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Abstract

In this paper we present a 12-dimensional tonal space in the
context of the Tonnetz, Chew’s Spiral Array, and Harte’s
6-dimensional Tonal Centroid Space. The proposed Tonal
Interval Space is calculated as the weighted Discrete Fourier
Transform of normalized 12-element chroma vectors, which
we represent as six circles covering the set of all possible pitch
intervals in the chroma space. By weighting the contribution
of each circle (and hence pitch interval) independently, we
can create a space in which angular and Euclidean distances
among pitches, chords, and regions concur with music theory
principles. Furthermore, the Euclidean distance of pitch con-
figurations from the centre of the space acts as an indicator of
consonance.

Keywords: tonal pitch space, consonance, tonal hierarchy

1. Introduction

A number of tonal pitch spaces have been presented in the
literature since the 18th century (Euler, 1739/1968). These
tonal spaces relate spatial distance with perceived proximity
among pitch configurations at three levels: pitches, chords,
and regions (or keys). For example, a tonal space that aims to
minimize distances among perceptually-related pitch config-
urations should place the region of C major closer to G major
than Bb major because the first two regions are understood
to be more closely related within the Western tonal music
context. For similar reasons, within the C major region, a G
major chord should be closer to a C major chord than a D
minor chord, and the pitch G should be closer to A than to
G#.

The intelligibility and high explanatory power of tonal pitch
spaces usually hide complex theories, which need to account
for a variety of subjective and contextual factors. To a certain
extent, the large number of different, and sometimes con-
tradictory, tonal pitch spaces presented in the literature help
us understand the complexity of such representations. Exist-
ing tonal spaces can be roughly divided into two categories,
each anchored to a specific discipline and applied methods.
On the one hand we have models grounded in music theory
(Cohn, 1997, 1998; Lewin, 1987; Tymoczko, 2011; Weber,
1817-1821), and on the other hand, models based on cogni-
tive psychology (Krumhansl, 1990; Longuet-Higgins, 1962;
Shephard, 1982).

Tonal pitch spaces based on music theory rely on musical
knowledge, experience, and the ability to imagine complex
musical structures to explain which of these structures work.
Tonal pitch spaces based on cognitive psychology intend to
capture the mental processes underlying musical activities
such as listening, understanding, performing, and composing
tonal music by interpreting the results of listening experi-
ments. Despite their divergence in terms of specific meth-
ods and goals, music theory and cognitive psychology tonal
pitch spaces share the same motivation to capture intuitions
about the closeness of tonal pitch configurations, which is an
important aspect of our experience of tonal music (Deutsch,
1984). Recent research has attempted to bridge the gap be-
tween these two approaches by proposing models that share
methods and compare results from both disciplines, such as the
contributions of Balzano (1980, 1982), Lerdahl (1988, 2001),
and Chew (2000, 2008).

Both music theory and cognitive tonal pitch spaces have
been implemented computationally to allow computers to
better model and generate sounds and music. Among the
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computational problems that have been addressed by tonal
pitch spaces we can highlight key estimation (Chew, 2000,
2008; Temperley, 2001; Bernardes et al., 2016), harmonic
change detection (Harte, Snadler, & Gasser, 2006; Peiszer,
Lidy & Rauber, 2008), automatic chord recognition (Mauch,
2010), and algorithmic-assisted composition (Behringer &
Elliot, 2009; Gatzsche, Mehnert, & Stocklmeier, 2008;
Bernardes et al., 2015).

Following research into tonal pitch spaces, we present the
Tonal Interval Space, a new tonal pitch space inspired by the
Tonnetz, Chew’s (2000) Spiral Array, and Harte et al.’s (2006)
6-dimensional (6-D) Tonal Centroid Space. We describe the
mathematical formulation of the Tonal Interval Space and we
discuss properties of the space related to music theory. The
innovations introduced in this paper constitute a series of
controlled distortions of the chroma space calculated as the
weighted Discrete Fourier Transform (DFT) of normalized
12-element chroma vectors, in which we can measure the
proximity of multi-level pitch configurations and their level
of consonance.

Primarily, our approach extends the Tonnetz, as well as the
work of Chew (2000, 2008) and Harte et al. (2006), in four
fundamental aspects. First, it offers the ability to represent
and relate pitch configurations at three fundamental levels of
Western tonal music, namely pitch, chord and region within
a single space. Second, we compute the space by means of
the DFT and furthermore demonstrate how Harte et al.’s 6-D
space can also be calculated in this way. Third, it allows the
calculation of a tonal pitch consonance indicator. Fourth, it
projects pitch configurations that have a different representa-
tion in the chroma space as unique locations in our space—
thus expanding the Harte et al.’s 6-D space to include all
possible intervallic relations.

The remainder of this paper is structured as follows. In
Section 2, we review the problems and limitations of existing
tonal pitch spaces. In Section 3, we detail the three most
related tonal pitch spaces to our work, which form the basis
of our approach. In Section 4, we describe the computation of
Tonal Interval Vectors (TIVs) that define the location of pitch
configurations in a 12-dimensional (12-D) tonal pitch space.
In Section 5, we detail the representation of multi-level pitch
configurations in the space as well as the implications of the
symmetry of the DFT for defining a transposition invariant
space. In Section 6, we detail distance metrics used in the
Tonal Interval Space. In Section 7, we describe a strategy
to adjust the distances among pitch configurations in the 12-
D space in order to better represent music theory principles.
In Section 8, we discuss the relations among different pitch
configurations on three fundamental tonal pitch levels, namely
pitch classes, chords, and regions and we compare the effect
of different DFT weightings on the measurement of conso-
nance. Finally, in Sections 9 and 10 we reflect on the original
contributions of our work, draw conclusions and propose
future directions.

2. Tonal pitch spaces: existing approaches and
current limitations

The relations among tonal pitch structures, fundamental to
the study of tonal pitch spaces, have been a research topic
extensively investigated in different disciplines including
music theory (Schoenberg, 1969; Weber, 1817-1821), psy-
chology (Deutsch, 1984), psychoacoustics (Parncutt, 1989),
and music cognition (Krumhansl, 1990; Longuet-Higgins,
1962; Shepard, 1982). Different models and interpretations
of the same phenomena have been presented in these disci-
plines. We argue that their discrepancy is due to historical,
cultural, and aesthetic factors. Therefore, tonal pitch spaces
cannot be disassociated from the context where they have
been presented, and, more importantly, their understanding
requires exposure to tonal schemes (Deutsch, 1984).

