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Abstract: Supply Function Equilibrium (SFE) and Conjectured Supply Function Equilibrium (CSFE) are 

some of the approaches most used to model electricity markets in the medium and long term.  

SFE represents the generators’ strategies with functions that link prices and quantities, but leads to systems 

of differential equations hard to solve, unless linearity is assumed (Linear Supply Function Equilibrium, 

LSFE). CSFE also assumes linearity of the supply functions but only around the equilibrium point, also 

avoiding the system of differential equations.  

This paper analyzes the existence and uniqueness of G-CSFE (a CSFE previously proposed by the Authors) 

for both elastic and inelastic demands. In addition, it also proves that the iterative algorithm proposed to 

compute G-CSFE has a fixed point structure and is convergent, and that LSFE is a particular case of G-

CSFE when demand and marginal costs are linear. Selected examples show the performance of G-CSFE 

and how it can be applied to market power analysis with meaningful results. 

Keywords: Conjectured supply function, supply function, inelastic demand, electricity market 

equilibrium, equilibrium existence and uniqueness.  

1. Introduction 

Several approaches have been proposed in the literature to compute and analyze the behavior of 

the generators in oligopolistic electricity markets (see [1] and [2]). Although most of these models 

have in common the simultaneous profit maximization of the generators (Nash equilibrium 

approach, see [3] and [4]), they differ in how the strategies of the generators are modeled. For 

example, strategies can be prices (Bertrand competition, see [5]), quantities (Cournot and 

Conjectural Variation approaches, see [6]–[9]), or supply functions, relating prices and quantities 

(Supply Function [10]–[12] and Conjectured Supply Function approaches [2], [13] and [14]). 
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Conjectured Supply Function Equilibrium (CSFE) is a combination of the Conjectural 

Variation and the Supply Function approaches, where the generators’ strategies are represented 

by first order local approximations around the equilibrium point [2]. For each generator its 

conjecture is the slope of its residual demand curve (conjecture price-response, see [15] and 

[16])1, which, at the equilibrium point, is calculated from the slopes of the first order 

approximations of its competitors bidding curves (see [2], [15] and [17]). Conjectures internalize 

most of the strategic behavior of the generators by representing their influence on the market price 

[16], but their computation depends on the CSFE approach selected, since the parameters of the 

linear approximations are sometimes supposed partially known (slope known and intercept 

unknown or vice versa), or totally unknown [2].  

Knowing the slopes is equivalent to knowing the conjectures, since the latter can be 

directly computed from the former (see [14] and [15]). Very often these conjectures are estimated 

from historic generator bidding curves (see [7], [15] and [18]) and kept constant for all the 

forecasting horizon. However its use for medium and long term in a dynamic environment is 

rather arguable since conjectures should vary to reflect how the generators’ strategies adapt to the 

evolving market structure and regulation (see [16] and [19]).  

When the intercepts are given and the slopes are variables, the conjectures result from the 

equilibrium (see [2]) but are strongly conditioned by the given intercepts [16]. Therefore similar 

remarks as above about its applicability to medium and long term can be made.  

When both intercepts and slopes are decision variables (G-CSFE), the supply functions 

of the generators are computed according to the market structure, and so are the conjectures. Thus, 

the generators strategies are dynamic and adapt to the market evolution, being more suited for 

medium and long term studies. However additional hypothesis must be considered to get a well-

                                                 

1 Strictly talking, conjectures represent any assumption about the behaviour of the competitors [16]. 
However, in this specific case we assume that the conjecture, for a generator, corresponds to the slope 
of its residual demand slope (conjecture price-response) which, at the equilibrium, is consistent with 
the slopes of the supply function of its competitors [15]. 
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defined problem [16]. Reference [13] presents an efficient formulation for the G-CSFE and 

proposes an iterative algorithm to solve it. In addition, unlike the Linear Supply Function 

Equilibrium (LSFE, see [11], [20] and [21]), if the G-CSFE is solved for different demand values, 

a complete supply function, not necessarily linear, can be obtained for each generator (see [2] and 

[9]). However existence and uniqueness of the G-CSFE has not yet been analyzed. While the 

elastic case, under the assumption that both the marginal costs and the system demand are linear 

functions, can be considered already studied in [22], this article proves that this result cannot be 

directly applied to the inelastic demand case. On the contrary, specific considerations must be 

made to guarantee the existence and uniqueness of the solution. 

