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Abstract— Big data is currently a dazzling field with numerous
applications. Current approaches to deal with big data usually
include muscled infrastructures and frameworks that permit the
parallelization of the defined tasks. Nevertheless, such solutions
fall short when online scenarios are in place, since users expect
swift feedback.

Reduction techniques are commonly used in different machine
learning problems to improve training and classification efficiency
as required in online big data applications. There are two paths
to exploit when reducing problems: (i) reduce the dimensionality
by pruning or reformulating the features; and (ii) reducing the
size of the sample by choosing the more relevant examples. Both
approaches come with benefits, not only of time consumed to
build a model, but eventually also performance-wise, usually by
reducing overfitting and improving generalization capabilities.

In this paper we investigate reduction techniques that tackle
both dimensionality and size of big data. We propose a fra-
mework that combines a manifold learning approach to reduce
dimensionality and an active learning SVM-based strategy to
reduce the size of labeled sample needed. Results on Twitter
data show the potential of the proposed active manifold learning
approach.

I. INTRODUCTION AND BACKGROUND

Big data is one of the major trends in research in the
last years and is expected that science, business, industry,
government, society, etc. will undergo a thorough change
with the influence of big data [1]. Although one might argue
that we have been in the presence of large data sets for a
while and that this new term is just a hype, there are in fact
tangible outcomes of this re-branding that are worth analysing,
namely by the availability of specific (and free) frameworks [2]
like Hadoop (http://hadoop.apache.org/) or Mahout
(http://mahout.apache.org/).

Big data are a collection of dataset consisting of
massive unstructured, semi-structured,
data [3]. Big data is being generated by everything
around us at all times (www.ibm.com/big-data/).
One of the major sources of data are the social
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networks, e.g. Twitter (http://twitter.com/),
Facebook (http://facebook.com/) or Instagram
(http://instagram.com/). In this social era, individuals
and companies produce enormous amounts of data (Volume),
extremely heterogeneous (Variety) and at alarming rates
(Velocity). And thus with social networks we get the 3 V’s
that characterize big data scenarios. A fourth *V’, for Veracity,
has been also considered and is in fact extremely important
since it relates to the uncertainty in data and the trust one
can or can not put on big data information. Specially when
dealing with social networks big data, it can became crucial.
Given this setup data scientists are in high demand and
practical results are becoming extremely valuable research
and business-wise. An example can be found in [4] where a
distributed strategy with decision trees and Support Vector
Machines (SVM) is proposed to predict the price trends of
stock futures with large amounts of data. The focus was
on the proposal of statistical features which where achieves
using MapReduce.

Putting more emphasis on representation, in [3] a unified
tensor model is proposed to represent the unstructured, semis-
tructured, and structured data where various types of data are
represented as subtensors and then are merged to a unified
tensor. To extract information an approach based on singular
value decomposition (SVD) method is introduced showing
competitive results in terms of time complexity, memory
usage, and approximation accuracy.

Regarding dimensionality reduction, one can find in [5] an
alternative to the usually greedy strategies, by using the Ortho-
gonal Centroid (OC) as feature extraction method that is found
very effective in classification problems. Another approach is
presented in [6] where a two-step process is proposed to detect
forged signatures, first by extracting features from biometric
images using Discrete Cosine Transform and second using a
GPU-based SVM classifier.

Nevertheless these cutting edge applications, challenges
arise when using such robust frameworks in online scenarios.
When searching information from an online source like Twit-
ter, reducing size and dimension in supervised learning has
gained interest in the machine learning community as a way to
reduce time spent constructing learning models, but also as an
effective way of improving performance by pruning extraneous
data. In fact, dimensionality reduction has been considered
as an essential data preprocessing technique for large-scale



and streaming data classification tasks [5]. This appeal is
underpinned by the tremendous increase of digital information
that often leads applications and learning algorithms to include
a dimension/size reduction step.

High dimensionality has usually at least two angles. On one
hand, the number of examples is massive and the difficulty
to keep a representative training set of labeled instances
is growing. On the other hand, the representation of each
example can also reach high dimensions and make the decision
space more complex in applications like text classification or
gene expression.

In this paper we propose a framework to reduce size and
dimension in Twitter Big Data. Size is reduced using a support
vector machine active learning strategy that takes place after
an Isomap-based nonlinear algorithm is put forward to reduce
the initial huge dimensionality of a text classification problem.

Next two sections will introduce both reductions we are
dealing with: dimensionality reduction on Section II and size
reduction on Section III. Then, in Section IV we describe the
manifold active learning approach and in Section V we show
the results obtained along with the experimental setup. Finally,
Section VI discusses conclusions and future work.