Even though recent cognitive psychology research has man-
aged to reduce confounding factors and offer a more general
view on the subject of perceptual proximity of tonal pitch
(Krumhansl, 1990), it is not averse to the idiosyncratic factors
that regulate listening expectancies within the Western tonal
music context. For example, many musical idioms that exist at
the edge of tonality are clearly misrepresented by tonal spaces
resulting from empirical studies, such as the post-romantic
works of Richard Strauss and Gustav Mahler (Kross, 2006).
Therefore, it is important to bear in mind that, whichever
applied method, a tonal space is only a partial explanation
of the entire Western tonal music corpus.

Given the limitations of tonal spaces to provide a universal
explanation for the cognitive foundations of pitch perception,
related research must necessarily clarify their basis, applied
methodology, and most importantly their limitations. For the
purpose of this work we follow Lerdahl (2001) and most
cognitive psychological studies in the area, which position
themselves in the extrapolation of ‘hierarchical relations that
accrue to an entire tonal system beyond its instantiation in a
particular piece’ (Lerdahl, 2001, p. 41). In other words, we
are concerned with ‘tonal hierarchy’ that diverges from the
concept of ‘event hierarchy’ (Bharucha, 1984) in the sense
that basic tonal structures of the first apply to the majority
of Western tonal music rather than a specific response to a
particular style or composer’s idiom.

Tonal music structures result from the interaction of several
levels of pitch configuration, most importantly pitch, chords
and regions (in increasing order of abstraction). In the result-
ing tonal hierarchy, the upper levels embed lower ones and
all levels are inter-dependent. Therefore, as Lerdahl (2001)
claims, a tonal pitch space must account for the proximity of
individual pitches, chords and regions in the same framework,
as well as explain their interconnection.

In his Tonal Pitch Space theory, Lerdahl (2001) contextual-
izes all low-level pitch configurations with top-level regions
by representing pitch classes, chords, and regions according
to a similar method and all in the same space. Nevertheless,
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in Lerdahl’s space, in order to represent low-level pitch con-

figurations, we must define the top-level region(s) to measure
distances among their lower level pitch configurations. There-
fore, in order to measure the distance between two chords, for
example, we must define their region(s) in advance. Despite
this compelling solution, Lerdahl’s theory cannot be used in
contexts where the regional level is unknown, such as in
Music Information Retrieval (MIR) problems like the
automatic estimation of keys and chords from a musical input.
Therefore, we strive for a model that explains all fundamental
tonal pitch levels in a single space, without the need to define
a priori information.

Another commonly raised issue in the tonal pitch space
literature, particularly when discussing tonal spaces grounded
in music theory, is their symmetry, which does not equate
with how humans perceive pitch distances (Krumhansl, 1990,
pp- 119-123). However, the cyclical nature of the tonal system
embeds operations like transposition, which naturally create
symmetrical spaces. By disregarding the cyclical nature of the
tonal system, we risk lacking an explanation for some of its
most fundamental operations. Additionally, the human ability
to understand, abstract, and group pitch contours invariant
to their key or transposition factor stresses the importance of
relational distances that account for these operations, resulting
in symmetrical pitch space organizations (Shepard, 1982).

Consonance and dissonance, so closely related to the
perception of pitch proximity and musical tension, are poorly
addressed in all theories supporting tonal pitch spaces.
Consonance and dissonance are at best implicitly considered
in Lerdahl’s (1988, 2001) Tonal Pitch Space, but never
explicitly modelled (or measurable) as a property of the space.
Similarly, KrumhansI’s (1990, pp. 59—60) analysis comparing
Krumbhansl and Kessler’s (1982) 24 major and minor key
profiles with several ratings of consonance and dissonance
show poor results for intervals formed within the minor
keys.

3. The Tonnetz and its derivations

The Tonnetz is a planar representation of pitch relations first
attributed to the eighteenth-century mathematician Leonhard
Euler (Cohn, 1998). In its most traditional representation,
the Tonnetz organizes (equal-tempered) pitch on a concep-
tual plane according to intervallic relations, favouring perfect
fifths, major thirds and minor thirds (see Figure 1). Fifths run
horizontally from left to right, minor thirds run diagonally
from bottom left to top right, and major thirds run diagonally
from top left to bottom right.

Despite its original basis as a pitch class space, the Tonnetz
has been extensively used as a chordal space since the 19th
century by music theorists such as Riemann and Oettingen
and more recently by neo-Riemannian music theorists (Cohn,
1997; Hyer, 1995; Lewin, 1987). Chords are represented on
the Tonnetz as patterns formed by adjacent pitches, whose
shapes are constant for chords with the same quality. For
example, major triads always form a downward pointing tri-

angle, whereas minor triads always form an upward pointing
triangle (see Figure 1).

Music theorists following the Riemannian tradition adopted
the Tonnetz to explain significant tonal relationships between
harmonic functions, which are near one another in the Tonnetz
(Cohn, 1998). For example, the dominant and the subdominant
chords are at close distances on either side of the chord of the
tonic in a given key. In Figure 1, if we draw a horizontal line
traversing the centre of the C major region tonic (I) we find
its dominant (V) and subdominant (IV) chords in the neigh-
bourhood and its relative (C minor triad), mediant (iii), and
submediant (vi) chords in edge-adjacent triangles. Moreover,
in the Tonnetz, chord distances also equate with the number
of common tones. The closer chord configurations are, the
greater their number of common tones. In addition to the large
amount of music theory literature on the Tonnetz, Krumhansl
(1998) presented experimental support for the psychological
reality of one of its most important theoretical branches, the
neo-Riemannian theory.

Various derivations and models of the Tonnetz have been
proposed. Of interest here are those that have a mathemat-
ical formulation and that can be computationally modelled,
notably Chew’s (2000) Spiral Array and Harte et al.’s (2006)
6-D space. Chew’s Spiral Array results from wrapping the
Tonnetz into a tube in which the line of fifths becomes a helix
on its surface and major third intervals are directly above each
other. Chew’s model allows chords and keys to be projected
into the interior of the tube by the centre of mass of their
constituent pitches.

The spatial location of pitches on the Spiral Array ensures
that some pitch configurations understood as perceptually
related within the Western tonal music context correspond to
small Euclidean distances. That is, pitch distances are
minimized for intervals that play an important role in tonal
music, such as unisons, octaves, fifths and thirds. These dis-
tances result from the helix representation of pitch locations
in the Tonnetz and from further defining the ratio of height to
diameter, akin to stretching out a spring coil. The Spiral Array
has been applied to problems such as key estimation (Chew,
2000) and pitch spelling (Chew & Chen, 2003) from music
encoded as symbolic data.

