, the EB mea-
surements can be used as distributed sensors to capture the
spatial–temporal effect of clouds in solar generation and con-
sequently improve the forecasts, which in turn increase the
amount of transmitted data.

Finally, it is important to stress that the forecasting system
is also valid for a nonhierarchical architecture, such as one
where each device communicates directly with the DSO control
center via Internet Protocol using an internet connection [22].
However, one has to pose a centralized data flow topology as
a requirement. Moreover, the proposed forecasting framework
can also take advantage of information collected by wireless
sensor networks [23] associated to pyranometers that measure
global and direct solar irradiance.

III. SPATIAL–TEMPORAL FORECASTING MODEL

The forecasting framework described in this section is con-
structed on the top of the Smart Grid infrastructure of the
InovCity pilot that was described Section II.

A. Seasonal Detrending of the Time Series

The solar power time series present a seasonal pattern depen-
dent on the time of the day and day of the year, and most

classical models, such as AR and VAR, assume stationary time
series.

In the literature, different physical and statistical approaches
are proposed to estimate the deterministic variation of the solar
irradiance (i.e., excluding the influence of clouds and other fac-
tors) [17]. One of these statistical approaches is the clear-sky
model described in [12] that, based on weighted quantile regres-
sion, is directly applied to solar power time series. The method
is described as a statistical normalization, capable of generating
a stationary time series with normalized solar power. Details of
the clear-sky model are given in the Appendix, and following
the results in [12], the selected predictors are the time of the
day (h) and day of the year (doy).

The output of the clear-sky model is clear-sky solar genera-
tion (p̂cst ), which is used to normalize the measured solar power
(pt) as follows:

pnorm
t =

pt
p̂cs
t

. (1)

The model’s parameters are the kernel bandwidths σh and
σdoy as well as the quantile τ . These parameters are determined
by trial–error experiences [12], inducing a value equal to one
for the variable pnormt during clear-sky days.

B. Vector Autoregressive Framework

The ARIMA process is a well-known class for univariate
time-series models [24]. A special model of this class is the AR,
in which the predictors for time interval t are past observations
(or lags) of the univariate time series. For 1-h-ahead forecast,
the AR model is

p̂t+1|t = α+ β1 · pt + β2 · pt−1 + · · ·+ βl · pt−l + et+1|t
(2)

where β is the model’s coefficient, α is a constant (or intercept)
term, l is the order of the AR model, and et+1|t is a contempo-
raneous white noise (or residuals) with zero mean and constant
variance σe

2.
The main limitation of this model is that it only uses, as

predictors, the past observations from the response variable.
This model can be extended with exogenous variables (such as
NWP), forming an ARX model. Nevertheless, as mentioned in
the literature [12] and [17], NWP can only improve the fore-
cast error for time horizons greater than 3 or 4 h ahead, while
for shorter time horizons, the relevant information consists of
time-series observations or satellite frames.

In order to improve the forecasts for the very short-term
horizon, a VAR framework [25] is used to combine past obser-
vations from the solar power in each site with past observations
from neighbor sites. This consists of a spatial–temporal (or
multioutput) linear regression model with N observations,
q-dimensional response, and d-dimensional predictors.

In matrix form, for one step-ahead forecast, it is given by

P̂t+1|t = α+ B · Pt−l + Et+1|t (3)

where P̂t+1|t is the response matrix with dimension N·q, B is
the coefficient matrix with dimension d·q, Pt−l is the predic-
tor (lagged terms) matrix with dimension N·d, α is a vector
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Fig. 2. Autocorrelation function (ACF) plot of the normalized solar power for
one DTC time series with hourly resolution.

with q constant terms, Et+1 is a matrix with dimension N ·q
containing i.i.d. residuals with zero mean and constant covari-
ance Σe.

Equation (3), for an example with two response variables
(i.e., sites 1 and 2) and two lagged terms, becomes

p̂t+1|t,1 = α1 + β1,1 · pt,1 + β1,2 · pt−1,1 + β1,3 · pt,2
+β1,4 · pt−1,2 + et+1|t,1

p̂t+1|t,2 = α2 + β2,1 · pt,1 + β2,2 · pt−1,1 + β2,3 · pt,2
+β2,4 · pt−1,2 + et+1|t,2.

(4)

Note that in (4), the forecasted power at site 1 for the lead
time t+ 1 is expressed as a function of past observations at
sites 1 and 2 (i.e., a neighbor site). The same is valid for the
forecasted power for site 2 (the past values of site 1 are included
in the model).

