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a b s t r a c t 

This paper considers the problem of scheduling jobs in a permutation flow shop with the objective of 

minimizing total earliness and tardiness. Unforced idle time is considered in order to reduce the earli- 

ness of jobs. It is shown how unforced idle time can be inserted on the final machine. Several dispatching 

heuristics that have been used for the problem without unforced idle time were modified and tested. Sev- 

eral procedures were also developed that conduct a second pass to develop a sequence using dispatching 

rules. These procedures were also tested and were found to result in better solutions. 
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1. Introduction 

Organizations place importance on timely delivery of products

while at the same time minimizing inventory. These elements

have become an important indicator of an operation’s effective-

ness. Both early delivery and tardy delivery of products are indi-

cators of poor supply chain execution. If products are delivered

early unnecessary inventory results and this requires space, cash

and resources by the customer. Products delivered after their due

date can result in lost sales and the loss of customer good will.

Total earliness and tardiness is a measure of performance for the

quality of a schedule. To address the above considerations, in this

paper, we have an objective that sums the penalties for earliness

and tardiness for a set of jobs processed in a flow shop. When

jobs maintain the same sequence on all of the machines in a flow

shop it is called a permutation flow shop. Most research on flow

shops use this assumption. There are two reasons for permutation

flow shops. The computational effort to develop schedules is sim-

plified and it would require extra physical handling to change the

sequence of jobs in the middle of the shop. We only consider per-

mutation schedules in this paper. 
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Formally, suppose there is a set of n jobs to be processed in a

ermutation flow shop with M machines. Let d j be the due date

f job j (j = 1, …, n) . Let p jm 

and C jm 

represent the processing time

nd completion time of job j (j = 1, …, n) on machine m (m = 1, …,

) . The earliness of job j, E j , is defined as: E j = max {d j – C jM 

, 0} , for

 = 1,…, n and the tardiness of job j, T j , is defined as: T j = max {C jM
d j , 0} , for j = 1,…, n . The objective function, Z , can be expressed

s: Z = 

n ∑ 

j=1 

E j + T j . 

Baker (1974) defines a performance measure as regular as fol-

ows. “A performance measure Z is regular if a) the scheduling

bjective is to minimize Z, and b) Z can increase only if at least

ne of the completion times in the schedule increases.” Because

f the inclusion of earliness in the objective of this problem, the

ecrease of a completion time could cause the objective to in-

rease therefore this problem has a non-regular objective. Since

he problem has a non-regular objective, unforced idle time can

e inserted to reduce the earliness of some jobs thereby improv-

ng the objective. Forced idle time is required whenever a machine

ecomes available but the next job to be processed on that ma-

hine is not yet ready for processing. Additional idle time is un-

orced idle time. However, to the best of our knowledge, previ-

us research has not considered unforced idle time for this prob-

em. In this research, we consider schedules with unforced in-

erted idle time. We denote the job to be sequenced in position

 as [j] . If C [0]1 = 0 then C [j]1 = C [j – 1]1 + I [j]1 + p [j]1 and C [j]m 

= max

C [j]m-1 , C [j – 1]m 

} + I [j]m 

+ p [j]m 

for m = 2, …, M , where I [j]m 

is the

https://doi.org/10.1016/j.eswa.2018.11.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.11.007&domain=pdf
mailto:schallerj@easternct.edu
mailto:schallerj@ecsu.ctstateu.edu
mailto:jvalente@fep.up.pt
https://doi.org/10.1016/j.eswa.2018.11.007


J. Schaller and J.M.S. Valente / Expert Systems With Applications 119 (2019) 376–386 377 

u  

m

 

T  

f  

H  

w  

l  

t  

c  

m  

o  

e  

s  

g  

a  

f  

t  

Y  

d  

K  

m  

u  

p  

(  

w

 

r  

c  

w  

(  

e  

w  

a  

l  

w  

w  

e  

w  

a  

e  

a  

w  

M  

p  

b  

t  

l  

n  

s  

b  

F  

s  

V  

p  

m  

c  

w

 

m  

q  

a  

t  

f  

p  

a

2

m

 

d  

s  

n  

f  

u  

s

 

i  

m  

i  

t  

T  

i  

o  

s  

g  

&  

w  

C  

t  

t  

v

3

 

h  

a  

e  

m  

i  

l  

q  

d  

a  

a  

p  

n

 

u  

a  

t  

t  

c  

n  

t  

t  

S

 

v  

t  

l  

l  

q  

u  

i

 

(  

h  

w  

a

nforced idle time inserted before the job in position [j] on

achine m . 

Many papers consider earliness and tardiness penalties.

he first comprehensive survey covering the early papers

or early/tardy scheduling was by Baker and Scudder (1990) .

oogeveen (2005) provides a survey of multicriteria scheduling

hich includes research that is more recent on problems with ear-

iness and tardiness penalties. The single machine environment has

he greatest amount of research on the early/tardy objective. Re-

ent research was summarized by Valente (2009) for the single

achine environment with no idle time allowed and an early/tardy

bjective. Kanet and Sridharan (20 0 0) reviewed scheduling mod-

ls when inserted idle time is allowed. Several of the papers con-

ider the problem of how idle time can be optimally inserted if

iven a sequence for the single-machine problem. Fry, Armstrong,

nd Blackstone (1987) were the first to address this problem. They

ormulated the problem as a linear program. Special characteris-

ics of the problem were used by Davis and Kanet (1993) and

ano and Kim (1991) to develop more efficient timetabling proce-

ures. Branch-and-bound procedures were developed by Davis and

anet (1993), Kim and Yano (1994) , and Schaller for the single-

achine problem for finding an optimal sequence and sched-

le. Dominance conditions were developed for the single-machine

roblem with inserted idle time by Kim and Yano (1994), Szwarc

1993) , and Schaller (2007) in order to eliminate partial sequences

ithin a branch-and-bound algorithm. 

We know of nine papers that investigate flow shop envi-

onments with objectives that consider earliness and tardiness

osts. The use of unforced idle time to reduce earliness costs

as not considered in these papers. Zegordi, Itoh, and Enkawa

1997) and Rajendran (1999) were the earliest papers. Zegordi

t al. (1997) considered the objective of minimizing the sum of

eighted earliness and tardiness for a permutation flow shop;

 simulated annealing algorithm was presented for the prob-

em. Rajendran (1999) considered scheduling a kanban flow shop

ith the objective of minimizing the sum of weighted flowtime,

eighted tardiness and weighted earliness of the kanban contain-

rs and presented heuristics for the problem. An optimal procedure

as presented by Moslehi, Mirzaee, Vasei, and Azaron (2009) for

 two-machine flow shop to minimize the sum of the maximum

arliness and the maximum tardiness. The problem of scheduling

 permutation flow shop when the jobs all have the same due date

ith earliness and tardiness penalties was addressed by Chandra,

ehta, and Tirupati (2009) . Branch-and-bound algorithms were

resented by Madhushini, Rajendran, and Deepa (2009) for a num-

er of objectives one of which was the minimization earliness and

ardiness. A genetic algorithm was proposed by Schaller and Va-

ente (2013b) and the algorithm was compared with five other

eighborhood search and metaheuristics for a permutation flow

hop to minimize total earliness and tardiness. A variable neigh-

orhood search heuristic was developed by M’Hallah (2014) and

ernandez-Viagas, Dios, and Framinan (2016) developed a con-

tructive heuristic and local searches for the problem Schaller and

alente (2013b) investigated. Schaller and Valente (2013a) incor-

orated family setups into the permutation flow shop problem to

inimize total earliness and tardiness. Several metaheuristics were

ompared for this problem and it was found a genetic algorithm

orked best. 

The next section explains how to insert unforced idle time to

inimize total earliness and tardiness given a permutation se-

uence. In section three dispatching heuristics for the problem

re described and in section four these heuristics are tested. Sec-

ion five proposes sets of multiple sequences dispatching heuristics

or the problem. Section six describes the computational tests and

resents the results for the procedures described in section five

nd section seven concludes the paper. 
. Inserting unforced idle time to reduce earliness in order to 

inimize the total earliness and tardiness of a sequence 

This paper only considers permutation schedules. Therefore to

efine a solution a job sequence is required. Since we are also con-

idering the use of unforced inserted idle time to reduce the earli-

ess of jobs we also need to determine if and where to insert un-

orced idle time for a given sequence of jobs to determine a sched-

le. The sequence and the schedule of unforced idle time define a

olution. 