Following Chew’s research, Harte et al. (2006) proposed
a tonal space that projects pitch configurations encoded as
12-element chroma vectors to the interior of a 6-D polytope
visualized as three circles. Inter pitch-class distances in the
6-D space mirror the spatial arrangement for the perfect fifth,
major thirds, and minor thirds of the Tonnetz, weighted in a
similar fashion to Chew’s Spiral Array to favour perfect fifths
and minor thirds over major thirds. The fundamental differ-
ence from Chew’s Spiral Array is the possibility to represent
harmonic information in a single octave by invoking enhar-
monic equivalence. Distances between pitch configurations
with variable numbers of notes are represented in the space
by the centroid of their component pitches, whose distances
emphasize harmonic changes in musical audio (Harte et al.,
2006). Additionally, the 6-D tonal space has been applied in



284 G. Bernardes et al.

NZ NS \/ \/ NS NS

—Ebb Bbb

Gb Db —

/\/\/\/\/\/\/

—Gb

/\/\/\/\/\/\/

—Bb

D vii®— A —

NN N /N 1

Cg <> Perfect 5™

/ /\ /\ /\ /\ / N\

Major 3™

Fig. 1. Representation of the Tonnetz or harmonic network, in which triangular heavier strokes emphasize major/minor triads’ formation and
shaded areas the complete set of diatonic triads within the C major region—represented by their degree in Roman numerals.

a variety of MIR problems, including chord recognition (Lee,
2007), key estimation (Lee & Slaney, 2007) and structural
segmentation (Peiszer et al., 2008).

In the following section, we introduce the Tonal Interval
Space which inherits features from the Tonnetz and its deriva-
tive spaces (Chew’s Spiral Array and Harte et al.’s 6-D space),
concerning the organization of pitch classes. We extend
Harte et al.’s 6-D space by including all intervallic relation-
ships, reinforcing and controlling the contribution of each
interval in the space according to empirical consonance and
dissonance ratings (Hutchinson & Knopoff, 1979; Kameoka &
Kuriyagawa, 1969; Malmberg, 1918). This allows us to mea-
sure the interpreted proximity of pitch configurations within
Western tonal music at various levels of abstraction as well as
measuring their level of consonance in a single space.

4. Tonal interval space

The Tonal Interval Space maps 12-D chroma vectors to
complex-valued TIVs with the DFT.! On the one hand, the
chroma vector can be used to represent different levels of
pitch configurations such as pitches, chords and regions. On
the other hand, Fourier analysis has been widely used to ex-
plore the harmonic relations between pitch classes, primarily
to investigate intervallic differences between two pitch class
sets and expand on the notion of maximal evenness (Amiot,
2013; Amiot & Sethares, 2011; Callender, 2007; Clough &
Douthett, 1991; Lewin, 2001; Quinn, 2006, 2007) and to a
lesser extent tonal pitch relations (Bernardes et al., 2015; Yust,
2015). In this paper, we explore the effect of all coefficients of
the DFT of chroma vectors, including coefficients discarded
by Harte et al. (2006) towards enhancing the description of
tonal pitch and the computation of a tonal pitch consonance
indicator.

IThe use of the DFT in the context of our work was inspired by Ueda,
Uchiyama, Nishimoto, Ono and Sagayama (2010), who identified a
correspondence between the DFT coefficients of a chroma vector
and Harte et al.’s (2006) 6-D space.

4.1 Chroma vectors

In this work, we restrict our analysis of musical notation
to symbolic representations, and hence we consider chroma
vectors c(n) which express the pitch class content of pitch con-
figurations as binary activations in a 12-element vector. Each
element corresponds to a pitch class of the equal-tempered
chromatic scale. The chroma vector ¢(n) in Table 1 represents
the C major chord, so it activates pitch classes [0, 4, 7] with the
value 1. Table 1 supposes enharmonic and octave equivalence
characteristic of equal tempered tuning. There is no informa-
tion about pitch height encoded in c(n). Consequently, the
octave cannot be represented by c(n) with binary encoding
because all the octaves are collapsed into one.

The chroma vector c(n) allows the representation of multi-
level pitch configuration by simply indicating the presence of
the respective pitch classes. For example, for the pitch class, C
is [0], for the G major chord itis [2, 7, 11], and for the diatonic
C major scale (or diatonic scale of A harmonic minor) it is [0,
2,4,5,7,9, 11].

The chroma vector c¢(n) occupies a 12-D space indepen-
dently of the pitch configuration it represents. However, the
geometric properties of the space spanned by the chroma vec-
tor do not capture harmonic or musical properties of the pitch
configurations that it represents. In other words, chroma vec-
tors c(n) that represent perceptually similar harmonic
relations are not necessarily close together in the space. For
example consider the following three dyads: a minor second
[0, 1], a major third [0, 4] and a perfect fifth [0, 7]. While all
three share a single pitch class [0] and the Euclidean distance
between all of their chroma representations is the same, from a
perceptual standpoint, the minor second is perceptually further
from the other two. The DFT maps chroma vectors to TIVs
into a space that exhibits useful properties to explore the
harmonic relationships of the tonal system, which we detail in
Section 8.

4.2 Tonal interval vectors

TIVs T (k) are calculated as the DFT of the chroma vector
c(n) as follows
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Table 1. Chroma vector c(n) representation of the C major chord.

Chroma vector c¢(n)

Position n 0 1 2 3 4 5 6 7 8 9 10 1
Pitch class C C# D D# E F F# G G# A A# B
Value 1 0 0 0 1 0 0 1 0 0 0 0
N=l ok o c(n) (i.e. the centre of the circles shown in Figure 2). For k = 1 and
T'(k) = wk) Z cme” N, keZwithcn) = SV o)’ k = 5, the furthest musical interval from the centre is formed
n=0 n=0 1 between adjacent positions. For k = 2, k = 3, k = 4 and

where N = 12 is the dimension of the chroma vector and
w(k) are weights derived from empirical dissonance ratings
of dyads used to adjust the contribution of each dimension
k of the space, which we detail at length in Section 7. T (k)
uses ¢(n), which is c¢(n) normalized by the DC component
T(0) = Zf:’z_ol c(n) to allow the representation of all levels of
tonal pitch represented by c(n) in the same space. In doing so,
T (k) can be compared amongst different hierarchical levels
of tonal pitch.

Equation 1 can be interpreted from the point of view of
Fourier analysis or complex algebra. The Fourier view is
useful to visualize TIVs and interpret k as musical intervals,
whereas the algebra view (explained in Section 6) is used
to define objective measures that capture perceptual features
of the pitch sets represented by the TIVs. The Fourier view
interprets 7' (k) as a sequence of complex numbers with k € Z.
When 0 < n < 11, k is usually set 0 < k£ < 11. In practice,
1 < k < 6 for T (k) since the coefficients for 7 < k < 12
are equal to T (k) for | < k < 6 because of the symmetry
properties of the DFT (Oppenheim, Schafer, & Buck, 1989).
In this section, T (k) is represented as magnitude |7 (k)| versus
k and phase ¢ (k) versus k. For each index k, we have

1T (k)| = \/9?{T(k)}2 +3{T K> 1<k<6, (2
-1 TR}

MT (k)}
where {7 (k)} and I{T (k)} denote the real and imaginary
parts of T (k) respectively.