In order to apply the forecasting techniques from (3) and (4),
in a first phase, it is necessary to normalize the solar power
time series with the clear-sky model from Section III-A. In [12],
it is recommended to remove the small p̂cst values, since for
these values, pnormt increases considerably and reaches infinity
in the nighttime. In the work reported in this paper, the normal-
ized solar power values outside the period 7 h:00–19 h:00 (i.e.,
the average period with almost no solar generation during the
whole year in Portugal) are removed for all sites.

In the second phase, the normalized solar power values are
used to fit the AR and VAR frameworks (i.e., estimate the
coefficients β) with one of the methods that are described in
Sections III-C and III-D.

The VAR model is applied to forecast the solar power for
each DTC and EB. Furthermore, when specifying an AR or
VAR model, it is important to determine how many lagged
terms need to be included. This can be achieved with the
following method.

1) First, the autocorrelation plot (depicted in Fig. 2 for one
DTC with an hourly time resolution) of the normalized
time series is analyzed to make a coarse estimation of the
necessary lags.

2) Then, the autocorrelation plot of the residuals is analyzed
to check if the residuals are i.i.d. (i.e., white noise).

Fig. 2 was created with the full time series of normalized
power, but excluding the hours with zero clear-sky generation
and where both clear sky and observed power are zero.

Fig. 3. VARX model for lead time t+ 1 with EB observations.

In Fig. 2, the exponential decay of the first few lags indicates
that at least the first lag should be included in the model, while
the peak at lag 24 with an exponential decay suggests the inclu-
sion of a diurnal effect. Note that, by increasing the order of
the model (i.e., including more lagged terms), it is possible to
remove the serial dependency of the residuals [26]. This is the
reason why the second lag is included in the model. From these
analyses, the lags 1 and 2, as well as a diurnal effect (i.e., sea-
sonal daily variation), were selected, which is consistent with
the literature [12]. However, the square error in the training
dataset is calculated using a cross-validation approach in order
to check if the diurnal effect should be included or not for each
lead time (more details are given for the test case in Section IV).

Since the goal is to produce 6-h-ahead forecasts, a different
AR and VAR model is fitted for each lead time. For instance,
for lead times 2 and 6, the VAR model has the following form:

P̂t+2|t = α2 +B1 · Pt + B2 · Pt−1 + B3 · Pt−22 + Et+2|t
(5)

P̂t+6|t = α6 +B1 · Pt + B2 · Pt−1 + B3 · Pt−18 + Et+6|t
(6)

where the terms Pt and Pt−1 (lags 1 and 2) remain the same,
and the seasonal effect associated to the previous day changes
with the lead time.

Finally, in addition to the AR and VAR frameworks, a VAR
with exogenous variables (VARX) is also proposed and tested.
The model consists of adding exogenous variables to (3): the
solar power values observed in each EB.

The goal is to assess if the EB measurements (Pt
EB) can

improve the solar power forecast at the DTC level. The VARX
for lead time t+ 1 has the structure depicted in Fig. 3. Note
that, for the EB observations, only the past observations t and
t− 1 are included in the model since the goal is to use the EB
as distributed sensors that characterize the current atmospheric
conditions (in terms of solar power) across the region.

C. Ordinary Least-Squares Fitting

As shown in (4), the VAR consists of linear regression mod-
els, in which the p̂t+k|t of each site depends on a constant
term and lagged terms of the q response variables. Note that
each regression equation takes the same matrix of predictors
(Pt−l) and a vector of coefficients (a row from matrix B) is
estimated from data. However, this model is capable of model-
ing the dynamic relation among spatially distributed time series.
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In fact, (3) and (4) have the form of a seemingly unrelated
regression (SUR) model.

Estimating the coefficients of the VAR model is straightfor-
ward, i.e., the ordinary least squares (OLS) can be applied if the
same predictors appear in every equation [25]. In such a case,
OLS gives the same solution of generalized least squares and
can be applied independently to each regression equation.

The ICT infrastructure of a Smart Grid generates a continu-
ous stream of data that must be handled in quasi real time and
with low data storage requirements. The AR and VAR mod-
els described in the previous section can be fitted in quasi real
time using the RLS method with a forgetting factor λ [27]; λ
is a weighting factor; it intends to ensure that the observations
in the distant past are forgotten in order to enable following
the statistical variations of the observable data in a nonstation-
ary environment. This overcomes the problem of handling “big
data” since it is not necessary to store historical data for fitting
(or refitting) the model and tracks changes in the dynamics of
the data generating structure, such as loss of performance due
to dust in PV panels or changes in the surrounding environment
(e.g., shadows).

