
FPGAs as General-Purpose Accelerators for
Non-Experts via HLS: The Graph Analysis Example

Pedro Filipe Silva
Faculty of Engineering, University of Porto

Porto, Portugal
pedro.filipe.silva@fe.up.pt

João Bispo, Nuno Paulino
INESC-TEC

and Faculty of Engineering, University of Porto
Porto, Portugal

jbispo@fe.up.pt, nuno.m.paulino@inesctec.pt

Abstract—We discuss the concept of FPGA-unfriendliness, the
property of certain algorithms, programs, or domains which
may limit their applicability to FPGAs. Specifically, we look
at graph analysis, which has recently seen increased interest
in combination with High-Level Synthesis, but has yet to find
great success compared to established acceleration mechanisms.
To this end, we make use of Xilinx’s Vitis Graph Library to
implement Single-Source Shortest Paths (SSSP) and PageRank
(PR), and present a custom kernel written from the ground up for
Distinctiveness Centrality (DC, a novel graph centrality measure).
We use public datasets to test these implementations, and
analyse power consumption and execution time. Our comparisons
against published data for GPU and CPU execution show FPGA
slowdowns in execution time between around 18.5x and 328x for
SSSP, and around 1.8x and 195x for PR, respectively. In some
instances, we obtained FPGA speedups versus CPU of up to
2.5x for PR. Regarding DC, results show speedups from 0.1x to
3.5x, and energy efficiency increases from 0.8x to 6x. Lastly, we
provide some insights regarding the applicability of FPGAs in
FPGA-unfriendly domains, and comment on the future as FPGA
and HLS technology advances.

I. INTRODUCTION

The recent history of FPGAs shows parallels to that of
general-purpose computing. If one views the FPGA as a pro-
grammable computing device, rather than simply a prototyping
tool, the abstraction level of its programming mechanisms has
been steadily increasing. From the earliest one-time fuse-based
devices, to logic synthesis and EDA, hardware engineers have
been able to build increasingly complex systems thanks to such
advances in abstraction. High-Level Synthesis (HLS) is now
reaching the software mainstream [1], and the gap between
software and hardware engineering grows ever smaller at
the FPGA boundary. Could the FPGA ever be thought of
as a general-purpose accelerator? Could it combine ease of
programming with efficiency rivalling that of devices such as
GPUs or Tensor Processing Units (TPUs)?

Our work focuses on applying FPGAs to High-Performance
Computing (HPC) applications. To that end, we restrict our-
selves to server-grade FPGA boards. In order to simplify
discourse, we refer to an FPGA acceleration board simply as
an “FPGA”.

A. FPGA-Unfriendliness

We define FPGA-unfriendliness (or simply unfriendliness)
as the property carried by certain algorithms, programs, or

entire application domains which makes their implementa-
tion/acceleration using FPGA technology difficult, less perfor-
mant, or both, when compared to more traditional execution
platforms [2]. Several factors related to the FPGA technology
and ecosystem (whether intrinsic to FPGAs themselves or not)
contribute to this unfriendliness:

1) Hardware limitations (e.g. low clock rates, limited global
memory bandwidth, limited local memory capacity);

2) Synthesis limitations: at the HLS level, mostly refers to
abstraction gaps between the high-level language source
(e.g. C/C++) and the low-level target (e.g. Verilog); at
the RTL level, refers to lack of abstraction which hinders
the implementation of complex algorithms;

3) Software/IP limitations: lack of dedicated frame-
works/libraries for unfriendly algorithms; libraries not
sufficiently optimised; missing features in runtime,
shell/board support packages, or development environ-
ments;

These are originating factors. A problem must be affected by
these factors to be classified as unfriendly. Graph analysis, for
instance, is clearly an unfriendly domain, due to, e.g. high
random memory access rates – see [2], [3] for more details.