The Tonal Interval Space uses the interpretation in Table 2,
which we show in Figure 2, using a strategy borrowed from
Harte et al. (2006) to depict their 6-D space. Each circle in
Figure 2 corresponds to 7' (k) when < k < 6 in Equation 1.
The circle representing the intervals of m2/M7 has the real
part of 7'(1) on the x axis and the imaginary part of 7'(1) on
the y axis and so on. The integers around each circle represent
0<n <N —1for N = 12, corresponding to the positions
in the chroma vector c(n). A fixed k in Equation 1 generates
N = 12 points equally spaced by ¢(k) = —2nk/N. Both
in Table 2 and Figure 2, a musical nomenclature is adopted
to denote each of the DFT coefficients that arise from the
interpretation of these points as musical intervals. The musical
interpretation assigned to each coefficient corresponds to the
musical interval that is furthest from the origin of the plane

@(k) = tan l<k<6, 3

k = 6, the furthest interval from the centre is formed between
overlapping positions.

5. Multi-level pitch configurations and transpo-
sition

Section 4.1 demonstrated that the chroma vector ¢(n) can
represent multi-level pitch configurations as the sum of c(n)
for each single pitch class. For example, the chroma vector of
the C major chord can be obtained as the sum of the chroma
vectors of its constituent pitch classes C, E and G. Mathe-
matically, ¢12,3([0, 4, 71) = c1([0]) + c2([4]) + ¢3([7]). Due
to the linearity of the DFT, multi-level pitch configurations
in the Tonal Interval Space can be represented as a linear
combination of the DFT of its component pitch classes. Math-
ematically, 71 2,3(k) = T1(k) + T2 (k) + T5(k).

Figure 2 illustrates 7 (k) for the C major chord as a convex
combination of T (k) for its component pitch classes. Convex
combinations are linear combinations y ,le o (k)T (k), where
the coefficients «(k) are non-negative (i.e. a(k) > 0) and
>y a(k) = 1. Geometrically, a convex combination always
lies within the region bounded by the elements being com-
bined. So the convex combination of TIVs lies inside the
shaded regions shown in Figure 2 due to the normalization
of ¢(n) in Equation 1. These regions can be obtained by
connecting the adjacent TIVs of isolated pitch classes.

An important feature of Western tonal music arising from
12 tone equal-tempered tuning is the possibility to modu-
late across regions. This attribute establishes hierarchies in
tonal pitch, in which low-level components relate to, and are
commonly defined by their regional level. For example, we
commonly define the chords formed by the diatonic pitch
set of the C major region by the function they play within
that region, such as the chords of the tonic, sub-dominant,
dominant, etc. Perceptually, Western listeners also understand
interval relations in different regions as analogous (Deutsch,
1984). For example, the intervals from C to G in C major and
from C# to G# in C# major are perceived as equivalent. As
Shepard (1982) claims, this theoretical and perceptual aspect
of Western tonal music is an important attribute that should be
modelled by tonal pitch spaces, which ‘must have properties of
great regularity, symmetry, and transformational invariance’
(p- 350). Briefly, a tonal space must be transposition invariant.
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Minor Second (m2) Tritone (TT) Major Third (M3)
Major Seventh (M7) Minor Sixth (m6)
¥ty »2¢ 591
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Minor Third (m3) Perfect Fourth (P4) Major Second (M2)
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Fig. 2. Visualization of the TIV for the C major chord (pitch classes 0, 4 and 7) in the 12-D Tonal Interval Space. Each circle corresponds to
the coefficients of 7'(k) labelled according to the complementary musical intervals they represent. The TIVs of isolated pitch classes lie on the
circumference and the TIV corresponding to the linear combination lies inside the region bounded by the straight lines connecting the points.

Shaded grey areas denote the regions that TIVs can occupy for each circle.

Table 2. Intervallic interpretation of k for 7 (k).

Position k 1 2 3 4 5 6
Steps n Adjacent Overlap Overlap Overlap Adjacent Overlap
Musical interval m2/M7 TT (A4/D5) M3/m6 m3/M6 P4/P5 M2/m7

In the Tonal Interval Space, transpositions by p semitones
result in rotations of 7T (k) by ¢(n) = —2mwkp/N radians.
Transpositions of c¢(n), which by definition are circular in the
chroma domain, are represented as c(n — p). So, transposing
Cby p = 7results in G and by p = 12 results in C. Using the

properties of the Fourier transform (Oppenheim et al., 1989),
2k

the pair ¢(n) 5 T (k) becomes c(n — p) = T(k)e ¥ P,
where F represents the DFT. Denoting T}, (k) as the TIV of
c(n — p) we have

J2m (k+p)

Ty(k) =T (k)|lem N

“

Hence, any transposition c(n — p) resulting in 7, (k) has the
same magnitude |7 (k)| as the original sequence c(n) and
a linear phase component eI P, Figure 3 illustrates the
rotation of the TIV of the C major chord by one semitone.

6. Distance metrics in the tonal interval space

This section illustrates the properties of the Tonal Interval
Space which rely on the complex algebra view of Equation
1, where T'(k) € CM; M = 6. Here, T (k) is interpreted
as a 6-D complex-valued vector in the space spanned by
the Fourier basis when 1 < k < 6. Note that 6 complex
dimensions correspond to 12 real dimensions because the real
and imaginary axes are orthogonal. Using the norm L, in C,
we can define the inner product between T (k) and 7> (k), the
norm of Tj(k), and the Euclidean distance between T; (k) and
T, (k) as follows

M
Ti(k) - Tak) = | TV ()| | T2 (k)] | cos 6 = Y Ty (k) Ta(k),
k=1

&)

d{Ty(k), T(0)} = VIITI (0| = T2 ()|
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Fig. 3. Visualization of the C major triad (pitch classes 0, 4 and 7—represented as a square) and the rotation of its TIV to transpose it one

semitone higher (i.e. pitch classes 1, 5 and 8—represented as a star).

M

D ITik) — T, 6)

k=1

M
VTt Ttk = | Y ITik) 2, (7
k=1

1T ()|

where M = 6 is the dimension of the complex space, 6 is

the angle between T7(k) and T»(k), and T»(k) denotes the
conjugate transpose of 75 (k). Equation 5 is the inner product
and Equation 6 is the Euclidean distance between 77 (k) and
T>(k). Equation 7 is the norm of Tj(k), which can also be
calculated as the Euclidean distance from the centre of the
Tonal Interval Space 0 as ||T (k)|| = d{T(k), 0}.

