Using metalearning for parameter tuning in
neural networks
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Abstract Neural networks have been applied as a machine learning tool in many dif-
ferent areas. Recently, they have gained increased attention with what is now called
deep learning. Neural networks algorithms have several parameters that need to be
tuned in order to maximize performance. The definition of these parameters can be
a difficult, extensive and time consuming task, even for expert users. One approach
that has been successfully used for algorithm and parameter selection is metalearn-
ing. Metalearning consists in using machine learning algorithm on (meta)data from
machine learning experiments to map the characteristics of the data with the per-
formance of the algorithms. In this paper we study how a metalearning approach
can be used to obtain a good set of parameters to learn a neural network for a given
new dataset. Our results indicate that with metalearning we can successfully learn
classifiers from past learning tasks that are able to define appropriate parameters.
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1 Introduction

Machine learning (ML) processes consist in collecting data, applying an algorithm
to that data to obtain a model and using the model to understand the problem (de-
scriptive ML) and/or make predictions concerning new observations from that prob-
lem. To obtain a model we need to choose an algorithm and tune its parameters.
The parameter tuning task is usually done manually or semi-automatically (e.g. by
searching on a grid of parameter values for the configuration that obtain the best
model), based on the user’s expertise. Even for experienced user, it is a complex
task that consumes much time and resources. Neural networks (NN) have many pa-
rameters with significant impact on model performance, which are well-know to be
particularly hard to tune [1].

Metalearning has been used to address the problem of parameter tuning [11]. It
essentially consists in using a ML approach to that problem, namely to map the char-
acteristics of the data to the performance of the algorithms (and different parameter
configurations) [13].

This means collecting (meta)data about the characteristics of problems modeled
in the past and the performance of different algorithms and parameter configura-
tions on those problems; applying a ML algorithm to that (meta)data to obtain a
(meta)model, mapping problem characteristics (i.e. metafeatures) to algorithm per-
formance; and using that metamodel to predict the best algorithm and parameter
configuration for a new dataset. One of the main challenges in metalearning is the
development of metafeatures that provide useful information about the performance
of different algorithms and their configurations [2].

In this paper, we use metalearning methods for parameter tuning in NN. We
propose a new set of metafeatures that are specifically designed for NN. We test the
approach with a set of benchmark datasets from the UCI repository [9]. The results
indicate that metalearning is able to predict good configurations for NN and is, thus,
a suitable approach to the problem of parameter tuning of NN.

The main contributions of this work are:

e developing of specific metafeatures for the problem of parameter tuning of NN,
and
e showing that metalearning is a viable approach to that problem.

In the remainder of the paper we introduce NNS (Section 2) and metalearning
(Section 3). Then we describe the empirical study carried out (Section 5) and dis-
cuss the corresponding results (Section 6). In the last section, we present some con-
clusions and directions for future work.

2 Neural Networks

In ML, a neural network consists of a network with (possibly) several layers of nodes
that are used to model data. In classification and regression problems, the first layer



Using metalearning for parameter tuning in neural networks 3

represents the input variables and the final layer is the target variable. Each layer,
except the input layer, receives the values of the previous layer as input, transforms
them and outputs the result to the following layer. The connection between two
nodes is associated with a weight, that regulates the effect of the output of one node
on the other. The algorithm to learn a neural network uses training data to determine
the value of the weights [1].

Figure 1 shows an example of the neural networks considered in this work. It is
the traditional three-layered architecture namely, the input, hidden and output layers.

Fig. 1: Example of a neural network

As it is described in more detail in [3], here we only introduce the notation: x;
are the values fed to the input layer; h; are hidden neutrons; (b) and (b") are the
bias neurons; y is the neuron on the output layer, representing the target; the set of
weights W contains (i+1) x j+ (j+1) x o elements, where i is the number of input
units, j is the number of hidden neurons, and o is the number of outputs.

Neural networks are a very popular learning algorithm [12]. Many different vari-
ants of NN have been proposed and they have been used for many different tasks,
such as: pattern recognition, prediction, optimization, associative memory, and con-
trol [4]. More recently, deep learning, which is essentially a NN with many hidden
layers, have been very successful [7].

Several papers contain good introductions to NN (e.g. [6, 10]).