We do not claim FPGAs have no place in the software
field: on the contrary, the overall outlook regarding current
technology is quite positive [4]. We believe, however, that
significant hardware knowledge is still a necessity to create
FPGA applications in unfriendly domains. We additionally
posit that high-level tools such as libraries and frameworks,
which raise the abstraction level even further, are pivotal
to enable viable acceleration in said domains – besides the
unfriendliness aspect, a domain expert should not be expected
to descend onto the kernel level too often – making the greater
part of our focus evaluating instances of said tools.

Our aim is therefore to both empirically evaluate the per-
formance of unfriendly graph algorithms against traditional
execution platforms (CPU and GPU), and to provide useful
insight – to both experts and non-experts – on the implemen-
tation of a new algorithm (DC). Note that while the poor
performance of FPGA vs. GPU algorithms for most graph
applications is commonly referred to in the field, very few
publications actually demonstrate this with data.

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

ie
ld

-P
ro

gr
am

m
ab

le
 T

ec
hn

ol
og

y
(IC

FP
T)

 |
 9

78
-1

-6
65

4-
20

10
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
FP

T5
28

63
.2

02
1.

96
09

83
2

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 05,2023 at 09:23:45 UTC from IEEE Xplore. Restrictions apply.

II. EXPERIMENTAL SETUP

A. Hardware

All tests were executed in a single machine, equipped with:
• ASRock TRX40 Creator Motherboard
• 32 GB DDR4 RAM
• AMD Ryzen Threadripper 3960X CPU
• NVIDIA GeForce GTX 1650 Super GPU
• Xilinx Alveo U250 FPGA Data Centre Accelerator Card

When comparing only time-performance, the machine was
used as-is. However, when comparing time- and energy-
performance, the graphics card was removed and the operating
system was executed at runlevel 3. Idle power draw for the
system in this state is approximately 115.5 W when the
FPGA is programmed with the 201830 2 shell (during PR
and CPU executions) and 124.5 W when programmed with
the gen3x16 base3 shell (during all other instances).

B. Software

The machine is equipped with: Ubuntu 18.04 LTS (Linux
version 4), Xilinx Runtime Library (XRT) 2.9.317, and Xilinx
Vitis 2020.2.

C. Instruments

Power consumption was measured using a UT230B power
meter. Accuracy for power measurement is ±1%. This device
has no data-logging feature, so we report peak power draw.

D. Algorithms, Libraries, and Implementations

All host-side code was compiled with gcc 7.5.0 with -O3.
All device-side code was compiled with -O31.

1) PageRank: PageRank (PR) was implemented using the
Vitis Graph Library 2020.2 PR kernel [5], atop custom host-
side code. Note that the kernel implements a weighted version
of PR, while we’re strictly evaluating the more common
unweighted version, so we set all edge weights to one before
executing.

2) Single-Source Shortest Paths: Single-Source Shortest
Paths (SSSP) was likewise implemented using the Vitis Graph
Library 2020.2 SSSP kernel [5] atop custom host-side code.
We use the version which does not return predecessor data.

3) Distinctiveness Centrality:

D1(i) =
n∑

j=1,j 6=i

wij log10
n− 1

gαj
(1)

To the best of our knowledge, no accelerator for Distinctive-
ness Centrality (DC) currently exists. Several DC algorithms
are given by [6]. We have implemented DC1, which (vertex-
wise) uses only data from a vertex and its neighbours. The
value of DC1 for a vertex i is given by Equation 1, where wij
is the weight of the edge between i and j (or zero if no such
edge exists), n is the total number of vertices, gj is the degree
of vertex j, and α is a tuning parameter.

1All host- and device-side code, along with evaluation datasets, is available
at https://doi.org/10.5281/zenodo.5155449.

TABLE I
DATASET SHORTHANDS AND ORIGIN

Shorthand Full Name Source

SO soc-orkut [7]

SOT soc-orkut (transposed) [7]

LJ soc-LiveJournal1 [8]

USA USA-road-d.USA [9]

RMAT RMAT22 [10]

R4 r4-2e23 [10]

CO com-Orkut [8]

As an optimisation, our kernel receives as input a Com-
pressed Sparse Row version of the graph (as for the SSSP
kernel) and reverses the computation, processing edge sets
for each vertex as they appear in the matrix – in essence,
computing each addend of the sum in Equation 1. This requires
a nested vertex-edge loop structure.