We use Equations 5 to 7 within the Tonal Interval Space in
order to measure tonal pitch relations and consonance using
complex algebra. The musical interpretation of the algebraic
properties are detailed at length in Section 8.

7. Improving the perceptual basis of the space

Following Chew (2000) and Harte et al. (2006), we apply a
strategy to adjust pitch class distances in our space. To this
end, we apply weights w(k) to each circle when calculating
T1 (k) using Equation 1. By controlling the weights we can
regulate the contribution of the musical intervals associated
with each of the DFT coefficients, as described in Section 4.
Specifically, we intend to use the weights as a means to allow
the computation of consonance of pitch configurations in the

Tonal Interval Space, which we calculate as the norm of a TIV
(see Section 6).

We rely on two complementary sources of information to
derive the set of weights. First, the set of composite con-
sonance ratings of dyads (Huron, 1994), as shown in Table
3 and second, the relative ordering of triads according to
increasing dissonance (Cook, Fujisawa, & Konaka, 2007):
{maj/min, sus4, aug, dim}.2 Our goal is to find a set of weights
which both maximizes the linear correlation with Huron’s
composite consonance ratings of dyads and preserves Cook
etal.’s relative ordering of triads.? While the search for weights
can be considered a multidimensional optimization problem,
by applying two simplifying constrains we can perform an
exhaustive brute force search and thus consider all possible
combinations of weights. In this way, we can guarantee a near
optimal result subject to our constraints.

To allow a computationally tractable search for weights,
we restrict the properties of the weights as follows: we allow
only integer values in a defined range, such that each w(k)

2Because the pitch configurations for major and minor triads contain
identical relative intervals when represented as chroma vectors, the
Tonal Interval Space cannot disambiguate them, hence we must
consider them equally ranked.

3While Roberts (1986) provides consonance ratings of triads, these
were obtained from an experimental design that relied heavily on a
preceding musical context and not listener judgements of isolated
triads. Therefore we do not attempt to directly incorporate these
absolute ratings when determining the weights w (k).
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Table 3. Composite consonance ratings based on normalized data
from Malmberg (1918), Kameoka and Kuriyagawa (1969), and
Hutchinson and Knopoff (1979) (as presented in Huron, 1994).

Interval class Consonance
m2/M7 —1.428
M2/m7 —0.582
m3/M6 0.594
M3/m6 0.386
P4/P5 1.240
TT —0.453
S 4
E
2o
L
=
& o
T T T T T T
1 2 3 4 5 6

Index k&
Fig. 4. The set of weights that maximize the linear correlation with
the composite consonance ratings of dyads as shown in Table 3 while
simultaneously preserving the relative ordering of triads shown in
Table 7. The bold black line corresponds to the set of weights w (k)
used in Equation 1.

can only take values between 1 and 20. Consequently this
creates a secondary constraint that the largest weight (i.e.
the most important interval) can be, at most, 20 times the
smallest (i.e. the least important interval). Given that each
individual weight w(k) can take any value between 1 and
20 independently of all the others, this provides a total of
B = 20° — 1 possible combinations of weights (i.e. 64 mil-
lion) ranging from wi(k) = {1,1,1,1,1,1} to wp(k) =
{20, 20, 20, 20, 20, 20}. For simplicity, we do not discard any
sets of weights that are trivially related to one another in terms
of scalar multiples.

For each set of weights wj (k) we first calculate the corre-
sponding TIV, T} (k), using Equation 1 for each dyad interval
in Table 3 and the following set of triads {maj, sus4, aug,
dim}. We then calculate the consonance (i.e. the distance to the
centre of the Tonal Interval Space) as the magnitude || 73 (k)||
using Equation 7. We then measure the linear correlation to
Huron’s dyad consonance ratings, and verify the ordering
of the triads’ consonance according to Cook et al. From the
complete set of 20° — 1 combinations of weights, we found 46
solutions (each of which is plotted in Figure 4) that resulted in
a linear correlation greater than 0.995 and preserved the triad
consonance ordering. Given the inherent similarity in shape
of the different sets of weights, we do not believe the choice

over exactly which set of weights to be critical. However,
we ultimately selected the weights with the greatest mutual
separation between the triads according to consonance, thus
w(k) = {2(m2/M7), 11(TT), 17(M3/m6), 16(m3/M6), 19
(P4/P5),T7(M2/mT)}.

8. Musical properties of the multi-level Tonal In-
terval Space

Pitch configurations are separated in the 12-D tonal pitch
space by spatial and angular distances whose metrics were
presented in Section 6. In this section, we discuss how these
distances translate into musical properties within the most
salient hierarchical layers of the tonal system from lower
to higher levels of abstraction, i.e. starting with the spatial
relations between pitch classes, then chords, and finally keys
or regions.

The musical properties of the Tonal Interval Space can be
split into two major groups. The first is detailed in Section 8.1
and reports the ability of the space to place pitch configurations
that share harmonic relations close to one another. The second
is reported in Section 8.2 and explains how ||T (k)|| can be
used as a measure of consonance.

8.1 Perceptual similarity among multi-level pitch configu-
rations

Proximity in the Tonal Interval Space equates with how pitch
structures are understood within the Western tonal music con-
text rather than objective pitch frequency ratios. In other words,
the closeness between pitch classes in our space corresponds
to interpreted proximity between pitch classes as used in the
context of Western tonal music rather than distances on a key-
board. For example, pitches placed at a close distance on the
keyboard, such as C and C#, are quite distant in our space. In
fact, objective frequency ratios among pitch classes are imm-
ediately misrepresented in the chroma vector by collapsing all
octaves into one, and even further distorted in the weighted
DFT of chroma vectors expressed by the TIVs.

Similar to Harte et al.’s (2006) 6-D space, the resulting
structure of the Tonal Interval Space inherits the pitch organi-
zation of the Tonnetz by wrapping the plane into a toroid, see
Harte et al. (2006) for a detailed explanation and illustration
of this operation. Therefore, in the Tonal Interval Space, as in
the Tonnetz, the proximity of dyads using both the angular and
Euclidean distances computed by Equations 5 and 6 are ranked
as follows: unisons; perfect fourths/fifth; minor thirds/major
sixths; major thirds/minor sixth; tritone (augmented fourth or
diminished fifth); major second/minor seventh; and finally,
minor second/major seventh (see Table 4). Additionally, as a
result of the symmetry of the Tonal Interval Space imposed by
the DFT, complementary intervals are at equidistant locations
(see Section 5).