For a given sequence of jobs in which the job to be sequenced

n position j is denoted as [j] , the completion time of job [j] on

achine M will determine the earliness or tardiness of the job

n position j of the sequence. As shown in section 1 the comple-

ion time C [j]M 

= max {C [j]M-1 , C [j – 1]M 

} + I [j]M 

+ p [j]M 

, where C [0]M 

= 0 .

herefore a lower bound on the start time of the job in position j

s max {C [j]M-1 , C [j – 1]M 

} and a lower bound on the completion time

f the job in position j is max {C [j]M-1 , C [j – 1]M 

} + p [j]M 

( I [j]M 

= 0). A

ingle-machine timetabling procedure for inserting idle time into a

iven sequence for minimizing total earliness and tardiness ( Davis

 Kanet, 1993; Fry et al., 1987; Kim & Yano, 1994 ) can be used

ith the constraint that the jobs cannot start before max {C [j]M-1 ,

 [j – 1]M 

} for [j] = 1,…, n . Inserting unforced idle time on machines 1

hrough M – 1 need not be considered as doing so can only tighten

he above constraint and possibly increase a solution’s objective

alue. 

. Dispatching heuristics tested 

Several heuristics were tested for the problem. The first set of

euristics that are described, are simple dispatching heuristics that

re variants of dispatching heuristics that have been used in other

nvironments but are modified to consider the flow shop environ-

ent with unforced idle time on the final machine as discussed

n the previous section. These heuristics use simple indexes to se-

ect an unscheduled job that is appended to an initial partial se-

uence. The indexes consider trial completion times and the due

ates of jobs in order to obtain sequences with low total earliness

nd tardiness. Once a complete sequence is obtained a timetabling

lgorithm is used to insert unforced idle time as described in the

revious section in order to minimize the total earliness and tardi-

ess of the obtained sequence. 

In the heuristics that follow let S be the current partial sched-

le and C jM 

(S) be the completion time of job j �∈ S if j is scheduled

t the end of S . Let s j (S) be the slack of job j �∈ S if j is scheduled at

he end of S , where s j (S) = d j – C jM 

(S) . Additionally, let t m 

(S) be

he current availability time of machine m under schedule S . For

onvenience, the current time on the first machine will also be de-

oted by t , so t = t 1 (S) . Finally, let P j (S) = C jM 

(S) – t be the total

ime (total processing time plus any eventual forced idle time) be-

ween the start and finish of job j �∈ S if j is scheduled at the end of

 . 

In all the heuristics described in this section a sequence is de-

eloped by using a priority index to select an unscheduled job

hat is appended to an initial partial sequence. As each job is se-

ected the trial completion times of the candidate jobs are calcu-

ated without considering unforced idle time. After a complete se-

uence is developed then a timetabling algorithm is used to insert

nforced idle time and the solution’s total earliness and tardiness

s calculated. 

We use an example with five jobs n = 5) and three machines

M = 3) to demonstrate some of the calculations for the dispatching

euristics in this section. Table 1 has the data for this example,

hich includes the processing time for each job on each machine

nd each job’s due date. 
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Table 1 

Example problem with five jobs and three 

machines. 

Machine Job 

1 2 3 4 5 

1 8 6 4 17 19 

2 20 8 13 12 14 

3 19 15 2 11 19 

Due Date 79 84 77 85 82 

Table 2 

Completion times for the EDD sequence with and without un- 

forced idle time. 

Machine Job 

Without unforced idle time 3 1 5 2 4 

1 4 12 31 37 54 

2 17 37 51 59 71 

3 19 56 75 90 101 

With unforced idle time 

3 44 63 82 97 108 

Table 3 

Priority indexes using the MDD rule for the example problem. 

Priority index (MDD) Iteration 

Job 1 2 3 4 5 

1 79 79 

2 84 84 84 90 101 

3 77 

4 85 85 85 86 

5 82 82 82 

Selected job 3 1 5 4 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Priority indexes using the SLK rule for the example prob- 

lem. 

Priority index (SLK) Iteration 

Job 1 2 3 4 5 

1 32 7 

2 55 17 -3 

3 58 23 3 -12 -23 

4 45 22 2 -13 

5 30 

Selected job 5 1 2 4 3 
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3.1. Simple dispatching heuristics 

Four simple dispatching heuristics are considered: earliest due

date (EDD), modified due date (MDD), minimum slack rule (SLK),

and minimum slack per work (SLK/P). 

The earliest due date (EDD) rule was first proposed by

Jackson (1955) . This rule schedules the jobs in non-decreasing or-

der of their due dates d j . Using the data in Table 1 for the exam-

ple problem the job sequence using this rule is 3-1-5-2-4. Table 2

shows the schedule for this sequence without using unforced idle

time and when unforced idle time is added to the schedule on ma-

chine 3. After unforced idle is used the total earliness and tardiness

of this sequence is 85. 

In the modified due date (MDD) heuristic ( Baker & Bertrand,

1982; Vepsalainen & Morton, 1987 ), at each iteration we select the

job with the minimum value of the modified due date. 

MD D j (S) = max 
{

d j , t + P j (S) 
}

= max 
{

d j − −t, P j (S) 
}
. 

Using the data in Table 1 for the example problem the job se-

quence using this rule is 3-1-5-4-2. Table 3 shows the priority in-

dex (MDD j (S)) during each iteration using this rule. After unforced

idle is used the total earliness and tardiness of the sequence for

this rule is 81. 

The minimum slack (SLK) rule ( Panwalkar & Iskander, 1977;

Vepsalainen & Morton, 1987 ) chooses, at each iteration, the job

with the minimum slack 

s j (S) = d j – C jM 

(S) . The minimum slack per required time

(SLK/P) ( Panwalkar & Iskander, 1977; Vepsalainen & Morton, 1987 )

selects, at each iteration, the job with the minimum value of the

ratio SLK/ P j (S) = s j (S)/P j (S) . Using the data in Table 1 for the ex-

ample problem for the minimum slack (SLK) rule the job sequence

is 5-1-2-4-3. Table 4 shows the priority index (SLK j (S)) during
ach iteration using this rule. After unforced idle is used the to-

al earliness and tardiness of the sequence for this rule is 75. 

Using the minimum slack per required time rule (SLK/P) for the

xample problem the sequence 5-1-2-3-4 is obtained and after us-

ng unforced idle time the total earliness and tardiness for this rule

s 66. Table 5 shows the slack (s j ), time required (P j ) and the pri-

rity index during each iteration of this rule (s j /P j /index). 

.2. Dispatch rules with more advanced indexes 

In this section we present dispatching rules that utilize priority

ndexes that consider a variety conditions that may be present. 

.2.1. LIN-ET Rules (LIN1 and LIN2) 

The first two rules are based on the LIN–ET procedure proposed

n ( Ow & Morton, 1989 ) for the weighted single machine problem.

hese rules, which will be denoted by LIN1 and LIN2, choose, at

ach iteration, the job with the largest value of the following pri-

rity indexes (ties are broken by selecting the lowest numbered

ob): 

1 

P j (S) 
if s j (S) ≤ 0 

IN 1 j ( S ) = 

1 

P j (S) 
− s j (S) 

slk _ thr 
∗ 2 

P j (S) 
if 0 < s j (S) < slk _ thr 

1 

P j (S) 
if s j (S) ≥ slk _ thr 

nd 

1 

P j (S) 
if s j (S) ≤ 0 

IN 2 j (S) = 

1 

P j (S) 
− −s j ( S ) ∗

(
1 

slk _ thr ∗ P j (S) 
+ 

1 

P j (S) 

)

if 0 < s j (S) < slk _ thr 

s j (S) 

P j (S) 
if s j (S) ≥ slk _ thr 

Where slk_thr, which stands for “slack threshold”, is a parame-

er meant to represent a value such that slacks which are greater

r equal to that value are considered large. 