The kernel thus outputs one result per edge: this result
is binned according to its destination vertex and is then
accumulated, as a histogram, by the host.

As a consequence, the final vertex-wise value only cor-
responds to DC1 if the graph is undirected and its matrix
symmetric. Otherwise, the output relates only to incoming
edges and is dubbed in-DC1.

The device-side uses dataflow. It is optimised to the level of
a non-expert with introductory knowledge: it separates M-AXI
interfaces via bundling, pipelines inner execution/read/write
loops (with II=1), and uses a single compute unit which
receives the entire dataset at once. The entire workflow,
including kernel compilation, was performed in Vitis 2020.2.

For performance comparison, we use a single-threaded C++
version following the same algorithm implemented for FPGA
execution.

E. Datasets, Parameters, and Comparison Benchmarks

Table I shows the used datasets, their source, and cor-
responding shorthands. Table II shows the algorithms and
performance data source for each dataset, along with relevant
metadata. |E| means “number of edges”; |V | means “num-
ber of vertices”; Sym. indicates whether the graph/matrix is
symmetric: the edge counts given are the actual edge counts
present in the matrix representation of the dataset.

When weighted graphs were required to execute SSSP, we
used the random weights generated by the authors.

III. RESULTS

We evaluate the FPGA implementation using two metrics:
time- and energy-performance. We source time-performance
data from [10] and [11], as well as our own tests for DC1.
Energy-performance data is sourced solely from our tests.
In all instances, except DC1 as the host performs some of
the workload, we exclude data transfer times and report only
execution times. In accordance with sourced data, all SSSP
tests were executed using the first vertex as the source, and

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 05,2023 at 09:23:45 UTC from IEEE Xplore. Restrictions apply.

TABLE II
AUTHOR-ALGORITHM-DATASET CORRESPONDENCE

Author Algorithm Dataset |E| |V | Sym.

Graphit [11] SSSP SOT 106M 3.00M No

Graphit PR SO 213M 3.00M Yes

Graphit SSSP LJ 68.4M 4.85M No

Graphit PR LJ 85.6M 4.85M Yes

Zheng [10], (this) SSSP, PR, DC1 USA 57.7M 24.0M No

Zheng, (this) SSSP, PR, DC1 RMAT 33.0M 4.19M No

Zheng, (this) SSSP, PR, DC1 R4 34.0M 8.39M No

(this) DC1 CO 234M 3.07M Yes

0 10 20 30 40 50
speedup

Serial

Ligra

GraphIt

Galois

Dataset: RMAT

0 20 40 60 80 100 120
speedup

Serial

Ligra

GraphIt

Galois

Dataset: R4

Zheng (AMD), SSSP

Fig. 1. Execution time for SSSP – CPU over FPGA, per dataset and
framework.

all PR tests use the same epsilon value and maximum iteration
count. All DC1 tests were executed with α = 5.

Time-performance is displayed as the relative speedup of
the CPU/GPU implementation over the FPGA implementation,
except for DC1, where we show FPGA over CPU results.
Energy-performance is given as the ratio between absolute
Watt-second values. Note that both sources give results for
two execution platforms. Our figures show speedups versus
the most performant.

A. SSSP versus High-Performance Frameworks

Figure 1 shows SSSP time-performance versus [10]’s bench-
marks of CPU frameworks (as well as unoptimised serial
execution). We were unable to execute SSSP using the USA
dataset after five hours – this may be be due to a conjunction
of the kernel’s internal use of a queue, FPGA-unfriendliness,
and the graph’s extreme sparsity – so it is excluded from our
comparisons. Note that speedups for R4 are approximately two
times lesser versus RMAT, corresponding to the ratio between
vertex counts for the two datasets – thus likely indicating
the SSSP kernel’s suboptimal handling of increasingly sparse
matrices.

Figure 2 paints a similar picture – note that SOT is less
sparse than LJ – although the GPU frameworks seem to be
affected by the issue differently.

