
PETCHA -
A Programming Exercises Teaching Assistant

Ricardo Queirós
CRACS & INESC-Porto LA & DI-ESEIG/IPP,

 Porto, Portugal
ricardo.queiros@eu.ipp.pt

José Paulo Leal
CRACS & INESC-Porto LA, Faculty of Sciences,

University of Porto, Portugal
zp@dcc.fc.up.pt

ABSTRACT
This paper presents a tool called Petcha that acts as an automated
Teaching Assistant in computer programming courses. The
ultimate objective of Petcha is to increase the number of
programming exercises effectively solved by students. Petcha
meets this objective by helping both teachers to author
programming exercises and students to solve them. It also
coordinates a network of heterogeneous systems, integrating
automatic program evaluators, learning management systems,
learning object repositories and integrated programming
environments. This paper presents the concept and the design of
Petcha and sets this tool in a service oriented architecture for
managing learning processes based on the automatic evaluation of
programming exercises. The paper presents also a case study that
validates the use of Petcha and of the proposed architecture.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: K.3.1 [Computer Uses in
Education]: Computer-assisted instruction (CAI), Distance
learning; K.3.2 [Computer and Information Science Education]:
Computer science education, Self-assessment.

General Terms
Design, Experimentation, Standardization, Languages.

Keywords
Teaching Assistant, Automatic Evaluation, Programming
Exercises, Interoperability, Learning Objects.

1. INTRODUCTION
A teaching assistant (TA) is a person who assists a teacher,
typically in practical classes. The task of a TA in a programming
course is usually to help students in solving exercises and
assignments. They must help students to use programming tools
(integrated programming environments, compilers, and
debuggers), check if they have solved the exercises and provide
feedback to help them to overcome their difficulties.
Unfortunately, the number of TAs is frequently insufficient for
the number of students enrolled in introductory programming
courses, and they are only available in computer labs and on a
certain timetable.

This research aims to create an automatic TA specialized in
programming exercises, a tool for bridging between the teacher
and the students, while providing them with the best systems for
each task. The automatic TA presented in this paper is called
Petcha, an acronym of Programming Exercises TeaCHing
Assistant.
Petcha can be described as a scaffolding tool since it complements
existing tools and was designed to be easily removed once it is no
longer needed. For instance, rather than providing its own
environment for solving exercises Petcha promotes the use of
existing Integrated Development Environments (IDEs) and
different IDEs can be can be used with Petcha, such as Eclipse or
Visual Studio.
More than just a scaffolding tool, Petcha is also pivot component
on a network integrating other e-Learning systems. These e-
Learning systems are used for: 1) automatic evaluation of
programs and feedback generation; 2) authoring and storing of
programming exercises as learning objects; 3) managing
instruction and learning activities. A proper integration of these
tools sets up the necessary foundations for the practice of solving
programming exercises and has a great impact on the acquisition
of programming skills.
The remainder of this paper is organized as follows. Section 2
reviews related work on the authoring of learning objects and
evaluation of programming exercises. In the following section we
present the design of Petcha and its role in the context of an e-
Learning environment with a service-oriented architecture. The
paper proceeds with a case study where Petcha was successfully
used in the practical classes in an introductory programming
course. Finally, we conclude with a summary of the main
contributions of this work and a perspective of future research.

2. RELATED WORK
Petcha has two facets: it helps the teacher in exercise authoring
and the students in the exercise solving. To the best of authors’
knowledge, no other tool described in the literature integrates
these two facets. Hence, we present in this section several systems
addressing only one of these facets. Firstly we introduce systems
that automate exercise authoring. Secondly we present systems
for the automatic evaluation of programming exercises.

2.1 Exercises Authoring
In recent years, a large number of programming exercises have
been developed and published mostly for use in programming
contests. These exercises are generally stored in proprietary
systems (e.g. online judges) for their own use (e.g. automatic
submission, grading). Despite some efforts [8, 33] to define a
common format to describe programming exercises, each of these
systems has its own exercise format, hindering its sharing among
instructors and students.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’12, July 3–5, 2012, Haifa, Israel.
Copyright 2012 ACM 978-1-4503-1246-2/12/07...$10.00.