In the first branch of the priority index, identical in both heuris-

ics, a job is late or on time if scheduled next. When one or more

uch jobs exist, LIN1 and LIN2 select the job using a shortest time

ule, in line with various heuristics for (earliness and) tardiness

roblems ( Kenneth R. Baker, 1974; Ow & Morton, 1989; Smith,

956 ). 

In the third branch, the job has a large slack, and is quite early.

f all jobs are quite early, LIN1 chooses the job using a longest time

ule, again in line with several heuristics for early/tardy problems
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Table 5 

Priority indexes using the SLK/P rule for the example problem. 

s j/Pj /index Iteration 

Job 1 2 3 4 5 

1 32/47/0.681 7/53/0.132 

2 55/29/1.897 17/48/0.354 –3/60/–0.050 

3 58/19/3.053 23/35/0.657 3/47/0.064 –12/56/–0.214 

4 45/40/1.125 22/44/0.500 2/56/0.036 –13/65/–0.200 –15/63/–0.238 

5 30/52/0.577 

Selected job 5 1 2 3 4 
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w  
 Ow & Morton, 1989; Valente, 2007; Valente & Alves, 2005 ). LIN2,

n the other hand, selects the job with the minimum slack per re-

uired time. Finally, the middle branch performs a linear interpo-

ation between the priority values corresponding to s j (S) = 0 and s j 
S) = slk_thr. Such an interpolation was first performed in the LIN–

T procedure ( Ow & Morton, 1989 ). 

The slk_thr parameter is calculated as follows. At each iteration,

he slack threshold is set equal to slk_thr = w 

∗ ( C LB 
max (S) – t ), where

 

LB 
max (S) is a lower bound on the completion time of the last job on

he final machine (makespan), given the current schedule S, and 0

w ≤ 1 is a user-defined parameter. The lower bound is calculated

sing an adaptation of the procedure proposed in ( Taillard, 1993 ).

ndeed, the procedure of ( Taillard, 1993 ) assumes that all machines

re available at time zero. Since a lower bound is calculated at each

teration of LIN1 and LIN2, it was necessary to adapt the procedure

o deal with non-zero machine availability times, which occur as

obs are scheduled. 

The lower bound C LB 
max (S) is calculated as follows. Let Bef_M i 

S) = min j / ∈ S (t + 

∑ i −1 
k =1 

p k j ) be a lower bound on the time needed

efore reaching machine i , since it considers the availability time

n the first machine, plus the minimum, over all unscheduled jobs,

f the sum of the processing times on the machines that pre-

ede i . Also let TPT_M i (S) = 

∑ 

j / ∈ S p i j be the total processing time

equired by all unscheduled jobs on machine i . Furthermore, let

ft_M i (S) = min j / ∈ S (t + 

∑ m 

k = i +1 p k j ) be a lower bound on the time

equired after machine i , since it considers the minimum, over all

nscheduled jobs, of the sum of the processing times on the ma-

hines that follow i . 

For each machine i , a lower bound on the makespan is then cal-

ulated as C LB 
max (S)= max{ Bef_M i (S), t i } + TPT_M i (S) + Aft_M i (S) . In

he original bound of ( Taillard, 1993 ), all machine availability times

ere zero. Given a partial schedule, and/or machine availability

imes different from zero, two adaptations were required. The first

as including the availability time of the first machine in Bef_M i 

S) . The second was using the maximum between the bound on

he time needed before reaching machine i and the availability

ime of this machine: max{ Bef_M i (S), t i }. The lower bound on the

akespan C LB 
max (S) is equal to the maximum of all machine lower

ounds: C LB 
max (S) = max i (C 

LB 
max _ M i (S)) . 

The procedures formed using these indexes are referred to as

IN1 and LIN2 in this paper. Using the LIN1 rule for the example

roblem the sequence is 5-1-3-2-4 with a total earliness and tardi-

ess of 56 and using the LIN2 rule the sequence is 5-1-2-3-4 with

 total earliness and tardiness of 66. Tables 6 and 7 show the slack

s j ), time required (P j ) and the priority index during each iteration

f these rules. In these tables we have also added a row that shows

he estimated makespan and slk_thr during each iteration using a

alue for v of 0.8 for LIN1 and 0.2 for LIN2. 

.2.2. Fernandez-Viagas et al. (2016) constructive heuristic 

A constructive heuristic for the problem without unforced idle

ime was developed by Fernandez-Viagas et al. (2016) and is de-

cribed here. In this heuristic a sequence is built from the begin-

ing to the end by picking a job to be sequenced first and then
dding one job at a time to a partial sequence. An index is used

o select the next job to be added to the partial sequence. The job

ith the lowest earliness, if sequenced first, is selected as the first

ob in the sequence. If there are ties for lowest earliness then the

ob with the lowest weighted idle time (defined below) is selected

s the first job. For the remaining iterations of the procedure (k =
 to n – 1) the problem is classified according to the due dates of

he jobs that remain to be sequenced into one of three cases: 1)

ight due dates, 2) loose due dates, and 3) due dates that are not

ight or loose. Based on this classification the index used to select

he next job changes. 

To help define the classifications, if k jobs have been scheduled

 kth iteration) let NT k be the number of jobs from the unscheduled

et ( n – k ) that would be tardy if scheduled next. Let NE k be the

umber of jobs from the unscheduled set that would have an ear-

iness that is greater than (n – k) ∗ c if no unforced idle time were

sed, where c is a user defined parameter. The classifications are

s follows. 

1) Tight due dates – if the fraction of tardy jobs is greater than

a , where a is a user defined parameter: NT k /(n – k) ≥ a . 

2) Loose due dates – this case is divided into two subcases: 

Subcase A) if there are at least four jobs still to be scheduled ( n

– k > 3), all the unscheduled jobs will be early if scheduled

next, and NE k = n – k . 

Subcase B) there are at least four jobs still to be scheduled ( n

– k > 3), all the unscheduled jobs will be early if scheduled

next, and b ∗ (n – k) ≤ NE k < n – k , where b is a user defined

parameter. 

3) If the above criteria are not met then the due dates are not

tight or loose. 

Let EI jk be the index for job j if scheduled in the last position

f a partial sequence with k jobs. Each time a job is to be selected,

he job with the lowest index among the unscheduled jobs is se-

ected. Let E jk equal the earliness of job j if scheduled in the last

osition of a partial sequence with k jobs and IT jk be the weighted

dle time of the candidate jobs: IT jk = 

M ∑ 

m =2 

m 

∗max{C jm-1 – C jm 

, 0}/(m

1 + (k ∗(M – m + 1)/(n – 2))) . The indexes are: 

1) Tight due dates. EI jk = (n – k – 2)/4 ∗ IT jk + C jM 

. 

2) Loose due dates 

Subcase A) Extremely loose due dates. EI jk = – (n – k – 2)/4 ∗

IT jk – C jM 

. 

Subcase B) Moderately loose due dates. EI jk = – (n – k – 2)/4 ∗

IT jk – C jM 

+ E jk . 

3) Due dates are neither tight nor loose. EI jk = E jk . 

The procedure formed using this index is referred to as FV in

his paper. Using the data in Table 1 for the example problem

ith the following parameter values, a = 0.90, b = 0.55 and c = 230,
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Table 6 

Priority indexes using the LIN1 rule for the example problem. 

s j/ P j /index Iteration 

Job 1 2 3 4 5 

1 32/47/0.0 0 0 7/53/0.015 

2 55/29/–0.025 17/48/0.010 –3/60/0.017 –5/58/0.017 

3 58/19/–0.043 23/35/0.008 3/47/0.019 

4 45/40/–0.010 22/44/0.007 2/56/0.017 –4/58/0.017 –15/63/0.016 

5 30/52/0.001 

M i /slk_thr 80/64.00 99/64.00 100/58.40 100/55.20 100/50.40 

Selected job 5 1 3 2 4 

Table 7 

Priority indexes using the LIN2 rule for the example problem. 

s j/ P j /index Iteration 

Job 1 2 3 4 5 

1 32/47/-0.681 7/53/-0.121 

2 55/29/-1.897 17/48/-0.354 -3/60/0.017 

3 58/19/-3.053 23/35/-0.657 3/47-/0.047 - 12/56/0.018 

4 45/40/-1.125 22/44/-0.500 2/56/-0.020 -13/65/0.015 -15/63/0.016 

5 30/52/-0.577 

M i /slk_thr 80/16.00 99/16.00 100/14.60 100/13.40 100/12.60 

Selected job 5 1 2 3 4 

Table 8 

Priority indexes using the FV procedure for the example problem. 