It is important to emphasize that perfectly inelastic demand assumption for medium and 

long term analysis is a very common and sensible approach for avoiding the estimation of the 

demand elasticity in scenarios, see [23], where the future demand does not change as much as the 

market price does (see [24] and [9]).  

This article has three main objectives. It proves that the G-CSFE includes, as a particular 

case, the LSFE when both the marginal costs and the elastic system demand are linear functions. 

Unlike [25] where only the symmetric case was analyzed, it also determines the conditions for 

the existence and uniqueness of the G-CSFE for the asymmetric case with both elastic and 

inelastic demands, proving that the inelastic case is not a particular case of the elastic one. Finally 

it determines the mathematical conditions under which the iterative algorithm proposed in [13] to 

compute the G-CSFE converges to the Nash-equilibrium, and presents some illustrative examples 

that show the applicability of the proposed algorithm to the computation of the market power of 

the generators (see [26] for a review on market power indices).  

The article is organized as follows. Section 2 presents the formulation of the LSFE 

approach outlined in [11]. Section 3 describes the G-CSFE proposed in [13] for both elastic and 

inelastic demand representation, and proves that, when the demand and the marginal costs are 

linear, the LSFE is a particular case of the G-CSFE. Section 4 proves the existence and uniqueness 
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of the G-CSFE when the marginal costs are supposed to be linear-increasing. Section 5 tries to 

generalize the above result by extending it to the case of nonlinear-increasing marginal costs 

showing that in this case is not possible to guarantee the existence and uniqueness in a general 

way. Section 6 presents the necessary conditions under which the iterative algorithm proposed in 

[13] to compute the G-CSFE reaches the Nash-equilibrium. Section 7 discusses some illustrative 

examples about the equilibrium’s existence showing the strong relationship between the 

conjectures and the structure of the market. Finally, Section 8 presents the main conclusions. 

2. Linear supply function equilibrium 

In the LSFE the production of the ith generator Pi is linearly related with its offer price i in the 

following way: 

    EiP iiiii    (1) 

E being the set of generators, i≥0 the slope of the function (i=Pi/i) and i the minimum offer 

price (ii), both being decision variables. 

The generation’s costs are supposed to be quadratic, that is: 

        EiaPbPcPC iiiiiiiiii   2

2

1  (2) 

ci, bi and ai being the fixed coefficients of the costs’ functions, leading to linear marginal costs. 

The balance between the total production and the elastic system demand D() is given 

by:  

   



Ei

iPD   
(3) 
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where  is the equilibrium market price and D()/=-0, 0 being the demand’s elasticity2 and 

 the price that consumers are willing to pay for a certain amount D. 

The profit Bi() for each generator i is given by: 

       EiPCPB iiii    (4) 

where Pi() represents the incomes and Ci(Pi()) the costs. 

First order equilibrium conditions are obtained by deriving (4) with respect to the price  

(decision variable for the LSFE, see [11]) and setting equal to zero, that is: 

          

      
Ei
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P

P

P
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P
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i

iii
i

i
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



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




























0

0














 
(5) 

where the derivative of the generator production with respect to the market price is the slope of 

its supply function, that is: 

     

   





















ij
j

ii

ij
ji

PP

PDP












0

 
(6) 

Substituting (1), (2) and (6), into (5) leads to: 

       Eibc iiii
ij

jii 









 


 0  (7) 

In the LSFE the supply functions of the generators are assumed to be consistent across 

all times (see [20]), which implies that (7) must be valid for any realization of . Equating 

coefficients of : 

  Eic ii
ij

ji 









 


 10  

(8) 

                                                 

2 Strictly speaking the demand elasticity is (D/D)/(/)=-(/D)α0. However, here for simplicity the 
elasticity refers to the slope α0. 
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Equating coefficients of the constant term: 

  Eibc iiii
ij

jii 







 


 0  

(9) 

Substituting the right side of (8) only into the left side of (9) and simplifying yields (see 

[11] for more details): 

Eibii   (10) 

Equation (10) means that the minimum offer price of each generator is its minimum 

marginal costs. Dividing (9) by -i and clearing αi, with bi=i, leads to: 

Ei

c

Ej
ij

ji

ij
j

i 



































0

0

1

 

(11) 

Equation (11) is equivalent to solve (8) and (9), and provides, together with (10), the 

solution of the LSFE.  