192

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2325296.2325344&domain=pdf&date_stamp=2012-07-03

Trætteberg [31], presented a specification-based and test-driven
exercise support plug-in for Eclipse, named JExercise. The plugin
gives feedback to students about his/hers progress. An exercise in
JExercise is based on three elements: 1) a textual specification of
the Java elements that are required and their desired behavior; 2) a
set of JUnit tests for checking whether the student’s code meets
the specification; 3) a model of the required solution. The
exercises are wrapped in a Zip-file containing XML and HTML
files describing the exercises and test files for testing the student’s
code, and may additionally contain Java source files and program
skeletons.
Jena [11] presents a work regarding the authoring and sharing of
programming exercises as learning objects. The work uses Labrat
as the automatic grading system. The assignments are composed
by an exercise statement, metadata, program solution and tests.
All these resources are described with metadata based on the
IEEE LOM specification and packaged in a single zip file
structure conforming to the format required by Labrat. The
exercises are stored in a repository called CollabX.

2.2 Automatic Evaluation of Exercises
The assessment of programming assignments poses significant
demands on the teachers’ time and other resources [5]. This
demand stimulated the development of automated learning and
assessment systems in many universities [1]. Most of these
systems provide other features such as multi-programming
language support, evaluation type (static or dynamic), feedback,
interoperability, learning context, security and plagiarism.
Early efforts [10, 20, 24, 26] only support the assessment of
exercises in a single programming language. With the advent of
the Internet and the increase of platforms heterogeneity, web
interfaces began to play an important role in the dissemination of
several systems [3, 12, 13, 21]. These systems also share the
common feature of supporting the submissions of exercises
written in multi-programming languages such as Java, C++ and
the C.
Regarding the evaluation type, the standard way of evaluating a
program is to compile and execute it with a set of test cases with
input and output files (black-box approach). The program is
classified as accepted if compiles without errors and the output of
each execution test is the same as the expected output. This
strategy has been shown to bring undesirable pedagogical issues
such as student frustration and confusion [28, 30]. Several
systems [3, 10, 12, 18, 21, 26] test not only the behavior of single
programs but also analyze the structure of source code (white-box
approach). This approach allows the evaluator systems to
guarantee that whether the program have been written in a
particular way, following a particular algorithm or even using
certain data structures. In the field of the output correctness
determination, Edwards [6] and Auffarth [2] use also unit tests
defined by teachers to validate students’ submissions. Other main
issue lies with the non-determinism of the program outputs where
different correct (or acceptable) solutions to the same
programming exercise may not always produce exactly the same
output [29]. Leal [13], deals with this non-determinism using
dynamic correctors as special evaluators that are invoked after
each test case execution. For instance, if the solution is a set of
values that can be presented in any order then a dynamic corrector
can be used to reduce the output to a normal form.

Depending of the learning context (competitive or curricular) the
systems must provide feedback to facilitate the students’
comprehension about the correctness of their attempt to solve a
particular exercise. The generation of feedback relies on static and
dynamic program analyses [1]. The development of automatic
program evaluation systems with high quality feedback (e.g.
compilation errors, execution errors, execution tests) show good
results [9, 17] and along with visual, incremental and personalized
feedback should shape the future regarding this topic [27].
The interoperability of the evaluation systems is also a main
issue. An evaluator should be able to participate in learning
scenarios where teachers can create exercises, store them in a
repository and reference them in a Learning Management System
(LMS) and students solve the exercises and submit to evaluators
who delivers an evaluation report back to students. Several
systems [16] try to address this issue allowing the integration with
course management systems. Nowadays with the advent of
service oriented architectures the trend is service orientation
rather than component-based systems. An evaluator system as a
service will automate the existent business logic in distributed e-
Learning scenarios allowing more flexibility in the comprised
workflows and keeping the systems simple and easy maintainable.
Leal [15] specified a service for programming exercises
evaluation in a well-known e-Learning framework called the E-
Framework. This work was used in Edujudge [32] with promising
results.
Concerning the security issue, Luck and Joy [16] analyzed this
issue covering robust environments, privacy, and data integrity.
Security can be handled from ad-hoc solutions to solutions based
on Virtual Machines (VM) to execute the programs on a safe and
controlled environment.
Another issue is the increase in plagiarism [4, 7]. Various systems
[3, 16] analyze the integration of plagiarism services in the
assessment workflow.