I jk/ E jk /index Iteration 

Job 0 1 2 3 4 

1 66/0.0 0/32/32.0 0 1.29/7/7.00 

2 39.0 0/55/55.0 0 0.00/17/17.00 0.0 0/0/0.0 0 

3 37.50/58/58.00 0.0 0/23/23.0 0 0.0 0/3/3.0 0 0.0 0/0/0.0 0 

4 94.50/45/45.00 5.40/22/22.00 0.0 0/2/2.0 0 0.0 0/0/0.0 0 0.0 0/0/0.0 0 

5 106.50/30/30.00 

Case 3 3 3 3 

Selected job 5 1 3 2 4 
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the job sequence using this rule is 5-1-2-3-4. Table 8 shows the

Weighted Idle Time (IT jk ), Earliness (E jk ) and the index (EI jk ) for

each job as well as the case used during each iteration using this

rule. After unforced idle time is used the total earliness and tardi-

ness of the sequence for this rule is 66. 

4. Computational test of the dispatching heuristics 

The proposed algorithms are tested on randomly generated in-

stances of various levels of number of jobs and number of ma-

chines and under various conditions of due date range and tight-

ness. 

4.1. Data 

The dispatching heuristic procedures described in section three

were tested on instances of various levels of the number of jobs

and number of machines for nine sets of distributions of due date

range and tightness. Each instance set consists of 10 instances. The

instances within a set have the same number of jobs and ma-

chines, and the due dates for the jobs are generated using the

same distribution. Eight levels of number of jobs ( n ) to be sched-

uled were tested: n = 15, 20, 25, 30, 40, 50, 75 and 100 . Three levels

of number of machines ( M ) were tested: M = 5, 10 and 20 . A uni-

form distribution over the integers 1 and 100 was used to generate

the processing times of the jobs for each machine. 

To randomly generate due dates for the jobs a uniform distri-

bution over the integers MS (1 – r – R/2) and MS (1 – r + R/2) was

used, where MS is an estimated makespan found for the problem
sing the makespan lower bound proposed in Taillard (1993) , and

 and r represent parameters referred to as due date range and

ardiness factors. Three levels of due date range ( R ) were tested:

 = 0.2, 0.6 and 1.0 and three levels of due date tightness ( r ) were

ested: r = 0.0, 0.2 and 0.4 . The levels of r are fairly low and repre-

ent low levels of due date tightness. The reason for these choices

s that if due dates are tight most jobs would be tardy and un-

orced idle time would not be needed. These levels of R and r re-

ult in nine sets of due date parameters for each n and M combi-

ation. 

A second set of 10 instances for each of the sets of parameters

escribed above were created to use in preliminary tests to deter-

ine the parameter settings for the LIN1, LIN2, and FV procedures.

he procedures were coded in Turbo Pascal and were tested on a

ell Inspiron 1525 GHz Lap Top computer. 

.2. Results for the dispatching heuristics 

The measure of performance used to evaluate the dispatching

rocedures for the instances is percentage deviation ( % Dev ) of the

otal earliness and tardiness of the solution generated by each pro-

edure from the lowest total earliness and tardiness generated by

he procedures. % Dev = [(Z h - Z B )/ Z h ] 
∗ 100 , where Z B = the low-

st total earliness and tardiness of the solutions generated by the

even procedures, and Z h = the total earliness and tardiness of the

olutions generated by the dispatching heuristic procedures (EDD,

DD, LIN1, LIN2, SLK, SLKP, FV). 

Using the second set of instances the parameter w , used to cal-

ulate the slack threshold used in the LIN1 and LIN2 procedures,
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Table 9 

% deviation from best solution among dispatching heuristics for M = 5 . 

n Procedure 

EDD MDD LIN1 LIN2 SLK SLKP FV 

15 20.22 6.79 12.44 22.83 33.64 38.03 15.68 

20 20.65 10.98 9.59 18.19 28.83 30.98 11.95 

25 21.91 8.27 8.10 13.88 25.28 27.39 11.39 

30 19.35 7.17 7.34 14.35 24.10 26.50 10.36 

40 16.97 6.82 12.44 13.12 19.06 21.71 9.11 

50 14.89 7.34 17.63 13.83 19.11 21.97 7.02 

75 12.11 4.66 20.01 9.23 13.83 15.41 8.10 

100 12.94 5.82 44.53 14.65 13.30 21.11 8.64 

Ave. 17.38 7.23 16.51 15.01 22.14 25.39 10.28 

Table 10 

% deviation from best solution among dispatching heuristics for M = 10 . 

n Procedure 

EDD MDD LIN1 LIN2 SLK SLKP FV 

15 27.45 10.82 12.42 23.03 45.01 44.86 17.03 

20 25.95 11.33 13.37 25.75 36.73 41.22 15.55 

25 26.95 14.27 13.04 18.72 32.54 33.15 10.50 

30 26.67 13.02 11.15 18.58 31.49 32.88 8.05 

40 21.91 10.71 11.05 14.95 27.02 27.56 8.37 

50 18.70 9.28 10.72 14.90 23.73 25.45 8.02 

75 17.00 9.39 13.73 13.54 19.55 22.82 6.50 

100 15.24 9.66 18.78 13.19 16.07 18.73 5.74 

Ave. 22.48 11.05 13.03 17.83 29.02 30.83 9.97 

Table 11 

% deviation from best solution among dispatching heuristics for M = 20 . 

n Procedure 

EDD MDD LIN1 LIN2 SLK SLKP FV 

15 35.10 13.35 14.75 22.60 47.09 47.56 12.28 

20 30.28 14.55 17.80 23.24 41.09 39.72 9.87 

25 29.56 11.06 13.25 24.08 41.83 42.66 12.48 

30 29.53 14.69 14.94 21.35 36.38 36.08 8.44 

40 24.65 14.29 12.85 17.51 28.58 29.16 5.46 

50 25.83 15.28 14.56 18.53 27.87 29.23 3.81 

75 20.66 13.62 13.80 17.45 25.41 25.37 5.15 

100 18.96 12.56 12.50 15.21 20.89 22.87 4.52 

Ave. 26.82 13.68 14.31 20.00 33.64 34.08 7.75 
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Table 12 

% deviation from best solution by r for n = 50 and M = 10 . 

r Procedure 

EDD MDD LIN1 LIN2 SLK SLKP FV 

0.0 5.44 4.21 5.85 18.15 12.05 19.59 11.56 

0.2 16.51 4.92 3.56 11.16 21.60 21.58 11.55 

0.4 34.16 18.73 22.74 15.39 37.55 35.18 0.95 

Table 13 

% deviation from best solution by R for n = 50 and M = 10 . 

R Procedure 

EDD MDD LIN1 LIN2 SLK SLKP FV 

0.2 16.36 8.35 6.81 2.92 17.85 11.12 6.95 

0.6 19.26 6.17 5.75 8.03 23.09 22.33 4.70 

1.0 20.48 13.33 19.60 33.75 30.26 42.90 12.42 
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nd the parameters a, b and c used in the FV procedure were de-

ermined. The w selected for LIN1 was 0.80, for LIN2 was 0.20.

he values selected for the FV procedure were a = 0.90, b = 0.55,

nd c = 230. The values for the a and b parameters selected for

he FV procedure were the same as those used by Fernandez-

iagas et al. (2016) when unforced idle time was not considered.

he value selected for the parameter c was different however, and

t was found that this parameter greatly affects the results. 

Tables 9 , 10 and 11 show the % Dev for each dispatching proce-

ure for each level of number of jobs to be sequenced ( n ) as well

s the averages across all the levels of jobs. Table 9 shows the re-

ults for M = 5 , table 10 , for M = 10 and table 11 , for M = 20 . 