Since both VAR and AR can be fitted with OLS, the RLS
method can also be applied to this model and it is of great
importance since the spatial–temporal relation between PV
sites is very dynamic and requires time-varying coefficients.

The update of the parameters of the VAR model [using nota-
tion from (3)] is performed with the RLS method as follows for
time step t:

Bt = Bt−1 +Kt · [Pt − (α+Bt−1 · Pt−l)] (7)

where Kt is given by

Kt = Qt · Pt−l (8)

and Qt by

Qt =
1

λ
·
[
Qt−1 −

Qt−1 · Pt−l · PT
t−l ·Qt−1

λ+ PT
t−l ·Qt−1 · Pt−l

]
. (9)

Bt−1 is the coefficient matrix from time step t and Bt is
the matrix with updated coefficients (i.e., after receiving the
observed solar power during time step t). Kt can be interpreted
as a gain vector, meaning that the parameter estimates decrease
along a line in parameter space, determined by the gain vector;
Qt can be interpreted as a covariance matrix [28]. The demon-
stration of (7)–(9) and corresponding properties can be found
in [27] and [28].

A λ equal to 1 leads to a recursive estimation of the coef-
ficients, while a smaller value discounts old data with an
exponential decay.

The RLS algorithm is used to update the coefficients of
each lead time [e.g., coefficients B of (5) and (6)]. This fitting
method perfectly copes with streaming data since at time step
t only Bt, Kt, and Qt have to be stored in memory, and the
remaining data are dropped.

This algorithm requires some initial values for B0 and Q0.
A simple and robust approach is to initialize B0 with zeros and
Q0 as a diagonal matrix with a large constant value.

D. Gradient Boosting Fitting

Boosting is an ensemble machine-learning algorithm for
classification and regression, which combines base (or weak)
learners. Friedman proposed, in [29], one variant of boosting,
named Gradient Boosting (GB). GB conducts numerical opti-
mization, via steepest-descent, in function space by using a
user-defined base learner recurrently on modified data that are
the output from the previous iterations. Following the optimiza-
tion phase, the final solution F̂ (x) is a linear combination of the
base learners, as follows:

F̂ (x) = f̂0(x) +
M∑

m=1

f̂m(x) (10)

where f̂0(x) is an initial guess, f̂m(x) are the base learn-
ers, and M is the maximum number of “boosts” (which is a
model’s parameter). In (3), the function F̂ (x) corresponds to
α+ b · Pt−l, where b is a column of matrix B.

Several authors noted that successive boosting steps reduce
the bias (at a cost of a slightly increase in variance), particularly
if the base learner has low variance and high bias, which is the
case of a linear model [30]. Therefore, by setting a value for M ,
the bias–variance tradeoff is being controlled.

Bühlmann in [30] propose the component-wise linear least
squares, which is a GB algorithm where the base learner selects
only one predictor among all the d-predictors. In the VAR
framework, the component-wise GB can be applied to each
equation [e.g., (4)] of the VAR model. It is an alternative to
the OLS method and performs automatic variable selection and
coefficients shrinkage. For the solar power forecast problem,
the empirical risk function is the quadratic loss, and the base
learner is a linear effect of a continuous predictor [like in (3)].

The component-wise GB applied to each q-response variable
of the VAR framework works as follows.

1) Initialize f̂0(Pt−l) with the mean value of the pt,q
response variable.

2) For each m, given F̂m−1(Pt−l), calculate the residu-
als u[i] = pt,q[i]− F̂m−1(Pt−l[i]), where i takes values
between 1 and N (number of training samples).

3) Using the residuals calculated in step 2) as the response
variable, produce an estimate of the coefficients associ-
ated to each candidate base learner (i.e., βj · P (j)

t−l)

βj =

N∑
i=1

u[i] · P (j)
t−l[i]

N∑
i=1

(
P

(j)
t−l[i]

)2
.

(11)

4) Determine the sth predictor or base learner (from a set
with d candidates) that minimizes the quadratic loss
function

s = argmin
1≤j≤d

N∑
i=1

(
u[i]− βj · P (j)

t−l[i]
)2

(12)

which gives the selected base leaner: f̂m(P
(s)
t−l) = βs · P (s)

t−l.

