
Formal Verification of Safety-Critical User Interfaces: A Space System Case Study

Manuel Sousa1 and José Creissac Campos1 and Miriam Alves2 and Michael D. Harrison3

1 Depart. Informática, Universidade do Minho & HASLab/INESC TEC, Campus de Gualtar, 4710-057 Braga, Portugal
2 Instituto de Aeronáutica e Espaço, São José dos Campos, Brasil

3 Newcastle University, Newcastle upon Tyne & Queen Mary, University of London, Mile End Road, London, UK
jose.campos@di.uminho.pt

Abstract
Safe operation of safety critical systems depends on appro-
priate interactions between the human operator and the com-
puter system. Specification of such safety-critical systems
is fundamental to enable exhaustive and automated analy-
sis of operator system interaction. In this paper we present
a structured, comprehensive and computer-aided approach to
formally specify and verify user interfaces based on model
checking techniques.

Introduction
Safe operation of safety-critical systems depends upon ap-
propriate interaction between the human operator and the
system. In a study by MacKenzie (1994), the vast majority
of computer-related accidental deaths studied (92%) could
be related to failures in such interaction. While it is common
to attribute such accidents to “user error”, in practice error
is the consequence of a combination of factors, and the role
played by the user interface should be carefully considered
(Leveson 1995). Operators can, in many cases, solve more
problems that they create (Nichols 1973).

Specifying user interfaces for safety-critical applications
involves more than merely describing the graphical ele-
ments. Elements of behavior that are related to the interac-
tion are crucial too. The user interface defines a “dialog”
that determines how the operator communicates with the
system, which functions are available, and which informa-
tion is provided at each moment. It is this dialog, and the
effect of users’ actions on the system, that must be captured
in the specification. Furthermore, this specification must be
amenable to exhaustive and, preferably, automated analysis.

This last requirement rules out specifications written in
natural language which are notoriously ambiguous and not
readily amenable to analysis. The use of an appropriate for-
mal language for modeling the user interfaces has the ben-
efit of a precise mathematical meaning, allowing the elab-
oration of a specification that is complete, consistent, and
unambiguous. It also helps ensure accurate communication
between all parties involved as well as providing a certain
level of precision through its execution. Computer-aided au-
tomated analyses also raise confidence in the completeness
and consistency of the user interfaces.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The application of formal techniques for specification and
verification to complex system’s user interfaces may address
different goals. These range from validating the user inter-
face’s design before its implementation, through to the sys-
tem’s qualification and acceptance phase, where it is im-
portant to guarantee that the user interfaces are appropriate
for the system’s safety. These aspects are sometimes hard
to assure with conventional testing. More recently the abil-
ity to validate requirements early on in the complex sys-
tems lifecycle is becoming increasingly important to orga-
nizations that implement capability-based acquisition. Gov-
ernment organizations, for instance, play the role of smart
buyers whose job is to acquire a set of capabilities. This
makes the task of assuring that the capabilities are correctly
translated into system specifications more vital to the gov-
ernment.

Although there is an extensive literature reporting results
in the use of formal methods for modeling and verifica-
tion of safety-critical space systems (Leveson et al. 1994;
Schneider et al. 1998; Havelund, Lowry, and Penix 2001;
Glück and Holzmann 2002; Alves et al. 2011), there is a lack
of references reporting the use of such methods for formally
specifying and verifying systems’ user interfaces. Broaden-
ing the scope, references can be found that address user in-
terface analysis in safety critical domains, such us avionics
(Campos and Harrison 2001; Rushby 2002), or the medical
field (Elder and Knight 1995; Campos and Harrison 2009;
Masci et al. 2011; Harrison, Campos, and Masci 2013).
However, while some of the references address real devices
(or components of devices), most tend to be relatively small
devices, which raises issues of scalability.

In this paper we present a structured, comprehensive and
computer-aided approach to formally specify and verify user
interfaces. The approach is based on model checking tech-
niques and resorts to the IVY workbench (Campos and Har-
rison 2008; 2009), a model-based tool for the analysis of
interactive systems. A case study of a safety-critical system
used within the aerospace domain was conducted, where a
set of user interfaces were formally modeled, based on the
User Operation Manual, and verified. Besides of formally
verifying the user interface against critical properties, the
study case was intended to evaluate two main points: the
proposed approach and its tool-based support for this kind
of systems; and the expressiveness of the formal language of

Formal Verification and Modeling in Human-Machine Systems: Papers from the AAAI Spring Symposium

62

Figure 1: The IVY tool

choice. The results to date showed the applicability of such
approach for the system under study, and its potential to be
used in other critical areas. The study case also signaled a
potential of applying such approach for user interface verifi-
cation and subsequent acceptance of a third-party contractor.