The results show that the MDD procedure was generally best

hen m = 5 but the FV procedure was generally best for M = 10

nd 20. There were also a couple of combinations of n and M

here LIN1 was best. The FV procedure was the only procedure

o have a % DEV that was less than 11% for all the problem sizes.

t was also best for 14 of the 24 combinations of n and M and was

est when n > 25 and M = 10 or 20. It appears that as instance

izes become larger the relative performance of the FV procedure

mproves relative to the other procedures. The SLK and SLKP pro-

edures were consistently the worst performing procedures with

verage % Devs over 20% for all three machine levels. 
In order to show the effect of the due date range ( R ) and tar-

iness factor ( r ) on the results tables 12 and 13 are presented.

able 12 shows the % Dev by due date tardiness factor ( r ) for n = 50

nd M = 10 . 

The results by due date tardiness factor ( r ) show that the MDD

rocedure was best for r = 0.0, LIN1 for r = 0.2, and FV for r = 0.4.

he MDD, FV and LIN2 procedures were more consistent than the

ther procedures and these three procedures had a % Dev that was

ess than 20% for all three parameter values. This parameter does

mpact the results. The FV procedure was much better than the

ther procedures when r = 0.4 (the highest value) with a % Dev

f less than 1 % whereas the MDD and LIN1 procedure were best

hen r = 0.0 and 0.2 with % Devs of less than 6%. When r is small

he use of unforced idle becomes more important and explains

hy the results vary by the setting of this parameter. 

Table 13 shows the % Dev by due date range factor ( R ) for n = 50

nd M = 10 . 

The results show that the MDD and FV procedures were the

ost consistent across the due date range parameter ( R ) and each

rocedure had a % Dev that was less than 15 for all three levels.

he LIN2 procedure was best when R = 0.2 but was not as good

s the range of due dates increased. The SLK and SLKP procedures

lso seemed to deteriorate relative to the other procedures as R

ncreases. 

We checked to see if the differences in the mean % Dev for

ach pair of heuristics are significantly different by performing

 repeated measures ANOVA test. There were interaction effects

resent for the number of jobs and machines. Therefore, the test

as performed separately for each combination of M and n . The re-

ults showed that there is a significant effect regarding the heuris-

ic used for all combinations of M and n (the hypothesis that all

he heuristics perform similarly was rejected). Post-hoc tests were

hen conducted between each pair of heuristics, using the Bonfer-

oni correction for the number of comparisons being performed. A

% level of significance was used. 

The improved performance of the MDD procedure compared to

he EDD, SLK, and SLKP procedures was found to be significant for

ll combinations of n and M . The improved performance of the FV

rocedure compared to the EDD, SLK, and SLKP procedures was

ound to be significant in 20 of the 24 combinations of n and M ,

ncluding all eight levels of n when M = 20. The statistical tests

lso confirm that as M gets larger the relative performance of the

V procedure improves. When M = 10 or 20, the improved perfor-

ance of the FV procedure compared to the LIN2 procedure was

tatistically significant for all eight levels of n , and for M = 20, the

esults for the FV procedure was statistically different than those

f the LIN1 and MDD procedures for half of the levels of n . 
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All of these procedures are very fast and were able to average

less than 0.2 seconds per instance for all instance sizes. Therefore

we do not present tables for the computation times for these pro-

cedures. 

5. Multiple sequence heuristics 

In this section heuristics that consider more than a single se-

quence are described. In the heuristics described in section three a

sequence was developed by appending jobs to an initial partial se-

quence. When a job was to be selected the trial completion times

of the candidate jobs and indexes were calculated without consid-

ering unforced idle time. After a complete sequence was developed

then a timetabling algorithm was used to insert unforced idle time

and then the solution’s total earliness and tardiness was calculated.

One of the problems with developing a sequence before inserting

unforced idle time is that the current time used in the various in-

dexes could be quite inaccurate. This is quite likely to be the case

when due dates are relatively loose, since unforced idle time will

then be inserted. The inaccuracy of the current time may then fre-

quently cause the wrong job to be selected. 

In order to overcome this problem, a two-stage procedure is

used. In the first stage, we use a dispatching rule to generate an

initial sequence, and then insert unforced idle time to optimize the

total earliness and tardiness for this sequence. 

In the second step, we start at the beginning of the initial se-

quence and select one job at a time, possibly developing multiple

additional different sequences. More specifically, during an itera-

tion of the second stage, a job is chosen for the current position

in the sequence. When choosing this job, we use the current start

time on the final machine, which includes any inserted unforced

idle time. 

Whenever a job is selected for a position, the remaining un-

scheduled jobs are kept in their order in the initial sequence, thus

potentially creating a new sequence. Unforced idle time is inserted,

if necessary, to optimize the total earliness and tardiness corre-

sponding to this sequence. 

Therefore, multiple sequences, with corresponding optimal un-

forced inserted idle times, can be evaluated during the procedure.

The best of all these sequences is returned at the end of the two-

stage procedure. 

5.1. Initial sequence 

We used three dispatching heuristics to generate the initial se-

quence: EDD, MDD, and FV. The EDD rule was chosen because it is

simple and very efficient. The MDD and FV procedures were cho-

sen because they generally performed best and also are very ef-

ficient. We then use the timetabling procedure to insert unforced

idle time into the sequence and retain the objective value found

as the initial incumbent value. The start time for processing on

the last machine for the first job in the initial sequence becomes

the initial current time for the second pass using other dispatching

procedures. 

5.2. Multiple sequence procedures 

These procedures conduct a second pass adding one job at a

time. When the job for position k is to be selected we would have

k – 1 jobs that were selected using one of the indexes described

below. These jobs would be in the first k – 1 positions of the cur-

rent sequence. We also have n – k – 1 jobs remaining that are

in these positions of the current sequence in the order of the ini-

tial sequence. We also have an estimate of the unforced idle time

before each position on the final machine and an estimated start

time. When we are selecting the job for position k the current time
s the start time for processing on the last machine for the job in

he first position of the initial sequence portion of the sequence. 

We then obtain a trial completion time for each candidate job

y taking the maximum of two completion time estimates. The

rst estimate is equal to the current time on the final machine

lus the job’s processing time on the final machine. This estimate

akes inserted unforced idle time into account, but disregards the

revious machines. 

The second estimate is equal to the completion time of the job

n the final machine, if no unforced idle time is used. This sec-

nd estimate takes all the machines into account, but disregards

nforced idle time. 

The first estimate is more likely to be accurate when due dates

re loose, while the second is likely to be better when due dates

re tight (in this case, little or no unforced idle time is used).

he trial completion time then takes both estimates into account,

hereby adjusting itself to the characteristics of the problem. 

Each time a job is selected the remaining positions of the

equence are completed with the non-selected jobs in initial

equence order and this becomes the current sequence. The

imetabling procedure is used to insert unforced idle time and if

he objective value is lower than the incumbent the incumbent is

pdated and the solution is retained. The pseudo-code for these

ybrid procedures is provided below. In the code O B is the objec-

ive of the best solution found, O C , the objective of the current so-

ution, and U is the set of unscheduled jobs. 

Hybrid Procedure Pseudo-code 

Step 1. Initialization: 

1.1 Create an initial sequence by using either of the EDD,

MDD or FV heuristics. This becomes the initial current

sequence and the best sequence . 
1.2 Create a schedule for the sequence by first calculat-

ing completion times without unforced idle time and

then insert unforced idle time on the final machine as

necessary to minimize total earliness and tardiness. Set

O B = total earliness and tardiness found. Set t M 

= the start

time, on the last machine, of the first job in the sequence

(current time). 

1.3 Set k = 1. 

1.4 Set U to consist of the set of jobs to be scheduled. 

Step 2. While k ≤ n do 

2.1 Calculate the estimated makespan and slack threshold 

2.2 For j ε U calculate the priority index for job j . 

2.3 Select [k] by picking the candidate job with the largest

priority index. 

2.4 Remove job [k] from set U . 

2.5 Complete the sequence with the jobs in the set U in ini-

tial sequence order. This becomes the current sequence. 

2.6 Create a schedule by calculating the completion times

without unforced idle time and then inserting unforced

idle time on the final machine as necessary to minimize

total earliness and tardiness. Set O C = the resulting earli-

ness and tardiness. If O C < O B then set O B = O C and retain

the current sequence as the best sequence. 

2.7 Set k = k + 1 . 

2.8 If k < n then set t M 

= the start time of the job kth posi-

tion of the current sequence starts processing on the last

machine (current time). 