3 Metalearning

Metalearning is essentially the use of machine learning (ML) techniques to model
the behavior of ML algorithms based on data collected from their usage [2]. It has
been mostly used for the algorithm selection problem [14]. This is a very general
problem, that can be described as: given a new problem and a set of algorithms that
may be used to solve it, choose the best algorithm to solve it, according to some
performance measure. In the case case of ML, the problems are typically datasets
and the algorithms are learning algorithms but we can also include the choice or
tuning of algorithm parameters.

Metalearning can naturally be applied to the problem of algorithm (and pa-
rameter) selection in ML [2]. Figure 2 shows this process. The approach con-
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Fig. 2: Metalearning for algorithm selection

sists of collecting metadata about datasets as they are processed, characterizing
the dataset (Metafeatures;), the algorithm (Metafeatures;) and the corresponding
Per formance; ;i of different algorithms and parameter configurations with each
dataset. Then, a ML algorithm is applied to that metadata to obtain a metamodel.
The metamodel maps metafeatures to algorithm performance. The metamodel can
then be used to predict the best algorithm (A,) and parameter configuration (Py) for
a new dataset, given the values of its metafeatures.

4 Metafeatures

An important issue in the development of metalearning approaches to ML is the
design of useful metafeatures, i.e. characteristics from the data that provide infor-
mation about the performance of the algorithms [2]. These can be grouped into
tree main categories: 1) simple, statistical and information-theoretic metafeatures
— features based on the dataset characteristics, (e.g: number of classes, number of
features); 2) model-based — features based on models obtained with the data (e.g.
building a decision tree from a dataset and collect properties of the tree, like nodes
per feature, maximum tree depth, etc.); and 3) landmarkers — quick estimates of the
performance of the learners obtained by either running simplified versions of the
algorithms, or running the algorithm on a sample of the dataset.

In this paper we consider 75 metafeatures, that are presented in Table 1. Instead
of the three groups presented earlier, we group them according to the type of infor-
mation they represent:

G1 Global dataset: number of examples and attributes and their ratio;

G2 Individual attributes: number and ratio of attributes consisting of only two or
three distinct values, or attributes with outliers;

G3 Relationship between attributes: correlations among the attributes;

G4 Attribute distributions: distribution of the values of the attributes;

G35 Target attributes: existence of outliers;
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G6 Target distribution: distribution of the values of the target variable;

G7 Relationship between attributes and target: correlations between the attributes
and the target variables;

G8 General landmarkers: result of applying simple models to the data. Here,
clustering.3,5,10,20 means we performed clustering with the referred numbers
of clusters, measuring the standard deviation of the number of elements placed
in each cluster;

G9 NN specific landmarkers: result of applying simpler models to the data. Here,
we chose to use smaller neural networks and measuring the initial MSE (mse0),
distribution of the differences between initial and final weights (w.mean.dif and
w.sd.dif)), and also the difference between the initial and final MSEs (mse.dif).
We used neural networks with only one neuron in the hidden layer (/4), but also
with three (3h). In this last case, we limited the maximum number of iterations
between 1 and 10.

Table 1: Metafeatures used in this work

G1 G4 G7
n.examples avg.skewness prop.target.cor.gt.50
n.attrs avg.abs.skewness avg.abs.target.correlation
r.n.attrs.n.examples avg kurtosis
r.n.examples.n.attrs avg.means G8
avg.sds r.squared
G2 clustering.{3, 5, 10, 20}
n.bin.fea G5 d.tree.leaves
n.h.outlier target.h.outlier d.tree.mse
n.tri.fea target.has.outliers mean.mse
r.num.bin.fea.n.examples
r.n.h.outlier.n.attrs Go6 G9
r.n.h.outlier.n.examples |range.target.rel.avg Lnnet.1Th.mse
r.num.tri.fea.n.attrs target.coefficient.variation Lnnet.1Th.w.mean.dif
r.num.tri.fea.n.examples |abs.target.coefficient.variation |l.nnet.lh.w.sd.dif
r.num.bin.fea.n.attrs target.cv.sparsity L.nnet.1h.mse0
target.abscv.sparsity l.nnet.3h.mse0
G3 target.stationarity Lnnet.3h.it.{1..10}.w.mean.dif
avg.abs.attr.correlation |target.hist.sparsity Lnnet.3h.it.{1..10}.w.sd.dif
prop.cor.gt.50 avg.mean.res.dist.adjacent.target|l.nnet.3h.it.{1..10}.mse.dif

Given the large number of features, we performed three types of feature selection
(FS): filter, wrapper and knowledge-based.