5) Update function F̂m(Pt−l) as follows:

F̂m(Pt−l) = F̂m−1(Pt−l) + ν · f̂m
(
P

(s)
t−l

)
(13)
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where ν is a shrinkage parameter.
6) Stop when m = M .
The final estimator is obtained in step 6). The GB method

has two parameters that need to be set: 1) maximum number of
boosting iterations (M ) and 2) shrinkage parameter (ν).

The value of M is estimated through fivefold cross valida-
tion, where the m value with the lowest square error is selected
for each lead time and response variable. According to [30], the
value of ν does not influence significantly the results if set to be
a low value (e.g., 0.1).

In order to cope with structural changes in the time series,
a sliding-window approach is used to fit the VAR and VARX
frameworks using the GB algorithm. In terms of data storage,
this approach is not efficient as the RLS method. However, the
component-wise GB has two important advantages over RLS,
which are relevant for the problem addressed in this paper.

First, it is particularly suitable for high-dimensional prob-
lems since the variable selection capability [step 4) of the
algorithm] can lead to a sparse B matrix of coefficients. This
sparse matrix can reduce the data flow volume from EB; for
instance, in the VARX model of Fig. 3, component-wise GB can
reduce the set of EB measurements that are needed to improve
the forecasts at the DTC level. Second, it provides a frame-
work where different loss functions can be included, which
enables probabilistic forecasting through quantile regression in
the framework described in this paper.

IV. TEST CASE RESULTS

A. Description

The solar power dataset used as test case is from the munic-
ipality of Évora, with 1307 km2 of area. During 2 years, more
than 30,000 EB and 300 DTC were installed, including all cus-
tomers and substations, in order to have the entire municipality
covered. In what concerns distributed generation, in January
2014, there were 220 microgeneration producers, mainly solar
PV, with a total installed power of 768 kW.

In order to test the proposed forecasting framework, time
series from 44 EB were used. These were the time series
with better quality, or in other words, the ones with the low-
est number of missing values and hours with zero generation
due to maintenance operation or communication problems. The
EB data comprise domestic PV, with installed capacity rang-
ing between 1.1 and 3.7 kWp. These EB measurements were
related to 10 different DTC, and the total values of each DTC
are also forecasted.

The parameters of the clear-sky model, estimated by trial–
error in order to guarantee a normalized power equal to one
during clear-sky days (see [12]), are σh = 0.01, σdoy = 0.01,
and τ = 85%. The forgetting factor λ, estimated by fivefold
cross validation for both AR and VAR, is equal to 0.999. A ν
equal to 0.2 is used in the GB algorithm since it leads to the best
results.

The original data were sampled in 15 min, but it was resam-
pled to hourly values (i.e., the same length of the electricity
market). The period between February 1, 2011 and 31 January
31, 2012 was used to fit the models and it is also the size of
the sliding window. The period between February 1, 2012 and

Fig. 4. One step-ahead solar power forecast obtained with the AR and VAR
models trained with RLS for one EB.

March 6, 2013 was used to calculate the forecast errors (i.e.,
test period).

The forecasting results are evaluated with the root-mean-
square error (RMSE) calculated for the kth lead time [12]

RMSEk =

√√√√ 1

N

N∑
t=1

(
P̂t+k|t − Pt+k

)2

. (14)

The RMSE is normalized with the solar peak power.
The RMSE is calculated separately for each EB or DTC, but

it is also calculated using the full dataset of errors as a sum-
mary performance metric for all DTC or EB. The performance
of two models (AR and VAR) is compared by computing the
improvement in terms of RMSE

Impk =
RMSEk,AR − RMSEk,VAR

RMSEk,AR
· 100%. (15)

B. Forecasting Results

For the DTC dataset, and by fivefold cross validation on the
fitting period, it was determined that a second-order AR model
(i.e., without the diurnal term) achieves the lowest square error
for lead times 1 and 2. For the EB dataset, this only occurs for
lead time 1. The VAR model includes the diurnal term in all
lead times.

A one step-ahead solar power forecast obtained with the AR
and VAR models fitted with the RLS method (described in
Section III-C) is depicted in Fig. 4 for one EB (with 3.5 kWp)
and six different days. For the 3 days in January, the forecast
produced by the VAR model fits better the actual observation
under cloudy and overcast conditions. In this case, the AR fails
because it does not include information from neighbor sites. In
the VAR framework, since all the other EB show a low solar-
generation level in the past observations, the solar power level
for this specific EB is forecasted to be lower than one provided
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Fig. 5. Impk of the VAR and VARX models fitted with OLS and GB for two
DTC and for the RMSEk calculated using the entire set of forecast errors.

by the AR model (which only includes observations from the
same EB). For the 3 days in April, the difference between the
AR and VAR forecast is not very substantial, however, April 16
was a clear-sky day and the AR, compared to VAR, also shows
worst forecast accuracy.