Regarding the learning context, evaluation systems can be used in
two contexts: curricular and competitive learning. In the former,
teachers use practical classes, assignments and examinations to
evaluate students’ evolution. The latter relies on the
competitiveness of students to increase their programming skills
mostly in computer programming contests. In this last context,
automated judge systems (or online judges) are used to run
programming contests and to practice for such contests. These
systems include automatic evaluators and many of these systems
organize their own contests such as Mooshak [13], UVA-OJ
(University of Valladolid Online Judge), SPOJ (Sphere Online
Judge), DOMJudge and others.

3. PETCHA
As happens with a human TA, Petcha needs to interact both with
teachers and students. Thus, these two use cases provide an
overview of Petcha features. Unlike a human TA Petcha delegates
most of its work to others, as it is fundamentally a coordinator of
e-Learning systems.

The following subsections present the teacher and student use
cases as well as the architecture of a network of e-Learning
systems coordinated by Petcha.

193

Figure 1. The GUI of Petcha with teacher and student modes.

3.1 Use Cases
Petcha is an automatic TA with two main tasks: to assist teachers
in the authoring exercises and to help students in solving them.
Although complementary, these two tasks share a number of
requirements. Both teacher and student need to: code and test
programs in an IDE; send and retrieve learning objects from a
Learning Objects Repository (LOR); check program code against
test cases. Thus, although the graphical user interface of both user
profiles shown in Figure 1 is apparently very different, they
actually share many Petcha internal functions. The following sub-
subsections present both use cases in more detail.

3.1.1 Teacher
To author and deploy a programming exercise in Petcha teachers
must perform the following three tasks:

Create programming exercises. In the authoring task, teachers
automatically create most of the resources related with
programming exercises such as expositive resources (e.g.
exercise description) and evaluation resources (e.g. test cases,
correctors, feedback files). The upper left window of Figure 1
shows an example where the teacher is defining a problem
and setting related metadata. Other tabs in this window are
used for defining tests, assigning feedback to error patterns
and publishing the exercise. All the resources defined in these
tabs are encoded using an XML dialect called PExIL
(Programming Exercises Interoperability Language) [22]. The
aim of PExIL is to consolidate all the data required in the
programming exercise utilization, from creation to evaluation,

covering also solving, the grading and feedback. The PExIL
definition supports the concept of incremental feedback to
control the appearance of both types of feedback upon a
submission of a student’s attempt.

Deploy programming exercises in a repository. In the deployment
task, teachers can package and publish programming
exercises in repositories. The packaging subtask consists on
the selection of a package format and its generation. By
default, Petcha supports the IMS Common Cartridge (IMS
CC) specification as the package format. An IMS CC learning
object assembles resources and metadata into a distribution
medium, typically a file archive in ZIP format, with its
content described by a manifest file. The generation of an
IMS CC package is performed in two steps. First the manifest
is generated from a valid PExIL instance and all the resources
are assembled in a ZIP package. After that, teachers must
publish the package on a repository. In order to be an eligible
repository (Petcha uses the crimsonHex repository [14]) one
must adhere to content (IMS CC) and communication
specifications (IMS Digital Repositories Interoperability –
IMS DRI).

Configure programming activity in LMS. For this task teachers
search in repositories for suitable programming exercises and
store a reference to them in a LMS as a Learning Tools
Interoperability (LTI) activity. The LTI specification provides
a uniform standards-based extension point in LMSs allowing
the integration of remote web tools. Presently, most reference
LMSs (Petcha is currently being used with Moodle) do not

194

offer support for the full LTI specification. For this reason,
Petcha uses a subset of the LTI specification known as IMS
Basic LTI (bLTI). With bLTI a unidirectional link between
the LMS and Petcha is created. On the invocation contextual
information is provided to the launched process such as user
identity, course information and role information. The full
support of this specification will allow the access to run-time
services on the LMS, enabling Petcha to send evaluation
results back to the LMS grade book, for instance.