II. DIMENSIONALITY REDUCTION - MANIFOLD LEARNING

Initial dimensionality reduction is carried out in the fea-
ture space as a pre-processing step. Several supervised and
unsupervised techniques can be applied. Manifold learning
strategies, like Isomap (Isometric Mapping) [7], are effective
for extracting nonlinear structures from high-dimensional data
in pattern recognition [8]. Finding the structure behind the
data may be important for a number of reasons in many
applications. One possible application is data visualization.
Graphical depiction of the document set can potentially be
crucial, since it makes possible to quickly give large amounts
of information to a human operator [9]. To this purpose it is
appropriately assumed that the data lies on a statistical mani-
fold, or a manifold of probabilistic generative models [10]. It
can be regarded as a supervised learning method, where the
training labels play a central role. In such a scenario, manifold
learning can be used not only with the traditionally associated
algorithms, such as K-Nearest Neighbors (K-NN), but also
with state-of-the-art kernel-based machines like support vector
machines (SVMs) [12].

Feature reduction methods aim at choosing from the availa-
ble set of features a smaller set that more efficiently represents
the data. Such reduction is not needed for all classification
algorithms as some classifiers are capable of feature selection
themselves. However for some other classifiers feature selec-
tion is mandatory, since a large number of irrelevant features
can significantly weaken the classifier accuracy.

Many approaches have been proposed for dimensionality
reduction, such as the well-known methods of principal com-
ponent analysis (PCA) [18], independent component analysis
(ICA) [19] and multidimensional scaling (MDS) [20]. All
these methods are well understood and efficient and have
thus been widely used in visualization and classification.
Unfortunately, they share a common inherent limitation: they
are all linear methods while the distributions of most real-
world data are nonlinear. In [21] a survey on feature extraction
foundations and applications can be found.

An emerging nonlinear dimension reduction technique is
manifold learning [22], [23], which is the process of estimating
a low-dimensional structure which underlies a collection of
high-dimensional data. Manifold learning can be viewed as
implicitly inverting a generative model for a given set of
observations [24]. Let Y be a d dimensional domain contained
in a Euclidean space RY. Let f Y — RP be a smooth
embedding for some D > d. The goal of manifold learning is
to recover Y and f given N points in R”. Isomap [7] provides
an implicit description of the mapping f (or f~!). Given X =
{x, ¢ RPli=1...N} find Y = {y; € RYi = 1...N}
such that {x; = f(y;)]: = 1...N}. Without imposing any
restrictions of f, the problem is ill-posed. The simplest case
is a linear isometry, i.e. f is a linear mapping from R? — R,
where D > d.

In Isomap [7] the local neighborhood of each example is
preserved, while trying to obtain highly nonlinear embeddings
with manifold learning. For data lying on a nonlinear manifold,
the true distance between two data points is the geodesic
distance on the manifold, i.e. the distance along the surface
of the manifold, rather than the straight-line Euclidean dis-
tance. The main purpose of Isomap is to find the intrinsic
geometry of the data, as captured in the geodesic manifold
distances between all pairs of data points. The approximation
of geodesic distance is divided into two cases. In case of
neighboring points, Euclidean distance in the input space
provides a good approximation to geodesic distance. In case
of faraway points, geodesic distance can be approximated by
adding up a sequence of short hops between neighboring
points. Isomap shares some advantages with PCA and MDS,
such as computational efficiency and asymptotic convergence
guarantees, but with more flexibility to learn a broad class
of nonlinear manifolds. The Isomap algorithm takes as input
the distances d(x;,x;) between all pairs x; and x; from N
data points in the high-dimensional input space. The algorithm
outputs coordinate vectors y; in a d-dimensional Euclidean
space that best represent the intrinsic geometry of the data.
Isomap is accomplished following these steps:

1) Construct neighborhood graph: Define the graph G over

all data points by connecting points x; and x; if they
are closer than a certain distance ¢, or if x; is one of



the K nearest neighbors of x;. Set edge lengths equal
to d(Xi7 Xj).

2) Compute shortest paths: Initialize dg(x;,%x;) =
d(x;,x;) if x; and x; are linked by an edge;
da(xi,x;) = +oo otherwise. Then for each value of
k=1,2,...,N in turn, replace all entries d¢ (x;, X;) by
min{da(xi,X;), da(Xi, Xi) + de(Xk, x;) }. The matrix

of final values D¢ = {dg(xs,x;)} will contain the
shortest path distances between all pairs of points in
G.

3) Apply MDS to the resulting geodesic distance matrix to
find a d-dimensional embedding.

This is an unsupervised procedure and constitutes a prepro-
cessing step for classification. Basically it performs a transfor-
mation from a high dimensional input data space into a lower
dimensional feature space. Then a classifier, for instance, K-
NN can be applied to the resulting data. However, the mapping
function given by Isomap is only implicitly defined. Therefore,
it should be learned by nonlinear interpolation techniques, such
as generalized regression neural networks, which can then
transform the new test data into the reduced feature space
before prediction.