Atthe chordal level, the major/minor triad formation, which
groups close pitch classes in the representations, equates with
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Table 4. Angular and Euclidean distances of complementary dyads in the Tonal Interval Space presented from left to right in descending order

of consonance.

Distance P1 P4/P5

m3/M6

M3/m6 TT M2/m7 m2/M7

Angular 6 (in rad) 0.00 1.39 1.49
Euclidian d 0.00 42.13 44.59

1.60 1.78 1.80 1.98
47.18 51.15 51.50 54.88

Gg # E
d#  g#

C# B
F#
Fig. 5. 2-D visualization of the interkey distances in the Tonal
Interval Space amongst all major and minor regions using
multidimensional scaling (De Leeuw & Mair, 2009).* The neighbour
dominant (D), subdominant (SD), and relative (R) regions of C
major are emphasized.

the triads formed and commonly highlighted in the Tonnetz
(see Figure 1). Therefore, motions between adjacent triads
in the Tonal Interval Space indicate a chord progression that
maximizes the number of common tones while minimizing the
displacement of moving voices (known as voice-leading par-
simony). For all regions we find, in the neighbourhood of the
chord of the tonic, the mediant and submediant chords, which
each share two pitch classes with the tonic. Neo-Riemannian
theorists refer to these motions as primary transformations
(Cohn, 1997, 1998). Motions between chords that share fewer
pitch classes are placed further apart in the space.

Within the context of Western tonal music, we can also
say that close harmonic functions are depicted in our space as
chord substitutions. Typical harmonic progressions in Western
tonal music remain at relatively close distances but are not
explicitly minimized in the space. Briefly, the chordal level in
our space minimizes distances for common-tone chord pro-
gressions, which commonly substitute themselves, rather than
typical harmonic sequences.

Therefore, the Tonal Interval Space shows great potential
to explore voice-leading parsimony (as applied in Bernardes
et al., 2015) and offers the possibility to explore formal trans-
formations that have been derived from Riemann’s fundamen-
tal harmonic theory (Cohn 1997, 1998; Hyer, 1995; Kopp,
1995; Lewin, 1982, 1987, 1992; Mooney, 1996).

Interkey distances in the Tonal Interval Space result in two
concentric layers which position keys by intervals of fifths.

The outer layer (corresponding to vectors with larger magni-
tude) contains the circle of fifths for all major keys and an inner
layer (corresponding to vectors with smaller magnitude) con-
tains the circle of fifths for all minor keys. Figure 5* illustrates
interkey distances on a 2-D space. There the spatial proximity
of each key to its dominant, subdominant and relative keys,
corresponds to our expectation of the proximity between the
24 major and minor keys and adheres to Schoenberg’s (1969)
map of key regions, which is a geometrical representation of
proximity between keys (Lerdahl, 1988, 2001).

The next consideration concerns the degree to which our
space can explain the interconnection of the three tonal pitch
levels, and particularly the relation of the lower abstraction
levels with the top regional ones. This aspect is especially
relevant within the Western tonal music context because our
understanding of pitch classes and chords is dependent on
their upper hierarchical levels (Krumhansl, 1990, pp. 18-21).
Ideally, the three tonal pitch levels should interconnect and
the distances among pitch classes, chords and regions should
be meaningful.

In the Tonal Interval Space, the pitch class set of differ-
ent diatonic regions occupies a compact neighbourhood. The
same property applies to the set of diatonic triads within a
region because their location is the convex combination of the
T (k) for its component pitch classes as explained in Section
5. Table 5 reinforces the validity of this assertion by showing
the angular and Euclidean distances between all individual
pitch classes from the C major and C harmonic minor regions.
The set of diatonic pitch classes (in bold) of each region are
at smaller distances than the remaining pitch classes. Due to
the transposition invariance of the Tonal Interval Space, these
results hold true for all remaining major and minor regions in
our space.

4In order to illustrate distances among pitch configurations in the
12-D Tonal Interval Space, we use nonmetric multidimensional
scaling (MDS) to plot it into a 2-dimensional plane. Shepard
(1962) and Kruskal (1964) first used this method, which has been
extensively applied to visualize representations of multidimensional
pitch structures (Barlow, 2012; Krumhansl & Kessler, 1982;
Lerdahl, 2001). Briefly, nonmetric MDS attempts to transform
a set of n-dimensional vectors, expressed by their distance in
the item-item matrix, into a spatial representation that exposes
the interrelationships among a set of input cases. We use the
smacof library from the statistical analysis package ‘R’ to compute
dimensionality reduction using a nonmetric MDS algorithm. More
specifically, we use the function smacofSym, with ‘ordinal’ type
and ‘primary’ ties.
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Table 5. Angular (¢) and Euclidean (d) distances between C major and C harmonic minor regions TIVs (labeled as upper and lower case ‘c’,
respectively) and the entire set of pitch classes. The diatonic pitch class set of each region is presented in bold.

C Ci# D D# E F F# G G# A A# B
c 0 1.22 2.12 1.09 2.12 1.22 1.40 2.02 1.15 1.97 1.15 2.01 1.40
d 30.9 39.63 29.50 39.63 30.91 32.79 38.80 30.07 38.41 30.07 38.80 32.79
0 1.19 2.24 1.33 1.13 1.97 1.25 2.06 1.24 1.23 1.98 1.78 1.33
c
d 30.58 39.75 31.95 31.62 37.81 31.14 38.54 31.13 30.99 37.87 36.45 32.02
T T e Table 7. Consonance level of chords measured by our model
o ¥ o (presented by increasing order of consonance).
“ R Y
< \\\o“ s maj/min sus4 dim  aug min7 maj7 dom7
N
X Y Consonance  20.36  19.77 18.64 18.38 17.46 16.35 15.88

3 1AY% 4
N
~ 7’
S Subdominant .~
~ ~ -

Fig. 6. 2-D visualization of the diatonic triads of the C majorregion in
the Tonal Interval Space using nonmetric MDS. Riemann’s harmonic
categories (tonic, subdominant and dominant) are well represented
in the space and typical motions between these are denoted by dashed
lines.

Table 6. Consonance level of all interval dyads within an octave.

Pl m2/M7 M2/m7 m3/M6 M3/m6 P4/P5 TT

Consonance 32.86 18.09 20.41 24.15 22.88 25.23 20.64

Finally, as illustrated in Figure 6, the diatonic set of chords
around a key TIV is organized according to Riemman’s cat-
egorical harmonic functions and distributed in roughly equal
angular distances around its key centre. Chords common to
more than one region, also referred to as pivot chords, are
located at the edge of the regions. This allows the Tonal
Interval Space to explain the modulation between keys or
regions as these chords are typically used to smoothly tran-
sition between them. See (Bernardes et al., 2015) for a more
comprehensive explanation of the angular distance between
key TIVs and their diatonic chordal set and an application of
this property to generate musical harmony and estimate the
key of a musical input.