3.1.2 Student
To solve programming exercises using Petcha students performs
the following two tasks:

Select an activity in the LMS. In this task, students should select
the activity defined by the teacher in the LMS. This selection
triggers an LTI launch of Petcha. The launch includes
student’s contextual information that can be used to
presentation purposes (e.g. personalize the Petcha frontend) or
for sequencing purposes (e.g. assign an exercises sequence
model). After the selection of the activity Petcha is launched
as a Java Web Start (JAWS) application on the computer of
the student. This approach enables the interaction of Petcha
with the IDE by using shell commands.

Execute the activity using the IDE and Petcha. When a student
starts solving a problem Petcha automatically creates a project
on the IDE of the student. Currently Petcha supports two
IDEs: Eclipse and Visual Studio Express. Other IDEs could
be used by extending Petcha’s code. Then the student reads
the exercise description in Petcha’s GUI and solves it on the
IDE. The student should test the code locally by executing the
teachers’ test cases and is encouraged to create new ones. If
new test cases are created, a validation step is performed to
verify that they meet the specification defined by the teacher
in the authoring phase. The right window on Figure 1 shows
an example where the student’s code did not pass all the local
tests (two provided by the teacher and one new test created by
the student). Even so, the student decided to submit the code
to the evaluator and received a feedback message indicating
an input data that generated a wrong answer. After testing, the
student should submit the solution to the Evaluation Engine
(EE) where the submission is checked against the complete
test set provided by the teacher. The report on the evaluation
returned by the EE is presented to the student. The student
may submit repeatedly, integrating the feedback received
from the EE. In the end of this cycle, Petcha reports the
exercise usage data back to the repository.

3.2 Architecture
In this subsection we present the overall architecture of a network
of e-Learning systems participating in a network coordinated by
Petcha. In this network Petcha acts as a pivot component
mediating the communication among all components. The
architecture depicted by UML component diagram in Figure 2 is
composed by the following systems and tools:

Learning Objects Repository to store/retrieve exercises;
Evaluation Engine to evaluate students’ exercises;
Learning Management System to present exercises to students;
Integrated Development Environment to code the exercises.

Petcha coordinates the communication among all the components
of the network, from the LMS where students receives the activity
to the IDE where students solve them. In order to fulfill this goal,
the integration of the pivot component with the other systems
must rely on content and communication standards. Using content
and communication standards we can abstract the use of specific
systems for each type of system. For instance, we can use on this
network any repository as long it supports the IMS CC
specification to formalize the description of programming
exercises and it implements the IMS DRI specification for
communication with other services.

Figure 2. Network component diagram.

Another important point was the choice of the systems that
comprise the current network. Since we made several efforts to
address interoperability issues, the selection of the tools was
straightforward. On the LMS side we choose Moodle since it is a
popular and open source LMS, arguably the most popular LMS
nowadays. We used the version 1.9 that supports the Basic LTI
specification with the further installation of an IMS bLTI
consumer1. Currently, the version 2.2 supports the IMS LTI 1.1 (a
merge version of basic and full LTI) and import IMS CC
packages. The exportation of CC packages will come in version
2.3. We successfully tested also the Sakai LMS on this network
evidencing the interoperable characteristics of the proposed
approach.
For the LOR selection, we had more difficulties to find a system
that supports the defined content and communication
specifications respectively the IMS CC and IMS DRI
specifications. The final choice fell on a home-made system
called CrimsonHex - a repository of programming exercises
described as learning objects and complying with the IMS CC
specification. The repository also adheres to the IMS DRI
specification to communicate with other systems.
The EE system selected was Mooshak [13] Mooshak is an open
source system for managing programming contests on the Web
including automatic judging of submitted programs. The current
version (1.6a2) supports the Evaluate service (E-F) [15].
On the IDE side we selected Eclipse. Eclipse is a free and open
source multi-language software development environment
comprising an IDE and an extensible plug-in system. We tested
also the Visual Studio Express IDE on this network with success
for C# assignments. In this case we need to install Mono to run
.NET applications on the Mooshak server. Mono is a free and

1 http://code.google.com/p/basiclti4moodle/

195

open source project to create a standard compliant .NET-
compatible set of tools including a Common Language Runtime,
C# compiler and others.