It is necessary to highlight that in (11) it is assumed that all the generators are participating 

at all the equilibrium points3 obtained varying , implying that their productions are non null, 

Pi>0, and therefore i>0 [20]. Subsection 3.1 presents a generalization that allows that some 

generators be out of the market due to high costs. 

3. Description of the G-CSFE 

In this market formulation the generators’ strategies are again assumed to be linear functions (see 

(1)), but, unlike the LSFE, they are only valid around the equilibrium point (first order Taylor 

approximations [2]).  

                                                 

3 A generator participates at an equilibrium point when its production is not affected by active constraints 
or is not null because of high costs. 
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Since slopes i are not null at the equilibrium point (Pi(i)/i|i==i>0 for the 

generators that participate at the equilibrium, see previous section), then: 

       
Ei

P

BP

P

BB

i

ii

i

ii 
















00






  (12) 

Thus, from (4), the first order equilibrium conditions are (see [13], [16]): 

    EiPPMC
P

B
iiii

i

i 


 
0  (13) 

where MCi(Pi)=Ci(Pi)/Pi is the marginal cost function, Pi=Pi() is the supply function evaluated 

at the clearing price, and i=-/Pi is the generators residual demand’s slope at the equilibrium 

point, called conjecture price-response or conjecture, that can be calculated as follows (see [15]): 

      Ei
PDP

ij
ji

i 











 1  

(14) 

D()/ being the slope of the system demand and Pj()/ the slope of the supply function 

of the generator j, both evaluated at the equilibrium point. 

3.1 Elastic demand 

For elastic demand we have D()/=-0. Hence, the strategic behavior of the generators 

strongly depends on 0 [27]. Indeed, if 0 increases, equation (14) shows that all the conjectures 

decrease and thus the level of competition increases.  

Replacing (14) with D()/=-0 into (13) and including the balance equation (3) with 

linear demand D()=D0-0, D0 being the intercept of this curve4, the equilibrium conditions 

become: 

                                                 

4 This term is commonly known as the inelastic part of the demand [15]. 
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 
















i
i

i

ij
j

ii
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DD

EiPPMC


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

00

0

1

 (15) 

Even if D0 and 0 are known, (15) is undetermined with 2|E|+2 variables (Pi, i,  and 

D), and |E|+2 equations. To solve it, [13] proposes a robustness criterion consisting of local linear 

approximations of the supply functions valid for two close equilibria corresponding to two close 

enough demand scenarios (G-CSFE approach). These scenarios can be built varying D0 such that 

D(,)=D0()-0 with =1,2 and D0(2)>D0(1).  

Considering this robustness criterion, i can be approximated as follows:  

   
   
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  (16) 

E* being the subset of generators participating at the equilibrium point (E*E).  

From (16), if a generator is not producing due to high costs, then Pi(2)=Pi(1)=0 and the 

generator can be considered out of the market. Therefore, 

*0 Eii   (17) 

Extending (15) for the two demand scenarios and including (16) and (17), the final 

determined equilibrium equations are:  
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(18) 
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Substituting (1) and (2) from the first equation of (18) into the two last ones, and 

assuming linear marginal costs MCi(Pi)=ciPi+bi, it is possible to deduce that:  

   

       
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(19) 

And therefore: 
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(20) 

Note that (20) is a more general formulation than (11) since (20) matches (11) when E*=E. 

Note also that the strategy of a generator only takes into account the competitors that are not out 

of the market (set E*), E* being an equilibrium result.  

Equation (20) also shows that with linear marginal costs the final slopes i (and therefore 

the conjectures, see (14)) do not depend on the productions Pi() and prices (). Therefore 

i=i() is also independent of the demand scenarios . In addition, clearing i from (1) and 

evaluating it at (): 

       


 ,
1 *EiP

i
ii

 (21) 

Applying the first equation of (18) to evaluate () also with linear marginal costs leads 

to: 
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    *
0

11

*

EibcP i
i

Ej
ij

j
iii 




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
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(22) 

Clearing 1/αi from (20) and substituting it in (22), the bracketed term of (22) is null. Thus 

i()=i=bi is also independent of  and corresponds to the solution of (10). Therefore, it is possible 

to state that the G-CSFE with linear system demand and linear marginal costs matches with the 

LSFE. Indeed, the methodology proposed in [13] is more general since it does not require linear 

marginal costs.  