Step 3. Stop. Return the best sequence. 

Step 1 initializes the procedure by creating an initial sequence

sing either of the EDD, MDD or FV heuristics and then schedul-

ng the sequence by inserting unforced idle time as needed to ob-

ain an initial objective value and an estimated start time on the
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ast machine for the first job in a sequence. Step 2 is performed k

imes and each time it is performed it selects the job for position k ,

reates a candidate sequence by sequencing the remaining jobs in

nitial sequence order, and then schedules the sequence and calcu-

ates its associated objective value. If the objective value is better

han the best objective found then the best objective is updated

nd the sequence is retained. This step also finds the estimated

tart time on the last machine for the job to be sequenced in po-

ition k + 1 . Step 3 terminates the procedure, updates the objective

nd outputs the best sequence found. 

The following nine procedures are created. The FVEDD, FVMDD

nd FVFV procedures use the indexes used in the FV procedure

uring the second pass of the procedure. FVEDD uses the EDD

ule to create the initial sequence, FVMDD, uses the MDD proce-

ure, and FVFV uses the FV procedure. The LIN1EDD, LIN1MDD and

IN1FV procedures use the LIN1 index during the second pass and

he procedures associated with their suffixes to create the initial

equences and similarly the LIN2EDD, LIN2MDD and LIN2FV pro-

edures use the LIN2 index when the second pass is conducted. 

We also created four other sets of procedures which use in-

exes in which P j (S) is redefined. The idea that motivates the

reation of these four sets of procedures is that if unforced idle

ime is used and processing on the final machine is pushed later

or a lot of jobs so that the jobs’ processing on the final machine

tarts later than the processing on the next to final machine ends

hen the problem resembles the single-machine early/tardy prob-

em with inserted idle time allowed and an adjustment in the in-

ex should occur. The adjustment in all four sets of procedures is

hat the index puts more weight on what a job’s characteristics

re on the last machine when unforced idle time has been used to

orce processing on the last machine to begin after processing has

oncluded on the next to last machine. In each of the procedures

e define P j (S) based on whether the current estimated start time

n the last machine ( t M 

) for the next job to be scheduled is greater

han the finish time of the last job scheduled on the next to last

achine ( t M 

> C [k-1]M-1 (S) ). 

The first two sets of procedures are referred to as H1 and H2

ets of procedures. In these two sets of procedures if t M 

> C [k-1]M-1 

S) then P j (S) = p jM 

else P j (S) = C jM 

(S) – C [k-1]1 (S) . We then use

he branches in the LIN1 index to select the job that will be in the

th position when using the H1 sets of procedures and we use the

ranches in the LIN2 index for the selection of the job in the kth

osition when using the H2 sets of procedures. In each set there

re three procedures. The H1 procedures are H1EDD, H1MDD and

1FV and the H2 procedures are H2EDD, H2MDD and H2FV. The

uffix for each procedure indicates how the initial sequence was

reated. 

The last two sets of procedures are referred to as H3 and H4

ets of procedures. To help develop these procedures let FT [j]M-1 (S)

e the time the job in position j finishes its processing on ma-

hine M – 1 . Let ST [j]M 

(S) be the time the job in position j starts

rocessing on machine M . Each time a current sequence is created

nd unforced idle time is inserted to create a solution we check to

ee how many jobs have an ST [j]M 

(S) > FT [j]M-1 (S) among the un-

elected jobs that are sequenced in initial sequence order. We use

D to refer to this value and then calculate a fraction NDF = ND/(n

k) . This fraction is used to help calculate P j (S) in this procedure

ach time a job is to be selected. 

We use this fraction as a measure of the impact unforced idle

ime has on the future jobs. If the fraction is large then we expect

ost of the jobs to have their processing on the final machine start

ater than their processing on the next to last machine finishes and

herefore the characteristics of a job that pertain to the final ma-

hine become more important than those of machines 1 through

 – 1 so the problem has a greater resemblance to the single-

achine early/tardy problem with inserted idle time allowed as
he fraction increases. The index in these procedures is a hybrid.

e define P j (S) based on elements from the FV and LIN1 and

IN2 procedures. If t M 

> C [k-1]M-1 (S) then P j (S) = NDF ∗p jM 

+ (1 –

DF) ∗IT j else P j (S) = 0.5 ∗IT j + 0.5 ∗(C jM 

(S) – C [k-1]M 

(S)) . To select the

ob that will be in the kth position we use the branches in the LIN1

ndex for the H3 procedures and use the branches in the LIN2 in-

ex for the H4 procedures. The H3 procedures are H3EDD, H3MDD

nd H3FV. The H4 procedures are H4EDD, H4MDD and H4FV. The

uffix for each procedure represents how the initial sequence was

reated. 

We use the data in the example problem shown in Table 1 to

emonstrate the procedure for H4MDD. We set the parameter

 = 0.20 to calculate the slack threshold (slk_thr). The initial se-

uence using the MDD rule is: 3-1-5-4-2 and after inserting un-

orced idle time the total earliness and tardiness is 81. Table 14

hows the slack (s j ), time required (P j ) and the priority index for

ach job during each iteration of the procedure as well as the cur-

ent time (t M 

), NDF value, Makespan estimate (Mi), slack thresh-

ld (slk_thr), current sequence (sequence) and the current objec-

ive value (O c ). The final sequence is 1-5-3-4-2 which results in a

otal earliness and tardiness of 52. 

. Computational test of the multiple sequence dispatching 

euristics and results 

The multiple sequence dispatching procedures were also tested

n the same data sets described in Section 4.1 . To measure the per-

ormance of these procedures the results were compared against

he results of the FV procedure. The reason for selecting this pro-

edure was that it was generally the best performing procedure.

he measure of performance % Dev vs FV is calculated as % Dev

s FV = [(Z h - Z FV )/ Z FV ] 
∗ 100 , where Z FV = the earliness and tardi-

ess of the solution generated by FV procedure, and Z h = the total

arliness and tardiness of the solutions generated by the dispatch-

ng heuristic procedures with the improvement procedure applied.

ince these heuristics require more processing time than the dis-

atching heuristics we also measured the processing time needed

or each instance by each procedure. 

Using the second set of instances, described in section 4.1 , the

arameter w , used to calculate the slack threshold used in the sec-

nd pass of the LIN1, LIN2, H1, H2, H3 and H4 based procedures,

nd the parameters a, b and c used in the second pass of the

hree FV based procedures (FVEDD, FVMDD and FVFV) were deter-

ined. The w selected for LIN1EDD, LIN1MDD, LIN1FV, LIN2EDD,

IN2MDD, LIN2FV, H2EDD, H2MDD, H3EDD, H3MDD, H3FV, H4EDD

nd H4MDD procedures was 0.20, for the H1EDD, H1MDD and

1FV procedures was 0.10, for the H2FV procedure was 0.50 and

or the H4FV procedure was 0.70. The b and c values selected for

he FVEDD, FVMDD and FVFV procedures were b = 0.70 and c = 50.

he values for a were: FVEDD, 0.80, FVMDD, 0.70 and FVFV, 060. 

Tables 15 , 16 and 17 show the % Dev vs FV for each procedure

or each level of number of jobs to be sequenced ( n ) as well as the

verages across all the levels of jobs. Table 15 shows the results for

 = 5 , table 16 , for M = 10 and table 17 , for M = 20 . 