The IVY workbench
The IVY tool (see Figure 1) supports the modeling and ver-
ification of interactive systems. The approach is based on
the development of models of the interactive device, and on
their verification through model checking against properties
that encode assumptions about the device’s behavior. When
verification fails, the counter examples produced by the ver-
ification process act as scenarios for analysis.

The tool provides support for three main activities: build-
ing a model; expressing and verifying properties; and ana-
lyzing the results of the verification process. Each of these
will now be briefly described.

Building models Models are developed in the MAL
(Modal Action Logic) Interactors language. A detailed de-
scription of the language is out of the scope of the paper, the
interested reader is referred to (Campos and Harrison 2001)
for more details on the language. In brief, a MAL interac-
tor is defined by: a set of typed attributes that define the
interactor’s state; a mapping of the attributes to some pre-
sentation medium; a set of actions that define operations on
the interactor’s state; a set of axioms written in MAL that
define the semantics of the actions.

MAL axioms can be divided into three main groups:
Propositional axioms define invariants that must always be
true of the state of the interactor; Modal axioms define the
effect of an action on the state of the interactor, they can be
seen as production rules that define a state machine over the
state of the interactor; Deontic axioms define under which
conditions an action is permitted or obligatory.

A model is constructed by composing interactors in a hi-
erarchical structure. In this way, a model can always be rep-
resented by a state machine, where the states are defined by

Figure 2: State-based representation.

the attribute values and the transitions are labeled by the ac-
tions that cause changes to the attributes.

Expressing and verifying properties Properties for ver-
ification are written in CTL (Computational Tree Logic)
(Clarke, Emerson, and Sistla 1986). Properties express as-
sumptions about the expected behavior of the system.

Patterns are used to help the writing of the properties. The
IVY user can select, from a number of patterns, the one that
best suits the analysis needs, and instantiate it with actions
and attributes from the model. The correct CTL property for
verification is generated by the properties editor.

The verification step is performed by the NuSMV model
checker. To make the verification possible, MAL interactor
models are compiled into equivalent SMV models.

Analysing results A visualization component facilitates
analysis of the results by means of visual representations and
trace analysis mechanisms. A tabular representation (see in-
set in Figure 1) uses columns to represent states and lines for
actions and attributes (the yellow/darker background color
on some cells is used to highlight changes to the values of
actions/attributes).

In a state-based representation (see Figure 2) each inter-
actor is represented in a column which shows the states that
the interactor goes through. Actions are shown as labels in
the arrows between two consecutive states. A further repre-
sentation uses UML 2.0 Activity Diagrams.

The Testing and Preparation System (TPGS)
The TPGS is a space ground legacy system that has been in
use to support space mission preparation for more than 15
years in the Brazilian Space Launcher Program. The soft-
ware components of TPGS are often updated as a result of
new mission requirements, different rocket configurations,
and new operating systems releases. The hardware is oc-
casionally upgraded as a results of the obsolescence of the
TPGS’s equipment. Main contractors are in charge of these
activities. Our mid-term goal in this case is to provide a set
of user interface requirements for correct mission-safety sys-
tem operation as the system evolves as a result of these up-

63

	

MN
Subsystem

SC
Subsystem

EV
Subsystem

PR
Subsystem

CR
Subsystem

Telemetry Time
Synchronization

Operators Batteries
Operational

Communication
Operational
Signalization

INTERFACES UMBILICAL
 CORDS

R
O

C
KET

PW
Subsystem

Figure 3: The TPGS’s macro architecture

dates. These requirements are formally modeled and veri-
fied against critical properties using the IVY tool. Once the
user interface requirements are formally verified, they can
be used as a requirement baseline (an oracle) for the TPGS
during the acceptance phase.

TPGS is a safety-critical system that is composed of very
specific and customized hardware and software components.
These components are responsible for the ground control,
testing and preparation of a satellite launch rocket before it
is launched. It includes six different subsystems that provide
specific functionality during the rocket’s testing and prepa-
ration for launching. Figure 3 shows the macro architecture
of TPGS.