Note that prices  and productions Pi for a certain demand curve D() can be computed5 

from (15) using i from (20). 

3.2 Inelastic/Invariant demand 

When the demand is invariant against changes in the market price, D()/=0D()=D0, the 

equilibrium conditions of the G-CSFE can be deduced from (18) with 0=0. If linear marginal 

costs are again considered, slopes i can be directly obtained by solving (20) with 0=0 (see the 

appendix of [13]), which substituted into (15) (also with 0=0) allows to compute the price and 

productions for a demand scenario. Note that inelastic demand does not necessarily mean inelastic 

residual demand. 

                                                 

5 Reference [15] proves that with i fixed and convex cost functions, (15) can be computed using an 
equivalent quadratic optimization problem. 
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4. Existence and uniqueness of the G-CSFE with linear increasing marginal 

cost functions 

4.1 Elastic demand 

Section 3.1 showed that, when both the marginal costs and the demand are linear, the G-CSFE 

reduces to the LSFE and also meets the consistent conjectural equilibrium presented in [22]. 

Therefore, the existence and uniqueness of the G-CSFE for this particular case can be considered 

already proved in [22] and [28] (with i=1/xi and 0=1/f). 

4.2 Inelastic/Invariant demand 

Section 3.2 mentioned that, with linear marginal costs, the slopes i for the inelastic case can be 

directly obtained by solving (20) with 0=0, which becomes (the slopes of generators out of E* 

are neglected since they are always null): 

*

*

*

1
Ei

c

Ej
ij

ji

Ej
ij

j

i 

















  
(23) 

However, (23) is not a particular case of the elastic situation, and next sub-sections show 

that results of [22] and [28] for the elastic case cannot be used with 0=0, and specific 

considerations are needed to ensure existence and uniqueness of i and therefore of the 

equilibrium. 

4.2.1 Determination of i 

If y=iE
*αi is defined, solving (23) is equivalent to solving: 

 











*

*

1

Ei
i

ii

i
i

y

Ei
yc

y





 (24) 
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Transforming αi of (24) into a quadratic form: 

    *2 02 Eiyycc iiii    (25) 

the solutions of αi are given by: 

    *
2

2

422
Ei

c

ycycyc

i

iii
i 




  (26) 

Since i≥0, assuming that the offer price of the generators must be greater or equal than 

their marginal costs for any production Pi (iMCi(Pi)), then i must be located in the feasible 

region given by: 

*1
0 Ei

ci
i    (27) 

It is easy to prove that the only solution of (26) that satisfies (27) is6: 

      *
2

2

42
Ei

c

ycyc
y

i

ii
i 




  (28) 

4.2.2 Existence of at least one G-CSFE 

From (24) and (28), finding a solution for (23) is equivalent to solve the following system: 

 







*

*

Ei
i

ii

y

Eiy


  (29) 

where αi(y) is the function defined in (28). In addition, from (24) and (27) it is possible to see that 

y is bounded by: 





*

1
0

Ei ic
y  (30) 

                                                 

6 The other solution has been discarded since the offer price could become less than the marginal cost. 
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Note that (29) has implicitly the structure of a fixed point problem y=G(y), where from 

(28) G(y) is: 

       

 




** 2

42 2

Ei i

ii

Ei
i c

ycyc
yyG   (31) 

According to Brouwer’s fixed-point theorem (see [29]), if G is a differentiable mapping 

defined in I into itself, G: I→I, with I being a nonempty, compact and convex set, it is possible to 

state that there exists at least one fixed point y*I such that G(y*)=y*. 

Note that from (31) the function G is differentiable and from (27) it is defined in the next 

nonempty, compact and convex interval I: 









 

 *

1
,0

Ei ic
I  (32) 

therefore G(y) has at least a point y*I such that G(y*)=y*. Then, the equilibrium is obtained 

setting αi=αi(y*) iE*. 