The results show that the H4MDD procedure performed the

est on average for the 5 and 10 levels of number of machines and

4FV was best on average when M = 20. The H4MDD procedure

ad the fourth best average performance for M = 20 and H4FV was

ixth best on average for M = 5 and was fourth, for M = 10. Three

rocedures ranked in the top six procedures across all three levels

or numbers of machines: H4MDD, H2FV and H4FV. Three other

rocedures, LIN1FV, LIN2FV, and H4EDD ranked in the top 10 for

ll three levels of numbers of machines. These results indicate that

he H4 procedures were the most consistent and generally per-

ormed better. Also, the other three procedures started with the FV

equence which may not be that surprising, since the FV procedure
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Table 14 

Priority indexes using the H4MDD procedure for the example problem. 

s j/ P j /index Iteration 

Job 1 2 3 4 5 

1 18/19/0.95 

2 27/15/-1.80 8/15/-4.99 -6/15/0.07 -8/15/0.07 -19/15/0.07 

3 33/2/-16.50 14/2/-6.91 0/2/0.50 

4 32/11/-2.91 13/11/-1.16 -1/11/0.09 -3/11/0.09 

5 21/19/-1.11 2/19/-0.06 

t M 42 61 75 77 88 

NDF 1.00 1.00 1.00 1.00 1.00 

M i 80 94 94 94 94 

slk_thr 16.00 17.20 13.40 12.60 9.20 

Selected job 1 5 3 4 2 

sequence 1-3-5-4-2 1-5-3-4-2 1-5-3-4-2 1-5-3-4-2 1-5-3-4-2 

Objective (O c) 64 52 52 52 52 

Table 15 

% DEV vs. FV for the multiple sequence dispatching heuristics for M = 5 . 

Procedure n 

15 20 25 30 40 50 75 100 Ave. 

LIN1EDD -11.81 -7.90 -11.85 -10.36 -12.13 -10.60 -14.02 -13.32 -11.50 

LIN1MDD -13.06 -9.57 -12.41 -11.57 -13.36 -11.56 -15.58 -14.45 -12.70 

LIN1FV -12.83 -11.96 -12.70 -11.42 -14.00 -12.63 -14.43 -14.55 -13.07 

LIN2EDD -11.28 -8.85 -10.89 -10.97 -13.73 -12.29 -15.33 -15.61 -12.37 

LIN2MDD -13.45 -10.36 -13.09 -13.38 -15.06 -13.15 -16.60 -16.66 -13.97 

LIN2FV -12.17 -12.62 -12.81 -11.79 -14.16 -13.98 -15.37 -16.70 -13.70 

FVEDD -11.17 -9.39 -10.01 -8.11 -7.28 -6.68 -6.83 -7.20 -8.33 

FVMDD -14.49 -11.45 -13.23 -10.68 -10.71 -9.02 -9.54 -9.06 -11.02 

FVFV -10.54 -8.94 -8.20 -6.57 -6.63 -6.80 -6.74 -7.04 -7.68 

H1EDD -9.17 -10.30 -8.46 -11.00 -11.85 -8.30 -8.43 -8.38 -9.49 

H1MDD -13.11 -11.28 -11.17 -13.02 -13.59 -9.82 -11.34 -10.99 -11.79 

H1FV -10.26 -11.48 -9.37 -11.41 -13.02 -10.47 -9.75 -9.53 -10.66 

H2EDD -12.02 -11.17 -12.72 -15.70 -18.07 -17.95 -22.09 -23.87 -16.60 

H2MDD -14.93 -13.06 -14.75 -16.76 -19.88 -18.63 -23.22 -24.21 -18.18 

H2FV -10.88 -12.95 -12.99 -14.23 -17.07 -18.90 -21.65 -23.26 -16.49 

H3EDD -14.65 -14.49 -11.74 -9.58 -9.75 -7.98 -10.89 -10.15 -11.15 

H3MDD -14.65 -13.24 -12.78 -11.66 -11.34 -10.26 -12.12 -12.42 -12.31 

H3FV -13.03 -12.98 -12.02 -9.66 -11.46 -9.74 -10.30 -10.47 -11.21 

H4EDD -13.36 -14.40 -13.98 -14.25 -18.37 -18.34 -22.33 -23.44 -17.31 

H4MDD -15.06 -14.48 -14.67 -16.59 -19.01 -19.06 -22.74 -24.56 -18.27 

H4FV -9.29 -11.63 -11.55 -12.99 -16.33 -17.42 -20.67 -22.44 -15.29 

Table 16 

% DEV vs. FV for the multiple sequence dispatching heuristics for M = 10 . 

Procedure N 

15 20 25 30 40 50 75 100 Ave. 

LIN1EDD -3.65 -5.35 -3.08 -0.80 -4.17 -4.51 -5.47 -6.09 -4.14 

LIN1MDD -6.42 -7.13 -2.82 -3.86 -6.50 -6.65 -6.68 -6.79 -5.86 

LIN1FV -11.11 -11.45 -9.97 -8.61 -11.56 -11.37 -10.39 -11.84 -10.79 

LIN2EDD -4.06 -4.85 -2.84 -0.74 -4.15 -6.14 -6.36 -6.34 -4.44 

LIN2MDD -6.74 -6.93 -3.61 -3.60 -6.78 -7.92 -7.28 -8.26 -6.39 

LIN2FV -10.46 -11.39 -10.20 -8.82 -11.06 -11.52 -11.37 -12.90 -10.97 

FVEDD -10.66 -10.97 -7.56 -5.67 -7.40 -7.32 -5.96 -6.19 -7.72 

FVMDD -12.27 -13.05 -10.06 -8.66 -10.19 -9.31 -7.33 -7.25 -9.77 

FVFV -9.37 -10.36 -7.98 -6.83 -7.11 -7.52 -5.63 -5.48 -7.54 

H1EDD -4.27 -4.56 -2.54 -1.25 -2.55 -3.41 -2.86 -1.71 -2.89 

H1MDD -5.29 -6.95 -3.25 -3.81 -5.13 -5.64 -4.67 -3.71 -4.81 

H1FV -8.51 -10.08 -9.29 -8.74 -9.00 -9.12 -7.73 -7.65 -8.77 

H2EDD -3.31 -6.69 -4.75 -3.56 -8.11 -9.85 -14.08 -15.03 -8.17 

H2MDD -6.43 -8.10 -5.32 -6.39 -10.13 -12.02 -14.46 -15.03 -9.74 

H2FV -8.25 -10.39 -9.53 -9.69 -13.22 -14.78 -16.79 -19.53 -12.77 

H3EDD -13.37 -13.91 -10.27 -8.94 -9.03 -8.56 -7.97 -8.40 -10.06 

H3MDD -14.13 -14.19 -10.30 -8.70 -9.28 -9.79 -8.66 -9.15 -10.53 

H3FV -13.51 -13.20 -10.97 -9.85 -9.40 -7.91 -9.05 -9.45 -10.42 

H4EDD -8.61 -11.87 -9.80 -9.31 -12.57 -15.31 -16.90 -20.43 -13.10 

H4MDD -12.28 -13.04 -10.95 -10.49 -12.74 -15.63 -17.03 -20.73 -14.11 

H4FV -9.09 -10.57 -10.06 -9.63 -11.43 -14.16 -15.94 -18.76 -12.46 
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Table 17 

% DEV vs. FV for the multiple sequence dispatching heuristics for M = 20 . 

Procedure N 

15 20 25 30 40 50 75 100 Ave. 

LIN1EDD 2.38 5.46 2.41 5.37 5.90 7.40 2.62 1.96 4.19 

LIN1MDD 1.34 2.89 -0.70 2.99 3.93 5.12 1.36 0.22 2.14 

LIN1FV -7.21 -7.08 -8.14 -6.58 -5.93 -5.69 -8.84 -8.75 -7.28 

LIN2EDD 3.41 6.52 2.76 5.26 5.52 7.30 2.30 1.96 4.38 

LIN2MDD 1.76 2.71 -0.46 2.68 2.88 4.71 0.32 0.06 1.83 

LIN2FV -7.47 -6.53 -7.54 -6.74 -6.52 -5.33 -8.82 -8.86 -7.23 

FVEDD -6.44 -6.94 -8.60 -6.01 -5.05 -3.51 -4.04 -4.46 -5.63 

FVMDD -7.43 -7.69 -9.75 -7.48 -6.49 -4.44 -5.66 -6.29 -6.90 

FVFV -6.85 -7.44 -10.09 -7.17 -5.83 -4.84 -5.64 -4.94 -6.60 

H1EDD 4.20 6.54 2.39 6.90 7.94 10.35 4.05 2.95 5.67 

H1MDD 2.52 4.36 -0.42 3.58 4.61 6.70 2.49 0.89 3.09 

H1FV -6.11 -4.54 -7.09 -6.04 -4.96 -3.92 -7.14 -6.76 -5.82 

H2EDD 3.64 6.51 3.20 5.57 4.13 3.87 -1.21 -4.66 2.63 

H2MDD 1.83 3.16 -0.82 2.48 1.27 1.30 -2.50 -5.73 0.12 

H2FV -5.03 -4.30 -6.15 -6.06 -6.69 -7.34 -12.31 -13.37 -7.66 

H3EDD -3.57 -5.98 -8.18 -4.70 -6.07 -4.32 -6.15 -7.98 -5.87 

H3MDD -9.04 -9.34 -10.24 -7.34 -4.63 -3.35 -6.49 -7.19 -7.20 

H3FV -9.28 -8.87 -9.14 -8.46 -7.26 -6.41 -8.02 -8.26 -8.21 

H4EDD -0.88 -4.62 -5.78 -5.45 -6.07 -6.15 -10.48 -13.01 -6.56 

H4MDD -5.96 -6.73 -7.86 -5.80 -5.51 -4.95 -10.49 -12.60 -7.49 

H4FV -5.84 -6.77 -7.89 -7.45 -6.62 -7.33 -12.14 -13.40 -8.43 

Table 18 

% DEV vs. FV for the hybrid dispatching heuristics by r for n = 50 and 

M = 10 . 