The improvement of the VAR and VARX (estimated with
OLS and GB) over the AR model for each lead time is plot-
ted in Fig. 5 for two DTC and for the RMSEk calculated with
the full dataset of DTC forecast errors.

These three plots clearly show that the VARX [OLS] model
achieves the highest improvement. From the full set of DTC,
number 4 is the one with the highest overall improvement,
reaching a value around 8% for the first lead time and around
6% for the sixth lead time. Number 10 is the one with the low-
est improvement, ranging between 2% and 7%. The VARX
[GB] also presents a higher improvement compared to both

TABLE I
p-VALUES OF THE DIEBOLD–MARIANO STATISTICAL TEST FOR

FORECAST ACCURACY PERFORMANCE AT THE DTC LEVEL

∗Identifies statistically different accuracies.

VAR [OLS] and VAR [GB], nevertheless lower than the VARX
[OLS] model.

The VAR model also achieves a positive improvement in all
lead times, but lower than VARX. This means that the EB mea-
surements, used as distributed sensors, can improve the forecast
at the DTC level. Note that the performance of VAR [OLS] and
VAR [GB] is rather similar.

The global improvement of the VARX [RLS] varies between
9% and 5.7%, which shows the benefit from using spatial–
temporal models for very short-term solar power forecasting. It
is important to stress that the coefficients matrix of the VARX
[GB] is very sparse compared to VARX [OLS]. For instance, in
lead time 1, only the coefficients associated to past observations
of 3 EB are nonzero, while only 11 coefficients (or EB obser-
vations) have nonzero values for lead time 6. This represents
a decrease in terms of volume of transmitted data (i.e., only a
few reference EB are used) at the cost of a slightly increase in
forecast error.

Table I shows the p-value results obtained with the Diebold–
Mariano (DB) test [31], which is used to assess the statisti-
cal significance of the forecast error improvement. The null
hypothesis is “no difference in the accuracy of two compet-
ing forecasts,” and if the p-value is less than a significance
level (i.e., 0.01 in this paper), then the observed result would be
highly unlikely under the null hypothesis. As shown in Table I,
the difference in accuracy between the competing forecasts is
significant in all lead times. The only exception is between
VARX [GB]- and VARX [OLS]-based forecasts for lead times
2 and 6.

Fig. 6 shows the improvement obtained with the VAR model
fitted with OLS and GB for two EB and for the RMSEk

calculated with the full dataset of EB forecast errors.
For lead times 1–4, the VAR [OLS] model attained the high-

est improvement for EB number 16, with a value around 27%
for lead time 1 and around 18% for lead time 4. The VAR [GB]
attains the same improvement as VAR [OLS] for lead time 5
and a higher one for lead time 6 (i.e., around 14%).

The lowest improvement was attained for EB number 39,
with 3.5% obtained with VAR [OLS] for lead time 1 and a neg-
ative value of around −1% for lead time 5. The improvement
obtained with VAR [GB] is around 1% for all lead times. The
global improvement for the EB dataset varies between 10% and
0.4% for VAR [OLS] and between 8% and 5% for VAR [GB].
Table II presents the DB test results. All the differences are sta-
tistically significant with the exception of lead time 6 for the
difference between AR and VAR [OLS] and lead time 3 for the
difference between VAR [OLS] and VAR [GB].
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Fig. 6. Impk of the VAR model fitted with OLS and GB for two EB and for
the RMSEk calculated using the entire set of forecast errors.

TABLE II
p-VALUES OF THE DIEBOLD–MARIANO STATISTICAL TEST FOR

FORECAST ACCURACY PERFORMANCE AT THE EB LEVEL

∗Identifies statistically different accuracies.

As mentioned before, the benefit from using the GB is to get
a sparse matrix of coefficients. For the EB dataset, 78% of the
coefficients have a null value for lead time 1 and 80% for lead
time 6. The GB fitting, compared to OLS, also attains a higher
and statistically significant improvement for lead times 4–6.

Fig. 7. Average RMSEk for each lead time calculated with the individual
RMSEk obtained for each EB and DTC.