4. CASE STUDY
In order to validate Petcha as automatic TA and coordinator of a
network of e-Learning systems, we conducted an experiment at
ESEIG - a school of the Polytechnic Institute of Porto. First-year
Mechanical Engineering students of the course Algorithmics and
Programming participated in this experiment. The course aims to
widen the students’ programming skills using the C#
programming language. The course has an average enrolment of
40 students per year divided in two classes. The experiment
methodology was the following: only one class used the system –
the experimental group - while the other class kept the traditional
learning approach – the control group. The course is organized in
two lectures of one hour each and one lab session of 4 hours per
week. The experiment occurred in 6 lab sessions. In each lab
session the classes (the experimental class with 21 students and
the control class with 19 students) had 3 exercises to solve. After
each lab session we surveyed both classes on the number of
solved exercises and the feedback impact. Table 1 aggregates the
answers given by students.

Table 1. Statistical data of Petcha usage

Questions Experimental
group

Control
group

How many exercises were
started in class? 89% 81%

How many exercises were
finished in class? 83% 74%

How many exercises solved in
class? 82% 66%

How many exercises got
feedback? 59% 62%

What percent of students found
feedback helpful? 55% 62%

The data collected in the surveys of the experimental class was
checked against the logs of Petcha and other systems in the
network. An average discrepancy of 4.6% between these two sets
of values was found.
The first three lines of Table 1 show that Petcha increases the
number of exercises solved by the students. They start and
complete more exercises and they have a significantly higher
number of exercises effectively solved. In the control class the
exercises were manually assessed by the human TA. This clearly
shows that students solve more exercises when helped by Petcha
than when helped by a human TA.
The last two lines of Table 1 show that the automatic feedback
provided by Petcha is inferior to the feedback provided by a
human TA. Not only the students receive less feedback from
Petcha but also this feedback is less helpful than the feedback
provided by a human TA. Nevertheless on can argue that the
automatic feedback provided by Petcha would be a remedy in a
situation where the human TA is not available.

5. CONCLUSIONS AND FUTURE WORK
This paper presents Petcha, an automatic teaching assistant for
programming exercises. This tool was conceived to mediate

between the teacher and the students and act as an integrator of
the best-of-bread systems involved in the process of automatic
evaluation of programming exercises. Petcha is a scaffolding tool
in the sense that it works with traditional IDEs, helping student to
start using the tools they need to program effectively, and can be
easily removed when it is no longer helpful. It helps also the
teacher in authoring programming exercises for automatic
evaluation, including the feedback to provide to students on
common error patterns. To achieve these goals Petcha
coordinates a network of heterogeneous e-Learning tools, namely
program evaluators, learning management environments and
learning object repositories.

The main contribution of the research described in this paper is
the concept, design and implementation of a tool acting as a
teaching assistant for computer programming classes. This tool
was designed to coordinate an ensemble of e-Learning systems
and the service oriented architecture of the resulting network is
also a relevant contribution of this research.

Petcha is currently being used in the practical classes of an
undergraduate programming course. The experience gained using
Petcha in this context and the experiments designed to assess the
impact of this tool were also presented in this paper. These
experiments showed an increase in the number of exercises that
the students attempted and successfully solve when Petcha
replaced a human TA, which was the primary objective of this
project. However, these results show also that the automatic
feedback provided by Petcha is less effective than that of a human
TA. There is clearly room for improving automatic feedback in
Petcha, although it can be argued that automated feedback is still
a remedy for situations where a human TA is not available.