The functional requirements for the TPGS were estab-
lished separately for each subsystem in a 250-page docu-
ment. The rocket’s preparation process for the flight involves
thoroughly checking specific parts of the rocket’s electri-
cal network. The operators of each subsystem must follow
a comprehensive preparation checklist that includes proce-
dures and interactions with the rocket’s hardware and soft-
ware in real-time. The preparation and testing process is
mainly based on the user interface’s inputs and outputs. As
each TPGS’s subsystem has a specific set of critical proce-
dures to be accomplished, the user interfaces must provide
an acceptable level of trustworthiness.

Considering the user interface complexity of the TPGS,
we decided to select the EV subsystem to apply our ap-
proach. This subsystem is responsible for flight events, se-
quence testing and the activation of the rocket’s security
mechanical devices during the automatic sequencing for
launching. We intended to address two issues: (a) determine
whether the expressiveness of the language was enough to
model the type of user interfaces used in the aerospace field
(and study the best approach to model them); (b) determine
the viability of analyzing and formally verifying user inter-
faces of systems as complex as these (and study the level of
detail that could be achieved while maintaining the feasibil-
ity of the analysis).

Model
We do not provide a detailed account of the model herein
(detailed descriptions of MAL models can be found in,
for example, (Campos and Harrison 2008; 2009; Harrison,
Campos, and Masci 2013)). Here we are interested in how
the model was generated from the operator manual.

Figure 4: The models’s macro architecture

Structure of the model
The first decision to make was concerned with the structure
of the model. According to the manual, the subsystem con-
sists of several screens, with some screens containing tens
of graphical elements. This structure was replicated in the
model, making use of the object-oriented features of the
MAL interactors language. The model becomes a tree-like
composition of interactors (organized through aggregation
relations), where each interactor represents an entity in the
interface (e.g. a panel or a control representing the state of a
variable in one of the panels).

Figure 4 shows the architecture of the model. A main in-
teractor coordinates a number of other interactors, each cor-
responding to a different panel in the user interface. Each
of these panels aggregates variables representing the infor-
mation that they display. It must be noted that panels Alarm
and Alert are special cases. They present a summary view of
the variables in an alarm (resp., alert) condition in the other
panels.

Navigation between screens
The manual describes the interfaces of the EV subsystem as
comprising a total of twenty three screens. Only one screen
can be displayed at a time. Which screen is being displayed
is represented in the main Interactor using the variable dis-
play with type Screens (the set of possible screens):
types

Screens = {Principal, Sinotico, alar, ...}
interactor main

attributes
[vis] display: Screens

To change between screens the user interface provides
a set of buttons. Actions representing each of the buttons
(hence, the selection of each screen) were defined. The ac-
tions are all defined in the same way: when an action is trig-
gered, for example sin, the value of variable display changes
to represent the appropriate screen (in the case below, the
Sinotico screen):

actions
sin tmt alarmes alertas ...

axioms
[sin] display’=Sinotico
...

64

As some navigation buttons do not always appear on the
screen, some restrictions have to be made to represent this
behavior. The action sin for example, is not available on the
access screen, when the system is blocked, and on the exit
screen. To represent that, we need to add a permission state-
ment, saying when the action sin can be triggered:

per(sin) -> !(display in {acessoSis,
acessoSev, Bloqueio, Escolha, Final})

All actions related to navigating the user interface are
modeled similarly. To finalize the modeling of the naviga-
tion we only need to define the first screen of the system.
This is done with an initialization axiom:

[] display=acessoSis

Modeling the screens
Modeling navigation between screens was relatively
straightforward, the next step was to model the screens.
Since each of the screens presents information about a spe-
cific aspect of the system (particular cases are the alerts and
warning screens that show lists of variables in alert/alarm),
the first step was to model the behavior of a single variable.
Then, modeling a screen consisted in defining the aggrega-
tion of a relevant number of variables (with any additional
actions and control logic).

Variables The manual describes variables on the screen
as having a value which can change over time, a color, and a
display characteristic (fixed or blinking). The value of a vari-
able changes according to some underlying system proper-
ties (e.g. temperature of some specific device). Variables can
be critical or non-critical, depending on which system prop-
erty they represent. The TMT screen has the more complex
variables, featuring additional characteristics such as work-
ing limits, description, and measurement units. Going out-
side the specified limits generates alerts or alarms. These
alerts and alarms must then be acknowledged by the opera-
tor.