Filter FS is based on the correlation matrix of the metafeatures. In groups of
metafeatures with a correlation higher than a given threshold, we may consider all
but one as redundant. Thus, the redundant metafeatures are discarded. For this we
used R package caret [5], specifically the method findCorrelation which,
using a cutoff factor of 0.75, recommended removing 59 metafeatures.

Wrapper FS was applied to the remaining 16 metafeatures. Here, we used
caret’s function rfe to perform recursive feature elimination, resulting in sub-
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sets of 2, 14, and 11 features that can be used to produce a more accurate model for
the neurons, decay, and abstol problems, respectively.

In knowledge-based feature selection, for each of the three problems considered,
we chose a subset of metafeatures that could better describe th behavior of each NN
parameter.

To extract some knowledge from the metamodel we analyzed a decision tree and
also measured the importance of the variables. For this we used caret’s method
varImp, that estimates the importance of the variables for a model.

5 Experimental Setup

We conducted a set of experiments to test the use of metalearning to predict the
best configuration of a neural network. The experiments consisted in the following
two levels: 1) at the base level we performed a grid search over three neural network
parameters, measuring the resulting MSE (Section 5.2) 2) at the meta level, we learn
and test metamodels from the data collected with the base level experiments. Before
presenting the experimental setup at each level, we start by presenting the datasets
used.

5.1 Datasets

Table 2 shows the datasets used in this paper. Some of the datasets considered have
more than one target variable. In the table, the « symbol means that several datasets
were created by splitting those by target variable.

Table 2: UCI Datasets used and number of datasets generated from each one of them

id name nr. datasets
11_% Parkinsons Telemonitoring 2
12_% Concrete Slump Test 3
151, 161 Wine Quality 1
17-1 Yacht Hydrodynamics 1
1.1 Airfoil Self-Noise 1
2% Condition Based Maintenance of Naval Propulsion Plants 2
3.1 Combined Cycle Power Plant 1
4.1 Communities and Crime 1
5% Communities and Crime Unnormalized 4
6-1 Concrete Compressive Strength 1
7-1 Computer Hardware 1
8-1,9.1 Challenger USA Space Shuttle O-Ring 2
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5.2 Base level Experiments

The structure of the NN used is similar to the one presented in [3]: the networks have
three layers and the number of neurons in the input and output layers are, respec-
tively, the number of independent and dependent variables of the dataset, which is
one in our case. To perform the experiment we used the R package nnet [16]. The
neural network implementation considered in this package uses traditional back-
propagation, and does not allow specifying the learning rate.

The parameters we want to tune are:

neurons (1): number of neurons in the hidden layer: n € {3,5,10,20}
decay (d): parameter for weight decay: d = 1 x 107%,i € [0,4]
abstol (a): stopping criterion: a =1 x 107/, j € [3,5]

We tested every possible combination of these parameters, leading to 60 different
parameter configurations.

In each of those configurations, the neural networks were initialized with sets
of weights generated randomly from two distributions: uniform: % [0, 1]; and based

on Bishop’s recommendation [1]: A (07 V1 /x) , where x is the number of indepen-

dent variables of the dataset. We repeated each experiment 20 times, with different
initial weights. We have, thus, 20 x 2 x 60 = 2,400 experiments for each one of the
benchmark datasets used.

The performance of each neural network is estimated with 10-fold cross-validation.
For each fold, we create a model by running the neural network on the train set until
it converges. Then we apply the resulting model to the test set and evaluate it by
computing its MSE.

Based on these results, we can determine the best set of parameters: the one that
originated the smallest MSE.

5.3 Meta level Experiments

Taking into account the grouping and feature selection referred in section 4, in this
experiment we used 13 different groups of metafeatures:

Gl ... G9: each of the groups referred in Table 1M

NR: the 16 non redundant metafeatures suggested by filter feature selection;
IMP: metafeatures with variable importance over 50;

RFE: metafeatures recommended by recursive feature elimination for each prob-
lem;

e KB: metafeatures selected from knowledge-based feature selection.