The current and future work in this line of research contemplates
both Petcha itself and the network it manages. Teachers and
students reported a set of minor issues on the user interface that
are being solved for the next version. There is also a long wish list
with features such as: support for Sharable Content Object
Reference Model (SCORM) object, support for MathJax for
displaying math expressions, improved visualization of evaluation
reports, and statistical data on student activity, among others.

Many of the requested improvements are not on Petcha itself but
rather on the network of systems and tools it coordinates. To meet
these requests we must either provide new features in those
system and tools or to integrate new ones in the network. An
intended addition is a sequencing and adaptation tool to guide the
student through a collection of expository and evaluation
resources. Petcha will report the exercise assessment to this new
tool that will use it to propose the appropriate content or exercise
to the student. Features that could be improved or added to
existing systems include: a feedback mechanism using static
analysis; a plagiarism detection component; the evaluation of
languages that are not strictly programming languages, such as
query languages (e.g. SQL), modeling languages (e.g. UML) and
user interfaces (e.g. HTML).

6. REFERENCES
[1] Ala-Mutka, K. A survey of automated assessment approaches

for programming assignments. Computer Science Education,
15(2), pp. 83±102, 2005.

[2] Auffarth, B. and Maite, L. System for Automated Assistance
in Correction of Programming Exercises. In V International

196

Congress University Teaching and Innovation, pages pp. 104
(1-9)., Lleida (Spain), 2008.

[3] Blumenstein, M., Green, S., Nguyen, A. and
Muthukkumarasamy, V. An experimental analysis of GAME:
a generic automated marking environment. In Proceedings of
the 9th annual SIGCSE conference on Innovation and
technology in computer science education, pp 67-71, 2004.

[4] Cheang, B., Kurnia, A., Lim, A. and Oon, W. On automated
grading of programming assignments in an academic
institution. In Comput. Educ., vol. 41, pp. 121–131, 2003.

[5] Douce, C., Livingstone, D. and Orwell J. Automatic test-
based assessment of programming: a review. Journal of
Educational Resources in Computing (JERIC), 5(3), 2005.

[6] Edwards, S. H. and Pugh, W. Toward a common automated
grading platform. In SIGCSE ’06: technical symposium on
Computer science education, ACM, 2006.

[7] Engels, S., Lakshmanan, V. and Craig, M. Plagiarism
detection using feature based neural networks. In SIGCSE, pp.
34–38, 2007.

[8] Free Problem Set (FPS), Official Web site:
http://code.google.com/p/freeproblemset/, 2010.

[9] Higgins, C. A., Gray, G., Symeonidis, P., Tsintsifas, A.
Automated assessment and experiences of teaching
programming. Journal on Educational Resources in
Computing (JERIC), 5(3), 2005.

[10] Jackson, D. and Usher, M. Grading student programming
using ASSYST. In Proceedings of 28th ACM SIGCSE Tech.
Symposium on Computer Science Education, San Jose,
California, USA, pp 335-339, 1997.

[11] Jena, S. Authoring and Sharing of Programming Exercises.
MsC Thesishttp://scholarworks.sjsu.edu/etd_projects/19.

[12] Juedes, D. W. Experiences in Web-Based Grading. 33rd
ASEE/IEEE Frontiers in Education Conference, November 5–
8, 2003, Boulder, CO, 2003.

[13] Leal, J.P. and Silva, F. Mooshak: a Web-based multi-site
programming contest system. In Software—Practice &
Experience, Volume 33, Issue 6, Pages: 567 - 581, 2003.

[14] Leal, J.P. and Queirós, R. CrimsonHex: a Service Oriented
Repository of Specialized Learning Objects. In ICEIS'09:
International Conference on Enterprise Information Systems,
pages 102-113, Italy, May 2009, ISBN: 978-3-642-01346-1.