Compared to the DTC results (Fig. 5), the improvement
obtained for the EB dataset is higher for the first two lead
times. Another interesting conclusion is that, in most cases,
the improvement decays with the lead time, meaning that the
spatial–temporal information is more relevant for the first 3 h.
This makes sense since the forecasting model in this test case
only includes information from a small municipality. If solar
power data from neighboring municipalities and regions are
included in the model, a higher improvement for lead times
between 4 and 6 is expected.

Fig. 7 depicts the average values of the normalized RMSEk

for the EB and DTC datasets, calculated from the individual
normalized RMSEk values (i.e., divided by the rated power of
each PV site) of each EB and DTC. For the EB, the forecast
errors are from the AR (the benchmark model), VAR [OLS],
and VAR [GB] model, while for the DTC are from the VAR
[OLS], VARX [OLS], and VARX [GB] models.

This plot shows a RMSE, for the best model, ranging
between 8.5% and 14.1% for the EB, and between 7.9% and
12.9% for the DTC. The AR model exhibits an error between
9.5% and 14.1% for the EB, and between 8.6% and 13.7% for
EB. The RMSEk magnitude is consistent with the state-of-the-
art [12], [13]. As shown in Tables I and II, the forecast error
difference is significant for each lead time.

The forecasting algorithms were programmed in R envi-
ronment. In terms of computational effort, for an Intel Core
i7-2600 CPU @ 3.40 GHz processor and 8 GB of RAM and
programmed in R, the average fitting times for 6 h ahead are:
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(VAR OLS) 20.2 s for 44 EB and 2.7 s for 10 DTC; (VAR GB)
736.4 s for 44 EB; and 46.7 s for 10 DTC, including fivefold
cross validation. After fitting the model’s coefficients, a forecast
can be produced almost instantaneously. The average fitting
time of the AR model for one time series is 1.6 s.

V. CONCLUSION

A new forecasting approach for very short-term solar power
forecast is proposed in this paper. It relies on a spatial–temporal
model, based on a vector autoregressive (VAR) framework fit-
ted with two alternative methods (Recursive Least Squares and
Gradient Boosting). It takes advantage of the territorially dis-
tributed nature of a smart grid infrastructure with smart meters
and the advanced control functions installed at the MV/LV sub-
station level. In terms of communication requirements, this type
of tool needs that solar time series are transmitted on an hourly
basis to the DSO central management system, which requires
technological solutions that ensure reduced data latency (such
as General Packet Radio Service).

The results for data from a smart grid pilot, in the city
of Évora, Portugal, indicate that information from distributed
PV generation can improve the forecast error, compared to an
autoregressive model, in a reduction of between 8% and 12%
on average for the first three lead times (which are the most
important ones).

The RLS fitting method provides a lower error compared
to GB and it is capable of tracking time-varying coefficients.
Contrariwise, the GB generates a sparse coefficient’s matrix,
which decreases the volume of transmitted data, particularly
from the LV grid. Finally, the inclusion of the EB observations
in the forecast at the MV/LV substation level also decreases the
forecast error.

These results open new lines for future research, such as:
1) inclusion of data from weather stations and NWP models;
2) increasing the spatial coverage of the PV data; 3) proba-
bilistic forecasting; and 4) combination of metered and satellite
information.

APPENDIX

CEAR-SKY MODEL

The clear-sky generation (p̂cst ) is estimated as a local constant
model and the weighted quantile regression [12] for quantile τ
can be expressed as

p̂cs
t = arg min

P̂ cs
t

N∑
i=1

K(ht, doyt, hi, doyi) · ρ(τ, ei) (16)

with ei = pt − p̂cst , where

K(ht, doyt, hi, doyi) =
K(ht, hi, σh) ·K(doyt, doyi, σdoy)

N∑

i=1

[K(ht, hi, σh) ·K(doyt, doyi, σdoy)]

(17)

is the kernel product of the two predictors [i.e., time of the
day (h) and day of the year (doy)] which locally weights each
observation, and

ρ (τ, ei) =

{
τ · ei

(1− τ) · ei
, ei ≥ 0
, ei < 0

(18)

is the loss function of the quantile regression problem [32].
Since both variables are circular, a circular kernel is used

K (xt, xi, σ) = e
1
σ ·cos

[
2π· (xt−xi)

d

]
(19)

where σ is the smoothing parameter and d is the period of
variable x (e.g., equal to 24 in the time of the day).

The model’s parameters are the kernel bandwidths σh and
σdoy, as well as the quantile τ .
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