Although the target variables of the metadatasets are numeric, we addressed
the metalearning problems as classification tasks: the prediction of the number of
neurons, value of decay and value of abstol.
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The reason for this is because we are not treating these parameters as continuous.
In other words, as we only have results for the parameter values that define the grid,
we can only handle directly predictions that are also in that grid.

The quality of the recommendations of the metamodel was measured in two dif-
ferent ways: 1) measuring the accuracy of the predictions in the three metatargets
separately; and 2) measuring base-level performance, i.e. MSE, obtained by a NN
using the configuration recommended by the three metamodels. The meta-level per-
formance was estimated using leave-one-out cross-validation.

The base-level performance can be compared to the performances of the best and
worst networks (respectively, the NNs with smallest and greatest MSE from within
the several NNs tested). It can also be compared to the baseline prediction: always
predicting the class with more observations.

The algorithms used at the meta level were decision trees and random forests.
The baseline recommendation method consists of the most common class for each
problem, commonly known as the default class.

6 Results

Table 3 shows the meta level accuracies obtained on each of the three problems,
when using decision trees (rpart [15]) and a random forests (randomForest [8]) with
each group of metafeatures described earlier.

Table 3: Meta level accuracies

neurons decay abstol
rpart randomForest| rpart randomForest| rpart randomForest
Gl ]0.476 0.429 0.381 0.429 0.286 0.429
G2 ]0.429 0.429 0.381 0.476 0.524 0.619
G3 0476 0.429 0.333 0.429 0.333 0.333
G4 ]0.286 0.381 0.429 0.429 0.476 0.476
G5 ]0.333 0.476 0.095 0.048 0.333 0.476
G6 ]0.381 0.429 0.429 0.524 0.476 0.476
G7 ]0.429 0.476 0.333 0.333 0.286 0.333
G8 ]0.333 0.429 0.333 0.476 0.333 0.381
G9 ]0.381 0.286 0.333 0.286 0.286 0.333
NR [0.524 0.476 0.286 0.429 0.381 0.524
IMP |0.524 0.571 0.190 0.381 0.524 0.619
RFE |0.619 0.619 0.286 0.429 0.524 0.667
KB [0.571 0.524 0.381 0.381 0.381 0.524
baseline 0.476 0.238 0.476

As the results in the table show, we achieved good meta level accuracies when
compared to the baseline method. Looking at the values we can see that random
forests (RF) generally achieves the best results. Concerning the groups of metafea-
tures, RFE leads to higher accuracy for predicting the number of neurons (0.619)
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and the value to use as abstol (0.667), while G6 is the best to predict the decay
parameter (0.524).

Table 4 shows the average performances (in terms of MSE) of the neural net-
works executed following the recommended configuration. We can compare these
with the average performance of the ones executed with the configuration recom-
mended by the baseline, and also with the best and the worst average performances
obtained for each dataset.

Table 4: Base level performances

rpart randomForest
Gl 0.344 0.339
G2 0347 0.319
G3 0285 0.298
G4 0.262 0.243
G5 0318 0.467
G6  0.459 0.342
G7 0258 0.243
G8 0345 0.273
GY9 0411 0.658
IMP 0.302 0.266
NR 0.269 0.333
RFE 0.247 0.262
KB 0.264 0.252

best 0.205
worst 0.856
baseline 0.475

As the results on the table show, the recommended configurations lead to NN
with MSE very close to the best performances. They are clearly better than the
worst and only in a single case, metalearning does not lead to better results than the
baseline (0.658 when using the group G9 with random forest). The best performance
is achieved when using the group of metafeatures G4 or G7 with random forests.

7 Conclusions

We use metalearning to recommend a good set of parameters for a neural network
on new datasets. For the characterization of the datasets we have identified groups
of metafeatures that are used in this approach as attributes in the metalearning pro-
cess. The experimental results obtained are very encouraging. The metalearning ap-
proach can predict a good configuration for a neural network. This indicates that
metalearning can be used for this purpose, thus reducing the effort required in the
tuning process done by the user manually or semi-automatically (e.g. using a grid).
As future work we aim to improve results by proposing new metafeatures and other
metalearning algorithms.
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