B. PageRank versus High-Performance Frameworks

Figure 3 displays results for FPGA vs. CPU PR execution.
The FPGA implementation bests serial execution for USA,

0 20 40 60 80 100 120 140
speedup

GU

GSW

SEP-G

Dataset: SO

0 50 100 150 200 250 300
speedup

GU

GSW

SEP-G

Dataset: LJ

Graphit (Quadro), SSSP

Fig. 2. Execution time for SSSP – GPU over FPGA, per dataset and
framework.

0 1 2 3 4 5 6 7
speedup

Serial

Ligra

GraphIt

Galois

Dataset: USA

0 2 4 6 8 10 12 14
speedup

Serial

Ligra

GraphIt

Galois

Dataset: R4

0 5 10 15 20 25 30
speedup

Serial

Ligra

GraphIt

Galois

Dataset: RMAT

Zheng (AMD), PR

Fig. 3. Execution time for PR – CPU over FPGA, per dataset and framework.

0 50 100 150 200 250
speedup

GU

GSW

Dataset: LJ

0 50 100 150 200 250
speedup

GU

GSW

Dataset: SO

Graphit (Quadro), PR

Fig. 4. Execution time for PR – GPU over FPGA, per dataset and framework.

and slowdowns versus the other frameworks are significant,
but manageable (possible excepting Galois). We note that
speedups for USA versus the less-performant Intel machine
given in [10] are positive for both serial execution and the
Ligra framework.

Less encouraging are the results versus the highly optimised
GPU frameworks shown in Figure 4. Both frameworks out-
perform FPGA execution by a large factor, as in SSSP. Our
absolute figures for FPGA execution show time per iteration
for SO of around 4 times the equivalent for LJ, indicating
sparsity has a significant impact as well.

C. DC1 vs. Serial C++ Implementation

Figure 5 shows DC1 time- and energy-performance given
as a relative speedup (or equivalent “energy factor”) of FPGA
execution over CPU execution. As the FPGA implementation
involves computation by the host, we include host execution
times (as well as memory transfer times) and host execution

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 05,2023 at 09:23:45 UTC from IEEE Xplore. Restrictions apply.

USARMATR4 CO SO LJ
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
sp

e
e
d

u
p

0

1

2

3

4

5

6

e
n
e
rg

y
 f

a
ct

o
r

write time

kernel time

read time

accumulate time

read/kernel/write energy

accumulate energy

Fig. 5. Execution time/total energy expenditure, left to right, for DC1 – FPGA
over CPU, per dataset.

power draw in our formula for total energy consumption.
The percentage of time/energy spent during each stage is
shown by differently-coloured bar segments (where a larger
segment means more time/energy). One caveat is that power
draw during memory transfer is higher, despite the transfer
itself often being quick – especially for small datasets such as
RMAT and R4 – making energy measurement during this stage
difficult. Our total energy consumption numbers take this spike
into account, but energy factor figures for RMAT and R4 may
be skewed in favour of the CPU implementations. Similarly,
FPGA execution times for all datasets except USA (11.3 s) are
under 5 s. This is not sufficient to stabilise FPGA power draw
measurement after memory transfer, again skewing results
towards CPU execution in these instances.

Of note is our evaluation of the largest dataset, CO. Results
for this dataset show a clear preference for less-sparse matri-
ces. This is due to the deep pipeline which processes edges
per vertex (and so favours vertexes with greater edge counts).
USA, by far the sparsest matrix, has the worst speedup but
the second best energy factor, as power draw has had time to
stabilise enough to overcome poor performance.

Host (accumulate) time is shorter than all other stages, for
all datasets. This suggests improvements to the application
should mostly focus on the kernel itself. The fact that sparser
graphs (USA, RMAT, R4) suffer from poor performance
suggests a possible line of improvement to the main kernel
execute cycle, which is vertex-oriented (and thus pays a fixed
time-cost for each vertex): reshaping the computation to a fully
pipelined edge-oriented cycle with no nesting. In addition, as
the CSR-based DC1 formulation is fully data-parallel (vertex-
wise), several compute units can be instantiated at the same
time, each processing one chunk of the full dataset.