4.2.3 Uniqueness of the G-CSFE 

From (31) it can be seen that the fixed point G(0)=0 is a solution of (23) (see blue line in Figure 

1). However, αi=0 i implies Pi=0 i (from (1)) and cannot be a solution for a non null demand 

D0>0. Hence, it is necessary to guarantee that (31) has an additional single fixed point y*>0. To 

do so the following conditions can be checked: 

 
0




y

yG  (33) 

 
0

2

2





y

yG  (34) 

 
1

0






yy

yG  (35) 

Indeed equations (33) and (34) imply that G(y) is an increasing and concave function and 

equation (35) means that just after the fixed point G(0)=0 the function G(y) (blue line in Figure 
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1) is larger than the line of fixed points G(y)=y (red line in Figure 1). If all the above conditions 

hold simultaneously, then there exists only one fixed point G(y*)=y* with y*>0.  

 

Figure 1. Equilibrium’s solution for linear marginal costs and inelastic demand. 

Testing condition (33): 

Deriving G(y) with respect to y leads to: 
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Since each term included into the summatory of (36) is less than one, condition (33) is 

satisfied. 

Testing condition (34): 

Using (36), 2G(y)/y2 is given by: 
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Since 1>(ciy)2/((ciy)2+4) in (37), then G(y) is concave.  
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Evaluating (36) in y=0 leads to: 

 
2

1*

0








E
y

yG

y

 (38) 

Thus condition (35) is only satisfied when |E*|>2.  

Therefore, for inelastic demand and linear marginal costs, if |E*|>2, conditions (33)-(35) 

are satisfied simultaneously and the equilibrium exists and is unique. It is important to highlight 

that for elastic demand there is no minimum number of generators for the equilibrium existence. 

When |E*|=2, two alternatives exist. If c1=c2 (symmetric duopoly), there are infinite 

solutions for (23) whenever α1=α2. On the contrary, if c1c2 (asymmetric duopoly), the only 

solution for (23) is α1=α2=0, leading to P1=P2=0. Note that this is the mathematical solution for 

(23) but it does not solve (15) for D0>0. 

If |E*|=1 then the solution is a monopolistic situation where 1 and thus . Again, 

although the above solution corresponds to the mathematical solution for (23), it does not 

correspond to an equilibrium problem since there is only one participant. 

5. Existence and uniqueness of the G-CSFE with nonlinear increasing 

marginal cost functions 

With linear marginal costs and the same minimum marginal costs for all the generators (bi=bj 

i≠j), the aggregated marginal costs curve is also linear. This implies that, for any demand value 

D, E*=E and, from (11) and (23), the supply function slope i (and therefore i) is constant 

(corresponding to the LSFE). However, if nonlinear marginal costs, or different minimum 

marginal costs (bibj i≠j) are considered (leading to a continuous linear piecewise aggregated 

marginal costs function), equation (20) can be rewritten as: 
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(39) 

Hence, i cannot be considered invariant with the demand D. On the contrary, i depends 

on MCi(Pi)/Pi at the production Pi and also on E*, as shown in [13]. Indeed, system (39) is not 

well-defined since MCi(Pi)/Pi i are also variables (2|E| variables with |E| equations). 

Hence, one alternative to solve this problem is to join (15) and (39), resulting in a new 

nonlinear system for which we have not analyzed the existence and uniqueness of the 

solution yet. However, the iterative algorithm described in the next Section could still be 

used for the equilibrium computation, although it is not possible to guarantee the 

existence and uniqueness of the solution. 

6. Convergence of the algorithm for the G-CSFE 

From the previous two sections, if the marginal cost function of every generator is differentiable 

at the equilibrium point, then an equilibrium exists and is unique (with |E*|>2 for inelastic demand, 

see section 4.2). If the marginal costs are linear, the equilibrium can directly be computed by 

solving (20) or (23) depending on the demand elasticity. However, for nonlinear increasing 

marginal costs, MCi(Pi)/Pi and E* are a priori unknown. In this case the iterative algorithm 

proposed in [13] and [30] can be applied for the equilibrium computation. This algorithm consists 

on a two-step iterative approach where, at each iteration k: 
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 First step: solves two equilibria for two demand scenarios close enough (see (18)), 

with i and E* fixed7 (i,k and Ek
*), using the equivalent quadratic optimization 

problem of [15]. For elastic demand the objective function includes its utility [15]. 

This step provides the equilibrium productions Pi,k() and the marginal prices k(). 