8.2 Measuring consonance

The Tonal Interval Space follows the pitch organization of
the Tonnetz and expands this geometric pitch representation
with the possibility to compute indicators of tonal consonance.
Two important elements in Equation 1 allow the computation

of consonance, the normalization by 7'(0) and the weights
w (k). The former was discussed in Section 4.2 and constrains
the space to a limited area for all possible (multi-)pitch con-
figurations that a chroma vector can represent. The latter was
discussed in Section 7 and distorts the DFT coefficients to
regulate the contribution of each interval according to empiri-
cal ratings of consonance. These two elements create a space in
which pitch classes (at the edge of the space and furthest from
the centre) are considered the most consonant configurations.
A chroma vector c(n)_}with all active elements will be located
in the centre of space 0, which we consider the most dissonant.
Within this range, the consonance of any pitch configuration
can then be measured. Hence, we extrapolated the consonance
measure of the TIV by the norm ||7 (k)|| given by Equation 7.

Due to the symmetry of the Tonal Interval Space, comple-
mentary intervals and transposition share the same level of
consonance as indicated in Equation 4. In fact, 12 transposi-
tions of 7T'(k) by p = 1 semitone creates a concentric layer
of 12 instances with the same magnitude ||7 (k)||. Given this
formulation, we present the level of consonance for all interval
dyads within an octave in Table 6 and the consonance level of
common triads and tetrads in tonal music in Table 7.

By comparing the values presented in Tables 5 and 6, we
note that our consonance measure contradicts a limitation
of the sensory dissonance models—one of the most popular
models to measure innate aspects of consonance. As Huron
emphasizes (cited in Mashinter, 2006), in sensory dissonance
models adding spectral components always results in an
increase of sensory dissonance. In the Tonal Interval Space,
sonorities with fewer notes or partials may have a higher
level of dissonance than sonorities with more notes or partials,
depending on the level to which it ‘fits’ triadic harmony and
tonal structures.

9. Evaluation and discussion

The consonance level modelled in the Tonal Interval Space
constitutes an innovative aspect that has not been investigated
in any other Tonnetz-derived spaces. While our method pro-
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vides the possibility to compute a consonance indicator in the
space by design, we now investigate whether other spaces are
equally adept to that task. In particular, given the resemblance
of the Tonal Interval Space with Harte et al.’s (2006) Tonal
Centroid Space, we assess if the latter embeds properties for
computing tonal pitch consonance. Additionally, we further
assess the role of the weights w (k) in the Tonal Interval Space
by comparing the consonance measurement in a uniform ver-
sion of the space. Both aforementioned spaces can be com-
puted using Equation 1 by assigning different weights w (k).
In Harte et al.’s 6-D space wy (k) = {0, 0, 1, 0.5, 1, 0} whose
non-zero weights correspond to the musical interpretation of
major thirds/minor sixth, minor third/major sixth, and perfect
fourth/perfect fifth, respectively (see Figure 3). In the uniform
version of the Tonal Interval Space wy (k) = {1, 1, 1, 1, 1, 1}.
To investigate the behaviour of the spaces in measuring tonal
pitch consonance, we will adopt the same consonance measure
used in the Tonal Interval Space, computed by Equation 7, for
all dyads and common triads.

To analyse the results we will use the Pearson correlation
coefficient to compare the tonal pitch consonance indicators
computed in the spaces with empirical ratings of dyads’ con-
sonance (used to build the model and shown in Table 3), and
the ranking order of common triads’ consonance derived from
both listening experiments (Cook, 2012; Roberts, 1986) along
with psychoacoustic models of sensory dissonance (Parcutt,
1989; Plomp & Levelt, 1965; Sethares, 1999). Our hypothesis
is that, since we explicitly choose weights to control conso-
nance, wy (k) and wy (k) will be less effective in highlighting
the consonance of pitch configurations, respectively due to the
exclusion of three intervals in wg (k) and the omission of any
meaningful distortion of the weights in wy; (k).

Figure 7 shows the correlation between the spaces under
evaluation, to which we included our proposed Tonal Interval
Space for the purpose of visual comparison. The correlation
between empirical data and the uniform Tonal Interval Space
(r = —0.201, p = 0.703) shows the DFT of chroma vectors
carry no information about tonal consonance, reinforcing the
positive impact of explicitly designing the weights in the Tonal
Interval Space. The correlation between empirical data and
Harte et al.’s 6-D space (r = 0.741, p = 0.09) shows that the
space while positively correlated, is limited as an indicator
of tonal consonance. In particular, this is shown in Figure 7
by the outlier corresponding to the consonance of the tritone
interval in Harte et al.’s 6-D space, which is explicitly not
modelled in their space.

We additionally assess how the consonance level of com-
mon triads measured in Harte et al.’s (2006) 6-D space and
the uniform version of the Tonal Interval Space compares
to empirical studies (Cook et al., 2007; Roberts, 1986) and
psychoacoustic models of sensory dissonance (Parcutt, 1989;
Plomp & Levelt, 1965; Sethares, 1999).5 To this end, we

SA major difference between the two empirical studies conducted
relies on their population. While Roberts’ (1986) study was
conducted among Western listeners, Cook et al.’s (2007) study
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Fig. 7. Scatter plot exposing the correlation between empirical
consonance ratings for complementary dyads (Huron, 1994) and their
consonance level in three theoretical models: Tonal Interval Space
(bold line), uniform Tonal Interval Space (dashed line) and Harte
et al.’s (2006) 6-D space (dotted line). Plotted data is normalized to
zero mean and unit variance for enhanced visualization.

compared the ranking order of common triads’ consonance
of the three theoretical models and both empirical ratings and
psychoacoustic models of sensory dissonance. As shown in
Table 8, the Harte et al.’s 6-D space and the uniform Tonal
Interval Space fail to predict the relative consonance of com-
mon triads’ consonance, further reinforcing the impact the
weights and extended intervallic representations have on the
Tonal Interval Space. Table 8 additionally shows that psy-
choacoustic models of sensory dissonance also fail to predict
the relative dissonance of common triads as expressed by the
results of the empirical listening tests.