[15] Leal, José Paulo, Queirós, R. and Ferreira, D. Specifying a
programming exercises evaluation service on the e-
Framework. In Advances in Web-Based Learning - ICWL
2010, Shanghai, China, December, 2010, LNCS 6483, pp.
141-150, ISBN 978-3-642-17406-3

[16] Luck, M. and Joy, M. A secure on-line submission system.
In Software - Practice and Experience, 29(8), pp721-740,
1999.

[17] Malmi, L., Karavirta, V., Korhonen, A., Nikander, J.
Experiences on automatically assessed algorithm simulation
exercises with different resubmission policies. In Journal on
Educational Resources in Computing (JERIC), 5(3), 2005.

[18] Mandal, A.K., Mandal, C. and Reade, C.M.P. Architecture
Of An Automatic Program Evaluation System. In CSIE
Proceedings, 2006.

[19] Mandal, C., Sinha, V.L. and Reade, C. M. P. A Web-Based
Course Management Tool and Web Services. In Electronic
Journal of E-Learning, Vol 2(1) paper no. 19, 2004.

[20] Mansouri, F.Z., Gibbon, C.A., Higgins, C.A. PRAM: prolog
automatic marker. In Proceedings of ITiCSE'1998.
pp.166~170, 1998.

[21] Pisan, Y., Richards, D., Sloane, A., Koncek, H. and Mitchell,
S. Submit! A Web-Based System for Automatic Program
Critiquing. In Proceedings of the Australasian Computing
Education Conference (ACE), Australia, pp. 59-68, 2003.

[22] Queirós, R. and Leal, J.P. PExIL: Programming Exercises
Interoperability Language. XATA 2011 – XML, Aplicações e
Tecnologias Aplicadas, Junho 2011.

[23] Queirós, R. and Leal, J.P. A Survey on eLearning Content
Standardization. 4th WSKS, 2011, Mykonos, Greece.

[24] Reek, K. A. The TRY system or how to avoid testing student
programs. In Proceedings of SIGCSE, pp 112-116, 1989.

[25] Rehak, D. R., Mason, R. Keeping the learning in learning
objects. In Littlejohn, A. (Ed.) Reusing online resources: a
sustainable approach to e-Learning, 2003. (pp.22-30).

[26] Saikkonen, R., Malmi, L. and Korhonen, A. Fully automatic
assessment of Programming exercises. In Proceedings of the
Conference o Innovation and Technology in Computer
Science Education (ITiCSE), UK, pp. 133-136, 2001.

[27] Striewe, M. and Goedicke, M. Visualizing Data Structures in
an E-Learning System. In Proceedings of the 2nd
International Conference on Computer Supported Education
(CSEDU), Valencia, Spain, volume 1, pages 172-179, 2010.

[28] Tang, C. M., Yu, Y. T., & Poon, C. K. Automated systems
for testing student programs: Practical issues and
requirements. In Proceedings of the International Workshop
on Strategies for Practical Integration of Emerging and
Contemporary Technologies in Assessment and Learning
(SPECIAL 2009), pp. 132±136, 2009a.

[29] Tang, C. M., Yu, Y. T., & Poon, C. K. An approach towards
automatic testing of student programs using token patterns. In
Proceedings of the 17th International Conference on
Computers in Education (ICCE 2009), pp. 188±190, 2009b.

[30] Tang, C.M., Yu, Y.T. and Poon, C.K. A Review of the
Strategies for Output Correctness Determination in
Automated Assessment of Student Programs. Proceedings of
Chinese Conference on Computers in Education, 2010.

[31] Trætteberg, H, Aalberg, T. . JExercise: A specification-based
and test-driven exercise support plug-in for Eclipse. In
Proceedings of the 2006 OOPSLA Workshop on Eclipse
Technology eXchange, ETX 2006 (2006), 70-74.

[32] Verdú, E., Regueras, L.M., Verdú, M.J., Leal, J.P., Castro,
J.P. and Queirós, R. A Distributed System for Learning
Programming On-line. In Computers & Education Journal,
2011, ISSN 0360-1315

[33] Verhoeff, T. Programming Task Packages: Peach Exchange
Format. In Olympiads in Informatics, 2008. Vol. 2 192-20.

197

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