 Second step: computes i,k+1 and determines Ek+1
* using Pi,k() and k() from the 

first step as follows: 
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 0: 1,
*
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kk

kiki
ki

EiE

Ei
PP






  
(40) 

The algorithm converges when in two consecutive iterations the value of i does not 

change i. Otherwise, the first step is executed again with the new values of i. 

Since the proposed algorithm has a structure of a fixed point algorithm (see Appendix) 

and there is at least a solution for (18), its convergence is guaranteed. However, convergence does 

not hold for inelastic demand with |E*|2, or when MCi(Pi)/Pi does not exist. 

7. Numerical examples 

This section uses four examples to discuss the goodness of the iterative algorithm proposed in 

[13] and [30] to compute the G-CSFE with general marginal costs functions and inelastic demand 

(D()=D0). These examples consider both linear and nonlinear increasing marginal costs 

functions (cases A and B respectively). 

7.1 Linear marginal costs 

The following cases have been analyzed: 

                                                 

7 If the solution of the problem to be solved exists and is unique, since the iterative algorithm used to solve 
it has a fixed point structure, the initial αi and E* do not affect the numerical solution. The initial scenario 
may affect the number of iterations that the algorithm needs to find the equilibrium. 
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 Three generators with bi=0 i. 

 Three generators with bi>0 i and b1b2b3. 

 Five generators with bi>0 i and b1b2b3=b4=b5. 

In all cases the initial values of αi have been set to the slopes ci of the marginal costs functions. 

7.1.1 Three generators with bi=0 i 

Figure 2 depicts the marginal costs MC1(P1)=0.020P1, MC2(P2)=0.001P2 and MC3(P3)=0.005P3, 

and the supply functions (SFi) for all the generators. Likewise, Figure 3 shows the production of 

each generator (Absi), and its power share (p.u.i). Since bi=0 i, the aggregated marginal costs 

(MCT) and supply function (MCA) are linear (see Figure 2). Hence, the three generators have 

non null productions for any demand value and E*=E.  

 

Figure 2. Marginal costs and supply functions for three generators and bi=0 i 

 

Figure 3. Distribution of the power for three generators and bi=0 i 

The resulting power share (see p.u.i in Figure 3) for each generator is inversely 

proportional to its marginal costs’ slope (see MCi in Figure 2), and constant for any demand value.  
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Even if each solution can be computed directly by solving (23), this simple case study 

has been selected to show, in Figure 4, how the iterative algorithm of [13] evolves until 

convergence (after 15 iterations). 

 

Figure 4. Equilibrium’s solution for three generators with linear marginal costs and 

inelastic demand 

7.1.2 Three generators with bi>0 i and b1b2b3 

Figure 5 shows the marginal costs (MCi) and the supply functions (SFi) for all the generators of 

the case 7.1.1 when b1=30, b2=40 and b3=25. Likewise, Figure 6 displays the cleared power (Absi) 

and power share (p.u.i) for each one of them. As proved before, the equilibrium can only be 

computed when |E*|>2.Therefore, since bibj i,j, the generators’ supply functions cannot be 

computed for all the demand range (see for example Figure 5 for prices lesser than 40€/MWh). 

 

Figure 5. Marginal costs and supply functions for three generators and bibj i,j 
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Figure 6. Distribution of the power for three generators and bibj i,j 

For prices larger than 40€/MWh the value of i remains constant since the marginal costs 

functions are linear and the number of generators into the market remains constant. However, this 

does not imply that the power share of the generators is constant too. Unlike the previous case 

where the power shares were only affected by i, here they are also affected by the intercept of 

the marginal costs bi (for those demands where i, the production of a generator can be computed 

as a function of the market price as Pi=(-bi)/i). For example, Figure 6 shows that for lower 

demands, generator 3 produces more than its competitors (b3 being the lowest). However, for 

higher demands, generator 2 has the largest power share and the system goes into a situation 

similar to case 7.1.1. 