While preserving the pitch organization of the Tonnetz,
the Tonal Interval Space constitutes an extension of Tonnetz-
derived spaces towards the possibility to compute a conso-
nance indicator in the space. Furthermore, by expanding the
number of dimensions in relation to similar spaces, and in
particular to Harte et al.’s (2006) 6-D space, we obtain a finer
definition of the intervallic content of chroma vectors, whose
contribution we were able to fine-tune by adopting the set of
weights w (k). In doing so, our model not only ensures that all
information from the chroma vector is retained in the TIV, but
also guarantees that each TIV occupies a unique location in
the 12-D Tonal Interval Space.® Both these properties are not
found in any of the existing tonal pitch spaces. Finally, despite
its larger number of dimensions and the increased complexity

involved East Asian listeners. The population of both studies
included individuals with and without music training. The remaining
psychoacoustic-based models aim at measuring auditory roughness,
which largely equates with sensory dissonance (Sethares, 1999).
6By guaranteeing uniqueness, our space avoids the overlap between
relevant tonal pitch configurations as in the Harte et al.’s (2006)
Tonal Centroid Space, such as the pair of dyads F#-B (P4) and D-G#
(D5)—mpitch classes [5,11] and [2, 8])—and the D diminished
seventh chord and the dyad D-A# (A4)—pitch classes [2, 5, 8, 11]
and [2, 8].
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Table 8. Ranking order of chord consonance based on Cook et al. (2007) comparing empirical data derived from listening experiments and
theoretical models. 1 corresponds to the most consonant chord and 5 the most dissonant.

Empirical ratings

Theoretical models

Sensory dissonance models

Tonal pitch spaces

Roberts Cook Plomp Parcutt Sethares Tonal Uniform Tonal
(1986) et al. & (1989) (1999) Interval Tonal Centroid
Chord (2007) Levelt Space Interval (Harte
quality (1965) Space et al., 2006)
major 1 1 2 2 2 1 1 1
minor 2 2 2 3 2 1 1 1
sus4 - 3 1 - 1 2 1 3
dim 3 4 5 4 4 3 1 4
aug 4 5 4 1 5 4 2 2

of the Tonal Interval Space in relation to similar spaces, we
believe that using the DFT makes it particularly accessible to
the music, signal processing, and MIR communities.

10. Conclusions and future work

In this paper we presented a 12-D Tonal Interval Space that
represents pitch configurations by the location of Tonal Inter-
val Vectors, which are calculated as the DFT of 12-element
chroma vectors. A visualization of the 12-D space is pro-
vided by six circles, each representing a DFT coefficient, from
which we devised a musical interpretation. The contribution
of each DFT coefficient (or circles in the visualization) is then
weighted according to empirical ratings of dyads consonance
to improve the relationship among pitch configuration at the
three most important levels of tonal pitch in Western music,
i.e. pitches, chords and regions, as well as allowing the com-
putation of a consonance indicator in the space.

While preserving the pitch organization and common-tone
logic of the Tonnetz, our 12-D space expands its range of
representable pitch configurations beyond major and minor
triads. In relation to Chew’s Spiral Array, the input of our space
is more flexible in the sense that it allows the codification of
any sonority representable as a chroma vector albeit subject
to enharmonic equivalence. In relation to Harte et al.’s (2006)
research, we expand their 6-D space to include all possible
interval relations within one octave, and hence the ability to
represent all pitch configurations by a unique location in space.

Two major indicators can be computed in the Tonal Interval
Space. The first, explains the relation among pitch configura-
tions in light of the Western tonal music theory principles by
the angular and Euclidean distances among TIVs. Addition-
ally, due to the possibility to represent all hierarchical levels
of tonal music in the same space, given by the normalization
strategy applied in Equation 1, we can equally compare and
relate multi-level TIVs.

The second, and most innovative aspect of the Tonal
Interval Space is the possibility to compute indicators of tonal
consonance for multi-level pitch configurations as the norm of
the TIVs. To the best of our knowledge, this attribute has not
been considered in any other Tonnetz-derived spaces, nor any

other tonal pitch spaces. By encoding all intervallic content of
chroma vectors, distorted by both the DFT and weights derived
from dyads and triads consonance, we enhance the pitch orga-
nization by allowing the measurement of consonance without
disrupting the Tonnetz-like pitch organization.

Our goal in this paper was to present the Tonal Interval
Space from a theoretical perspective, hence aspects concern-
ing its scope and wider applicability are somewhat superfi-
cially treated. Nonetheless, the space has been successfully
used in different application areas within the scope of gener-
ative music and MIR. In generative music, we have explored
its potential to generate a corpus of chords related to a user-
defined region (Navarro et al., 2015) as well as the possi-
bility to smoothly transition (or modulate) between regions
in real-time (Bernardes et al., 2015). In (Bernardes et al.,
2015) we further explored the capabilities of the Tonal Interval
Space to harmonize a given input using its ability to generate
tonal harmony with consonance and perceptual relatedness as
parameters. Additionally, in order to identify the region of the
musical input we proposed a key induction algorithm which
outperforms the current state of the art.

Despite the robustness of our consonance measurement in
the context of Western tonal music, we are aware that our mea-
sure may fail to capture some aspects of consonance and dis-
sonance, because it does not take into account the physical or
physiological aspects of this phenomenon, which are directly
related with frequency ratios among the partials of a sonority
(Sethares, 1999). Despite these limitations, our consonance
measure sheds some light on the future development of mu-
sical consonance models that consider both schemata learned
culturally and innate physical and physiological principles.

Another limitation of our space is that it currently ignores
the temporal dimension of music, or simply put, the order of
musical events. Therefore, even though the perceived relation
of tonal pitch events is known to depend on the order in which
they are sounded (Krumhansl, 1990, pp. 121-123), we cannot
yet account for that feature in our space due to its symmetry,
which is inherent to Fourier spaces. On the other hand, the
symmetry of the space imposed by the DFT is particularly
relevant to create a transposition invariant space, seminal to
tonal pitch structures. Additionally, we believe that many other
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mathematical properties of the DFT may have useful musical
counterparts, and we plan to study these further in the future.
Among them, we can highlight the capability to transform the
Tonal Interval Space back to the chroma space by computing
the inverse Fourier transform.

In future work, we aim to assess the level to which the Tonal
Interval Space conforms to empirical judgments of tonal pitch
relatedness, with the ultimate goal of improving the distances
among multi-level TIVs. For example, despite the current
possibility to compute the set of diatonic pitch classes of a
given region, the distances among pitch classes and key TIVs
do not express the goodness of fit of the pitch classes into that
region.

Finally, the initial experiments reported here were con-
ducted under very controlled conditions by manually encod-
ing pitch configurations as binary chroma vectors. However,
despite the possibility to represent musical audio (e.g. with
chroma vectors calculated from audio signals), further tests
must be conducted in order to understand the robustness of
our space under such a non-binary input. In doing so, we
aim to study and expand our model with relevant dimensions
in musical practice, notably timbre/spectral and amplitude
information. Ultimately, we want to describe musical audio
as robustly as symbolic music representations and apply our
model within the realm of performed music.
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