r Procedure 

LIN1FV LIN2FV H4MDD H4EDD H4FV H2FV 

0.0 -18.28 -19.09 -26.64 -27.32 -24.40 -25.08 

0.2 -12.06 -12.24 -17.03 -17.22 -13.33 -14.88 

0.4 -3.77 -3.24 -3.21 -1.40 -4.73 -4.38 

Table 19 

% DEV vs. FV for the hybrid dispatching heuristics by R for n = 50 and 

M = 10 . 

R Procedure 

LIN1FV LIN2FV H4MDD H4EDD H4FV H2FV 

0.2 -9.55 -10.25 -16.78 -18.53 -16.07 -18.44 

0.6 -11.64 -11.37 -14.64 -14.78 -15.38 -16.40 

1.0 -12.92 -12.94 -15.46 -12.64 -11.02 -9.51 
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Table 20 

Average seconds per instance for the multiple sequence dispatching 

heuristics for M = 20 . 

n Procedure 

LIN1FV LIN2FV H4MDD H4EDD H4FV H2FV 

15 0.034 0.013 0.032 0.014 0.039 0.032 

20 0.039 0.024 0.040 0.022 0.054 0.041 

25 0.061 0.036 0.060 0.030 0.068 0.059 

30 0.068 0.049 0.064 0.043 0.054 0.072 

40 0.116 0.089 0.102 0.084 0.124 0.108 

50 0.147 0.161 0.143 0.153 0.159 0.143 

75 0.424 0.403 0.404 0.383 0.460 0.409 

100 0.829 0.802 0.836 0.793 0.913 0.840 
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as generally the best performing of the procedures described

n section 3 . The H3 based procedures (H3EDD, H3MDD and

3FV) performed very well when the number of jobs was smaller,

requently having the best performance but their performance

eteriorated relative to the other procedures as the number of jobs

ncreased. 

In order to show the effect of the due date range ( R ) and tar-

iness factor ( r ) on the results tables 18 and 19 are presented. The

ables report results for the six procedures that ranked in the top

en for all three levels of numbers of machines. Table 18 shows the

 Dev vs . FV by due date tardiness factor ( r ) for n = 50 and M = 10 . 

The results by due date tardiness factor ( r ) show that for each

f the six procedures the results compared to the FV procedure

as best for r = 0.0, followed by r = 0.2 and then r = 0.4. This is

o be expected because the procedures are trying to anticipate the

mount of unforced idle time that will be used in order to generate

etter solutions and more unforced idle time is used when r is low.

he H4MDD and H4EDD procedures were the two best procedures,

nd were very close, for r = 0.0 and 0.2 but were not as good as the

ther procedures when r = 0.4 (H4FV was the best). 
Table 19 shows the % Dev vs . FV by due date range factor ( R ) for

 = 50 and M = 10 . 

The results show that the performance of the LIN1FV and

IN2FV procedures improved as R increased and the performance

f the H4EDD, H4FV and H2FV procedures worsened as R in-

reased. The performance of the H4MDD was consistent across all

he levels of R and resulted in the best overall performance and

as best when R = 1.0. 

We also checked to see if the differences in the mean % Dev

or each pair of heuristics are significantly different by performing

 repeated measures ANOVA test. There were interaction effects

resent for the number of jobs and machines. Therefore, the test

as performed separately for each combination of M and n . The re-

ults showed that there is a significant effect regarding the heuris-

ic used for all combinations of M and n (the hypothesis that all

he heuristics perform similarly was rejected). Post-hoc tests were

hen conducted between each pair of heuristics, using the Bonfer-

oni correction for the number of comparisons being performed. A

% level of significance was used. 

The statistical tests showed that the improved performance for

he six procedures identified above (H4MDD, H2FV, H4FV, LIN1FV,

IN2FV, and H3EDD) as being consistently the best performer com-

ared to the other procedures was statistically significant for a

arge percentage of the combinations of M and n . 

Table 20 shows the average computational time per instance

sed by the six procedures that ranked in the top ten for all three
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Table 21 

Average seconds per instance for the multiple sequence dispatching heuristics 

by r and R for n = 100 and M = 20 . 

r R Procedure 

LIN1FV LIN2FV H4MDD H4EDD H4FV H2FV 

0.0 0.2 1.37 1.32 1.24 1.23 1.44 1.31 

0.0 0.6 1.33 1.34 1.23 1.28 1.38 1.34 

0.0 1.0 0.79 0.75 0.78 0.74 0.85 0.77 

0.2 0.2 0.97 0.97 0.94 0.88 0.97 0.94 

0.2 0.6 0.91 0.88 0.89 0.82 0.94 0.89 

0.2 1.0 0.65 0.62 0.65 0.60 0.75 0.62 

0.4 0.2 0.69 0.67 0.69 0.64 0.73 0.65 

0.4 0.6 0.56 0.52 0.53 0.52 0.63 0.58 

0.4 1.0 0.73 0.42 0.44 0.43 0.53 0.46 
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levels of numbers of machines by each level of number of jobs for

M = 20. The amount of computational time per instance did not

vary greatly by the level of number of machines so we did not in-

clude these results for M = 5 or 10. 

These results show that the computational time required does

not vary much based on which procedure is used. The H4EDD pro-

cedure required the least time for seven of the eight levels of num-

ber of jobs (the exception was n = 50) but the difference between

the amount of time this procedure used and the amount of time

used by the other procedures was small. The computational time

required increased as the number of jobs was increased. All of the

procedures required less than one second per instance for all lev-

els of number of jobs. These results show that the procedures can

solve large sized instances in a reasonable amount of time. 

Table 21 shows the average computational time per instance

used by the six procedures shown in the previous table for each

combination of r and R for n = 100 and M = 20. 

The results of this table show that as r increases the proce-

dures generally need less computational time to generate a solu-

tion. The reason for this is that as due dates become tighter less

unforced idle time is needed so the computational time needed to

insert unforced idle time becomes lower. Also, as R increases the

time required by the procedures to generate a solution is generally

lower. 

7. Conclusion 

In this paper, we test seven dispatching heuristics for mini-

mizing total earliness and tardiness in permutation flow shops

when using unforced inserted idle time to reduce job earliness

is allowed. Twenty one additional multiple sequence dispatching

procedures were also developed. These procedures were tested

on instances of various sizes in terms of the number of jobs

and machines, and nine sets of distributions that determine the

tightness and range of due dates. All of the procedures are very

efficient and were able to generate solutions quickly for all the

problem sizes tested. 

The results show that using the multiple sequence procedures

with the second pass generates solutions with lower total earliness

and tardiness. The reason these procedures generated better solu-

tions is that they estimate the amount of unforced idle time that

will be used when selecting the job to be sequenced in a given

position. The results also showed that the H4MDD and H4FV pro-

cedures were generally the best. 

There are two areas for conducting additional research for the

problem. One would be the development of metaheuristics for

the problem. The second would be the development of an exact

algorithm, such as a branch-and-bound algorithm, or a lower

bounding method, for the problem, so that an estimate of how

far the solutions generated by heuristic procedures deviate from
he optimal objective function values (or a lower bound on those

ptimal values). 
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