To capture all the behavior described we designed the tmt-
Variable interactor. The value displayed, and other charac-
teristics such as the color and display characteristic used are
captured by attributes of the interactor. Changing the vari-
able is achieved through the setValue(int) action, where the
action changes the value and sets the appropriate color and
blinking characteristic. Axioms defining it take the general
shape (where priming is used to reference the value of an
attribute in the state after the action has happened):
[setValue(_v)] (conditions on _v) ->

value’ = _v & color’ = ??
& characteristic’ = ??

To illustrate the approach taken, consider the following
extract from the manual (translated from the portuguese
original), which describes when a variable should be dis-
played in blinking yellow (i.e. value’=yellow & character-
istic’=blink):

Blinking yellow: For a critical variable, when the cur-
rent value of the variable is in non acknowledged alert
(value within the alert range), there is no acknowledged
alarm in the variable, and the previous criterion [non
acknowledged alarm criterion] is not satisfied. If over

the same critical variable an acknowledged alarm ex-
ists, then Fixed Red prevails. For a non critical vari-
able, when the current value of the variable is in non
acknowledged alarm (value within the alarm range)

Representing the fact that a variable is critical or not by a
boolean attribute named critical, and the inferior/superior
alert and alarm limits by infAlertLim/supAlertLim and in-
fAlarmLim/supAlarmLim, respectively, we can model the
condition expressed in the first sentence of the quotation
above as:

critical
& ((_v>=infAlarmLim & _v<infAlertLim)

|(_v<=supAlarmLim & _v>supAlertLim))
& alarmState!=AlaRec & alarmState!=AlaNRec)

where AlaRec is the acknowledged alarm state and AlaN-
Rec is the non acknowledge alarm state.

Similarly, the last sentence can be represented by the ex-
pression:

!critical
& ((_v < infAlarmLim) | (_v > supAlarmLim))

By this means the axiom described in Figure 5 was de-
veloped. The axioms include two additional attributes: the
type of error, and the variable’s unit. The keep operator is
used to express that the value of the listed attributes are kept
unchanged. The value of an attribute will change nondeter-
ministically, unless this is ruled out by the keep operator or
the value is explicitly set by the model axiom.

Note that the middle sentence was not directly included in
this axiom. Instead, because the sentence refers to the preva-
lence of a different condition over this one, a new axiom (for
the condition critical & alarmState = AlaRec) is added to
the model. In this case the axiom specifies setting the color
to red and the blinking characteristic to fixed.

Screens A model of the TMT screen can now be created
by aggregating instances of tmtVariable. The TMT screen
has a table with more than 30 variables. Its function is to
allow monitoring the variables, and as such, there are no ac-
tions for the user to perform in the screen. However, the ac-
cess button to the screen (as for all the other screens in the
system) has a color and a blinking characteristic, as the vari-
ables do. These are represented directly on the panel. Here
is the structure of the Interactor:
interactor TMT
aggregates
tmtVariable via BD1_A
tmtVariable via BD1_B
...

attributes
characteristic: Characteristic
color: Color

actions
setValue2(Id,Int)

The means of defining color and characteristic is similar
to that of the variables, but in this case their values depend on
the colors and characteristics of the variables in the screen.
For example, the button is red and blinking when at least
one critical variable of the screen is in a non-acknowledged
alarm state. These constraints are expressed as invariants. In
the case of two variables we can write the following invariant
to express the blinking red condition above:

65

[setValue(_v)] (((critical & ((_v >= infAlarmLim & _v < infAlertLim)
| (_v <= supAlarmLim & _v > supAlertLim)))

| (!critical & ((_v < infAlarmLim) | (_v > supAlarmLim))))
& (alarmState != AlaRec & alarmState != AlaNRec))

-> value = _v & color = yellow & error = Lim & alertState = AleNRec
& characteristic = Blink
& keep(supAlertLim,infAlertLim,supAlarmLim,infAlarmLim,

unit,critical,alarmState)

Figure 5: Axiom for the blinking yellow case

BD1_A.alarmState = AlaNRec -> (color = red
& characteristic = blink)

BD1_B.alarmState = AlaNRec -> (color = red
& characteristic = blink)

In the case of the setValue2 action, we need to synchronize
it with BD1 A.setValue and BD1 B.setValue. We can do this
by adding constraints to express, indeed force the require-
ment that when a variable sets its value the screen performs
the same action (the effect operator asserts the occurrence of
an action):

effect(BD1_A.setValue(_v)) ->
effect(setValue2(BD1A,_v))

effect(BD1_B.setValue(_v)) ->
effect(setValue2(BD1B,_v))

per(setValue2(BD1A,_v)) ->
effect(BD1_A.setValue(_v))

per(setValue2(BD1B,_v)) ->
effect(BD1_B.setValue(_v))

The first two implications state that when the BD1 A
(resp., BD1 B) variable sets its value the setting of the vari-
able is visible on the screen too (i.e., setValue2 happens
when any of the variables are set). The third and fourth im-
plications state that setValue2 for BD1 A (resp., BD1 B) is
only permitted when BD1 A (BD1 B) is set (i.e., setValue2
cannot happen unless the set of a variable happens).