7.1.3 Five generators with bi>0 i and b1b2b3=b4=b5 

The same three generators of case 7.1.2 have been used, and two additional generators with 

MC4(P4)=0.010P4+25 and MC5(P5)=0.050P5+25 have been included. Figure 7 shows the 

marginal costs (MCi) and the supply functions (SFi) for the 5 generators. Note that both new 

generators have the same minimum marginal costs as generator 3 (the lowest one). Therefore 

there are at least three generators producing for any demand level, and their supply functions are 

defined for every demand value. However, the number of generators into the market changes 

when the system demand increases. Therefore, supply functions’ slopes are not constant. This 

reinforces the idea that supply functions should not be represented by a single linear function, but 

can be built from linear approximations for the full range of system demands (see [2], [9] and 

[13]).  
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Figure 7. Marginal costs and supply functions with five generators 

The effect of the number of the generators producing can also be seen in Figure 8.  

In this case the analysis reveals different price intervals. The first one corresponds to 

prices between 25 and 30 €/MWh, where only three generators (generators 3, 4 and 5) produce 

(Pi>0) and their strategy remains constant. Then, for 40€/MWh>>30€/MWh, generator 1 enters 

into the market and produces, modifying the behavior of the three initial generators, and leading 

to a more competitive situation. This fact can be seen in Figure 8, where the slope of the MCA 

decreases compared to the initial one (for 30€/MWh>>25€/MWh). The final price interval is for 

>40€/MWh. From this point, all the generators are producing, implying new strategic changes 

and increasing competition.  

 

Figure 8. Distribution of the power with five generators 
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 MC1(P1)=1.98e-6(P1)2+2.3e-3P1+30 

 MC2(P2)=5.83e-7(P2)2+4.237e-4P3+40 

 MC3(P3)=1.98e-6(P3)2+1.04e-3P3+25 

 MC4(P4)=5.0e-6(P4)2+2.36-3P4+25 

 MC5(P5)=3.0e-7(P5)2+5.0e-3P5+25  

The initial values of αi have been set to the derivative of the marginal cost function evaluated at 

Pi=0, that is αi=MCi(Pi)/Pi| Pi=0. 

Figure 9 shows the marginal costs (MCi) and the supply functions (SFi) for the five 

generators. In this case the aggregated marginal cost function consists of three quadratic and 

continuous segments (MCT). The results show how the proposed iterative algorithm is able to 

compute the supply functions even when the marginal costs are not linear, the only requirement 

being that the equilibria occur at differentiable points of the aggregated marginal costs function 

(see [15]). Figure 9 also shows the extra cost (from the demand side) or extra offer prices (from 

the generators side) due to the conjectures mark-up, with respect to a pure marginal cost system.  

 

Figure 9. Nonlinear marginal costs and supply functions with five generators  
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Supply Function Equilibrium (LSFE) and the G-CSFE are totally equivalent. Then, since for the 

G-CSFE the marginal costs functions are not necessarily linear, LSFE can be considered as a 

particular case.  

Taking into account that in general the electricity demand elasticity is rather small and 

hard to estimate, the inelastic demand assumption is a very frequent approximation for medium 

and long term analysis. This article proves that G-CSFE exists and is unique for inelastic demand 

and linear marginal costs, when the number of generators producing is strictly greater than two, 

which significantly differs from the elastic case where the equilibrium exists for any number of 

generators. However, it is not possible a priori to know the equilibrium location, making the use 

of an iterative algorithm, such as the one proposed in [13] and [30], a very convenient approach. 

Finally this article also proves that the algorithm proposed in [13] and [30] has a fixed point 

structure and therefore is convergent. 

Numerical examples show that, modeling the supply functions with linear functions 

strongly conditions the final solution, and seems only acceptable when all the generators have 

linear marginal costs functions with same minimum cost, but should be avoided for more realistic 

markets. Indeed, the shapes of the supply functions cannot be guessed a priori, but they can be 

built by means of linear approximations around the equilibrium point for all the possible equilibria 

obtained varying the demand, as it is proposed here and in [13] and [30]. 

9. Appendix 

Let’s prove that the algorithm of [13] is in fact a fixed point algorithm. On the one hand, the 

proposed algorithm computes the slopes i,k+1 as follows:  
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(41) 

where each Pi,k is obtained solving (15) with i=i,k and E*=Ek
*. 
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On the other hand, a standard fixed point algorithm computes yk+1=∑i ’i,k+1 such as 

yk+1=G(yk), being G the mapping defined in (31) and yk=∑i i,k. 

Note that ’i,k+1=i,k+1 i, since ’i,k+1 satisfies (23) which has been deduced from the 

last two equations of (18). 
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