In the supervised version of Isomap [25], the information
provided by the training class labels is used to guide the
procedure of dimensionality reduction. The training labels are
used to refine the distances between inputs. The rationale is
that both classification and visualization can benefit when the
inter-class dissimilarity is larger than the intra-class dissimi-
larity. However, this can also make the algorithm overfit the
training set and can often make the neighborhood graph of
the input data disconnected. The Euclidean distance d(x;,x;)
between two given observations x; and x;, labeled y; and y;
respectively, is replaced by a dissimilarity measure [25]:
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Note that the Euclidean distance d(x;,x;) is in the exponent
and the parameter 3 is used to avoid that D(x;,x;) incre-
ases too rapidly when d(x;,x;) is relatively large. Hence,
B depends on the density of the data set and is usually
set to the average Euclidean distance between all pairs of
data points. On the other hand, o gives a certain possibility
to points in different classes to be closer, i.e. to be more
similar, than those in the same class. This procedure allows a
better determination of the relevant features and will definitely
improve visualization.

III. S1ZE REDUCTION - ACTIVE LEARNING

To reduce the number of labeled training examples needed
for a supervised learning algorithm, such as support vector

machines (SVMs), there have been many studies employing
unlabeled documents in the learning task, like, transductive
learning [13], co-training [14] and active learning [15], [16],
[17]. Usually, the training set is chosen to be a random
sampling of instances. However, in many cases active learning
can be employed. Here, the learner can actively choose the
training data. It is hoped that allowing the learner this extra
flexibility will reduce the learner’s need for large quantities of
labeled data and hence reduce training time [17]. Pool-based
active learning for classification was introduced by Lewis and
Gale [15]. The learner has access to a pool of unlabeled data
and can request the true class label for a certain number of
instances in the pool.

To achieve the best classification performance with a ma-
chine learning technique, one can face two problems: not
enough data or too much data. Active learning mechanisms
can be applied in both scenarios:

1) When there is not enough labeled data, but unlabeled
data is readily available;

2) When there is too much labeled data and algorithms can
benefit if a selection is carried out.

Any active learning algorithm selects of a pool of examples
which should be used (usually after being classified) to create
the learning model. Hence, to actively learn we aim at selecting
those examples that, when labeled and incorporated into trai-
ning, will minimize classification error over the distribution of
future examples. The main issue with active learning is finding
a way to choose good requests or queries from the pool. It is
assumed that the instances x are independent and identically
distributed (i.i.d.) according to some underlying distribution
F(x) and the labels are distributed with some conditional
distribution [11].

In this work we propose an SVM-based active learning
strategy. In SVMs, Support Vectors (SVs) and weights define
the obtained model. SVs define the optimal separating hyper-
plane (OSH) [12]. According to this interpretation, the most
informative unlabeled examples are potentially those closer to
any of the existing SV in the model, since they can potential
alter the OSH. To define these examples we propose a kernel-
based approach, that defines a design matrix W, assessing the
distances between the existing SV and the set of unlabeled
examples available.

Given an initial SVM model, induced using input-output
labeled training data (x1,1),...(x;, ) € RM x {#1}, resul-
ting in a number s of SV, p, (p;, ..., p,) € RM. Given also
unlabeled data U, (uy,...,up) € RM, the distance between
an SV and an unlabeled document is defined as

Vi = k(p;, uy), 2)

where k represents the kernel used to define a higher



Initial Feature | Supervised Reduced Feature| Train Baseline
Space Space —” SVM Model
RP Isomap RY v SVM
A Active
A B SVs Retrain|  Model
A/B :
> Active Examples

Fig. 1.

dimension space where points can be compared. For a generic
kernel function ®, ¥;; is the dot product

Uij = (2(p;), 2(u;)). 3)
Assuming a linear kernel, ¥;; is simplified
Vij = (pi>0j). “4)

For a linear kernel the design matrix is simplified
Wiinear = p - U &)

After this design matrix is constructed, it remains to be
determined which unlabeled examples are potentially more
informative, i.e. which ones are closer to any current SV.
The procedure is easily implemented as follows. First, the
closest SV to any given unlabeled document is determined
taking the maximum value of each column of the design matrix
(6). Second, a definable number of unlabeled examples with
smaller minimum distance to an SV are chosen and added to
the training set.

max(k(p;, un))] - ©)

Next section will detail the proposed approach that includes
the above expalined active learning strategy and the previously
introduced manifold reduction approach.