For the sake of simplicity the axioms above are for
a screen with only two variables. Adding more variables
amounts to adding more axioms, or adding conditions to the
existing ones. The modeling principle, however, is the same.
Note also, that in the final version of the model some of these
axioms were combined to simplify the model.

Adding more screens Other screens were modeled sim-
ilarly, each with its specificities. The SIN screen, besides
variables, features safety relays. An indicator in each relay
indicates whether it can be released or not. These relays were
modeled as booleans directly in the SIN Interactor. Addition-
ally, the SIN screen can be set to automatic mode.

The alarms and alerts screens have a list of alarms and er-
rors, respectively, that can be acknowledged by the operator.
The same approach used for the TMT screen was followed:
defining alerts or alarms variables, and aggregating them to
create the screens’ models (the ALER and ALAR interactors.

Coordination between the screens We create the model
of the subsystem by aggregating the four interactors in the
main interactor, and adding coordination invariants. Note
that since the Alarm and Alert screens/interactor support the

acknowledgment of alarms/alerts, and these must be coordi-
nated with the TMT and SIN screens, an acknowledge action
was added to the TMT and SIN interactors.

Analysis
A number of different properties were checked of the model.
Our experience shows that these typically fall into two cat-
egories. Properties intended to validate the model (i.e., to
provide confidence that no modelling mistakes have been
made), and properties intended to verify the model against
requirements. The first category of properties typically takes
the shape of stating that some goal of the system cannot
be achieved. For example, in order to get counterexamples,
showing that variables can be in alert, we wrote the inverse
property. In this case that for all states where the variable
BD1 A is in normal state (its color is green), there is no next
state where the variable is in alarm (color red):
AG(monitTMT.BD1_A.colour = green ->

!EX (monitTMT.BD1_A.colour = red))

As expected, the property was model checked as false, and
a counterexample was generated (see Figure 2). The coun-
terexample highlighted a situation where the BD1 A variable
was red, but under an acknowledged alert condition. Accord-
ing to our understanding of what had been modeled, such a
situation should not be possible. Analysing the model we
found that it did not define what happens to a non critical
alert, which was the case in the counterexample. Because of
that, the behavior of the system under that particular con-
dition was not being defined in the model. Consequently
the model checker was considering any possible behavior
as legal, which meant that variables were in practice being
changed randomly.

Initially we assumed this was a problem with the model,
but analyzing the operation manual we realized that it does
not provide the absent information. Hence we had found a
gap in the definition of the alerts and alarms in the operation
manual of the system. After discussing this with an operator,
it was concluded that indeed the manual did not treat these
conditions accurately. No other error was found in relation
to the other properties we have tested to date.

An additional concern is related to the performance of the
verification. We experimented with the use of invariants vs.
guards in the definition of how button colors and blinking
characteristics change as the variables’ values change. This
involved describing the relation between the variables’ value
and their color and other characteristics, statically versus
expressing this relation in the modal axioms as described
above. We found that invariants make the model checker

66

consume more memory during the verification, as well as
taking more time to complete the analysis. Hence, we de-
cided that, particularly in relation to the action setValue of
the tmtVariable Interactor, we would use guards instead.

In this paper we have described the simpler versions of
the models (considering very few variables). In the com-
plete study we added more detail to the model to show that
this is just a case of adding more variables and the corre-
sponding axioms (models were produced with up to 42 vari-
ables per screen). The described approach adds no particular
complexity in terms of writing the models (even if some ax-
ioms can become rather large). However, the addition of new
variables substantially increases verification time. For exam-
ple, with one variable, one property took approximately one
to two minutes. With two variables the same property took
approximately six minutes. With more variables the time
needed for verification grows quickly. The increasing verifi-
cation time is not constant, so we can expect a considerable
time variation for the verification of the complete system.