[max(k(p;, u1))

IV. PROPOSED APPROACH

Our feature space reduction approach is a manifold learning
strategy, underpinned by supervised Isomap [25]. Thus we use
the training labels in the corpus to provide a better construction
of features. We further apply the dissimilarity measure (1) to
enhance the baseline Isomap Euclidean distance using label
information, with « taking the value of 0.65 and /3 the average
Euclidean distance between all pairs of text data points.

When a reduced space is reached, our aim is to learn a
kernel-based model that can be applied in unseen examples.
We propose an active learning support vector machine (SVM)

Active learning strategy.

with a linear kernel. For testing, however, Isomap does not
provide an explicit mapping of documents. Therefore we can
not generate the test set directly, since we would need to
use the labels. Hence, we use a generalized regression neural
network (GRNN) [26] to learn the mapping and apply it to
each test document, before the SVM prediction phase.

To apply the active learning strategy, we use the design ma-
trix introduced in Section III to determine the active examples
(which unlabeled examples are potentially more informative).
The design matrix can be constructed in the original R” space
or in the reduced R? space. As can be gleaned from Fig. 1,
one can add active examples choosing from the initial feature
space (A) or from the reduced feature space (B). However,
strategy A (adding examples from RP) is computationally
more intensive, while strategy B is straightforward. To choose
active learning examples from the original feature space, first
the baseline SV have to be remapped back into R, then the
design matrix is constructed and the active examples chosen.
Before the final learning procedure can take place, a new
Isomap feature reduction step with these new examples is
carried out. On the other hand, choosing the examples directly
from the reduced feature space includes a more complex initial
Isomap step, with potential active examples, but does not
include other overheads. Henceforth we will refer to the active
learning strategy that uses the initial feature space as Active A
and to the one that uses the reduced feature space as Active
B, as represented in Fig. 1.

V. EXPERIMENTAL SETUP
To test the proposed framework we will apply it to a real
big data dataset retrieved form Twitter public stream

A. Problem Description: Twitter classification

Falta aqui a descri¢do do data set. Talvez possa ser muito
semelhante ao do paper da joana, mas neste caso s com 3
classes: BJS: Bieber, Jobs, Syrisa
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B. Experimental Results and Discussion

Table I presents the performance test results for the 3
hashtags averaged over 10 runs using 70% of the examples
for training and 30% for testing.

TABLE I
PERFORMANCES FOR THE THE HASHTAGS.
Precision ~ Recall F1 Accuracy
#bieber 76.49%  97.44%  87.96% 87.96%
#jobs 99.86% 36.36%  53.16% 78.61%
#syrisa 100.00%  79.05%  88.27% 92.93%
Average  92.12%  70.95%  75.47% 86.50%

AQUI FALTA A ANALISE DOS RESULTADOS.

An additional benefit from the use of manifold learning
to reduce the feature space dimension is the possibility of
providing a visual manifestation of the classification problem,
not possible in the initial feature space. Fig. 2 shows the
method’s visualization capabilities.

ESTA ANALISE E DOS DADOS ANTERIORES DO
REUTERS.

1) Statistical analysis: Tables II and III summarize the
results in terms of statistical significance of the difference
between three methods by means of t-test for both ModApte
and Small Splits.

The significance level is set as 5%, so that the p-value
less than 5% indicates that the two underlying methods are
significantly different in the mean. As it may be observed
in Table II, the method Active A is better than the Baseline
approach in the ModApte split, thus we reject the Null
Hypothesis with p-value = 0.019525 at a significance level
of 5%.

As for the Small split the statistical results are highly signi-
ficant. As illustrated in Table III method Active B significantly
outperforms both the Baseline and Active A at a significance
level of 1% in terms of Fl-score. As for the Active A the
t-test is significant as shown by the p-value 0.013506 which

(b) #jobs

05 1 15 -15 -1 -05 0

(c) #syrisa

Separation of classes in the reduced dimension space.

TABLE II
SIGNIFICANCE TESTS WITH STATISTICAL VARIABLE F1-SCORE FOR
MODAPTE SPLIT: (A) BASELINE, (B) ACTIVE A, (C) ACTIVE B,

SIGNIFICANCE LEVEL IS AT 5%.

Active A Active B
Baseline 0.019525%  0.141347
Active A 0.399169

indicates that the method is better than the Baseline approach
at 5% of significance level.

TABLE III
SIGNIFICANCE TESTS WITH STATISTICAL VARIABLE F1-SCORE FOR
SMALL SPLIT: (A) BASELINE, (B) ACTIVE A (C) ACTIVE B, SIGNIFICANCE
IS AT 5% LEVEL WITH P-VALUES INDICATED.

Active A Active B
Baseline 0.013506%«  0.000287%**
Active A 0.002093**

VI. CONCLUSIONS AND FUTURE WORK
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