A particularly interesting aspect of this work relates to the
nature of the model and how it was developed. As already
stated the model was developed from the operator manual,
while interaction with the IAE’s team was kept to a mini-
mum. The model then represents the information provided
to operators, more than the actual implementation. Proving
properties can then be understood as investigating the qual-
ity of the provided information. Indeed we were able to iden-
tify an instance where not enough information is provided.
This illustrates how the approach can be used independently
from the “client”, to obtain relevant verification results based
on the information provided.

Conclusions
Formal verification techniques have an important role in
guaranteeing the safety of safety-critical interactive systems.
The model checking based approaches used in this paper
have the rigor, and the tool support needed to perform ex-
haustive and automatic verification of system designs.

This paper has described how the IVY workbench was
applied to an existing aerospace system. Our experience
has shown that the proposed approach provides a practical
and feasible way to systematically specify and automatically
verify, the user interfaces of complex systems. In most of
the cases, such verification activities are restricted to inspec-
tions of documents and test results analysis, where the inter-
pretation of the results can still be quite subjective and the
test scenarios may not cover all the possible combinations
of actions that can take place. The support of a computer-
aided tool was fundamental to accomplish this activity and
the overall approach can represent a step forward to improve
the system’s dependability.

Acknowledgment J.C. Campos is funded by project ref.
NORTE-07-0124-FEDER-000062 co-financed by the North
Portugal Regional Operational Programme (ON.2 – O Novo
Norte), under the National Strategic Reference Framework
(NSRF), through the European Regional Development Fund
(ERDF), and by national funds, through the Portuguese
foundation for science and technology (FCT).

References
Alves, M. C. B.; Drusinsky, D.; Michael, J. B.; and Shing,
M. 2011. Formal validation and verification of space flight
software using statechart-assertions and runtime execution
monitoring. In Proc. 6th IEEE Intl. Systems of Systems
Conf., 155–160.
Campos, J. C., and Harrison, M. D. 2001. Model check-
ing interactor specifications. Autom. Softw. Eng. 8(3-4):275–
310.
Campos, J. C., and Harrison, M. D. 2008. Systematic anal-
ysis of control panel interfaces using formal tools. In Inter-
active Systems, volume 5136 of Lecture Notes in Computer
Science, 72–85. Springer-Verlag.
Campos, J. C., and Harrison, M. D. 2009. Interaction en-
gineering using the IVY tool. In Engineering Interactive
Computing Systems (EICS 2009), 35–44. ACM.
Clarke, E. M.; Emerson, E. A.; and Sistla, A. P. 1986. Au-
tomatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2):244–263.
Elder, M. C., and Knight, J. C. 1995. Specifying user inter-
faces for safety-critical medical systems. In 2nd Annual Intl.
Symp. Medical Robotics and Computer Assisted Surgery,
148–155. Wiley-Liss.
Glück, P. R., and Holzmann, G. J. 2002. Using spin model
checking for flight software verification. In Proc. IEEE
Aerospace Conference, 105–113.
Harrison, M.; Campos, J.; and Masci, P. 2013. Reusing
models and properties in the analysis of similar interactive
devices. Innovations in Systems and Software Engineering.
doi:10.1007/s11334-013-0201-3.
Havelund, K.; Lowry, M.; and Penix, J. 2001. Formal analy-
sis of a space craft controller using spin. IEEE Transactions
on Software Engineering 27(8):749–765.
Leveson, N. G.; Heimdahl, M. P. E.; Hildreth, H.; and Reese,
J. D. 1994. Requirements specification for process-control
systems. IEEE Trans. Soft. Eng. 20(9):684–706.
Leveson, N. 1995. Safeware: System Safety and Computers.
Addison-Wesley Publishing Company, Inc.
MacKenzie, D. 1994. Computer-related accidental death:
an empirical exploration. Sci. Publ. Policy 21(4):233–248.
Masci, P.; Ruksenas, R.; Oladimeji, P.; Cauchi, A.; Gimblett,
A.; Li, Y.; Curzon, P.; and Thimbleby, H. 2011. On formalis-
ing interactive number entry on infusion pumps. Electronic
Communications of the EASST 45.
Nichols, D. 1973. Mishap Analysis: an Improved Approach
to Air Craft Accident Prevention. Air War College research
report. Air War College, Air University.
Rushby, J. 2002. Using model checking to help discover
mode confusions and other automation surprises. Reliability
Engineering and System Safety 75(2):167–177.
Schneider, F.; Easterbrook, S. M.; Callahan, J. R.; and Holz-
mann, G. J. 1998. Validating requirements for fault tolerant
systems using model checking. In Proc. 3rd Interntional
Conference on Requirements Engineering, 4–13.

67