IV. DISCUSSION AND CONCLUSION

Overall, our results paint a negative picture. FPGA im-
plementations of SSSP and PR significantly underperform
when compared to execution with GPU accelerators, which
are, for the most part, the current state-of-the-art in HPC
graph analysis. Regarding CPU execution, results for SSSP
are similarly poor, while results for PR may indicate a good
opportunity for further development. We have also compared
our own implementation of the DC1 algorithm against a serial
C++ version. These results too show promise, especially with

low-sparsity matrices, but one must keep in mind that, e.g.,
GPU DC1 may eventually outperform our FPGA code as well.

Discussion on what FPGAs are suitable for is commonplace,
especially as the focus for HLS shifted from strict dataflow
to general-purpose programming. Our intention for this text
(as well as our greater study) is to inform such discussion.
As we’ve mentioned, we believe higher-level tooling is key
if FPGAs are to ever be suited for unfriendly applications
(and thus to general-purpose computing at large). Tooling over
HLS (not involving a library) is, in essence, a shifting of the
HLS source language from C/C++ to domain-specific DSLs.
At another level, it has been proposed to shift the HLS target
from Verilog/VHDL to an intermediate representation (e.g.
MLIR-based [12]) and/or Calyx [13]). This covers levels 2
and 3 of our unfriendliness classification (see Subsection I-A).
Improvements at the hardware level are also a possibility (we
note, for instance, the appearance of FPGA boards with High-
Bandwidth Memory, which we plan to explore in the future).

Currently, a non-HLS expert must expend time learning the
particularities of FPGA and HLS technology before being
able to optimise their unfriendly applications much further
than, e.g., the level at which we have optimised DC1 in
this work. Our discussion on DC1 gives possible avenues for
improvement, but these are based on acquired knowledge of
these particularities – inaccessible to beginners. We thus hold
that, if HLS is to become a fully usable technology for domain
experts, even in unfriendly domains, vendors must prioritise
lowering the burden of knowledge imposed on beginners.

REFERENCES

[1] J. Lant, J. Navaridas, M. Lujan, and J. Goodacre, “Toward FPGA-Based
HPC: Advancing Interconnect Technologies,” IEEE Micro, vol. 40, no. 1,
pp. 25–34, Jan. 2020.

[2] P. F. Silva, J. Bispo, and N. Paulino, “Building Beyond HLS: Graph
Analysis and Others,” in Workshop on Languages, Tools, and Techniques
for Accelerator Design (LATTE ’21), Virtual USA, Apr. 2021.

[3] M. Besta, D. Stanojevic, J. D. F. Licht, T. Ben-Nun, and T. Hoe-
fler, “Graph Processing on FPGAs: Taxonomy, Survey, Challenges,”
arXiv:1903.06697 [cs], Apr. 2019.

[4] S. Lahti, P. Sjovall, J. Vanne, and T. D. Hamalainen, “Are We There Yet?
A Study on the State of High-Level Synthesis,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 38, no. 5, pp. 898–911, May 2019.

[5] Xilinx, “Vitis Graph Library,” Xilinx.
[6] A. Fronzetti Colladon and M. Naldi, “Distinctiveness centrality in social

networks,” PLOS ONE, vol. 15, no. 5, p. e0233276, May 2020.
[7] R. A. Rossi and N. K. Ahmed, “The network data repository with

interactive graph analytics and visualization,” 2015.
[8] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network

dataset collection,” Jun. 2014.
[9] DIMACS, “9th DIMACS Implementation Challenge - Shortest Paths,”

2006.
[10] R. Zheng and S. Pai, “Efficient Execution of Graph Algorithms on CPU

with SIMD Extensions,” in 2021 IEEE/ACM Int. Symp. Code Gener.
Optim. Seoul, Korea (South): IEEE, Feb. 2021, pp. 262–276.

[11] A. Brahmakshatriya, Y. Zhang, C. Hong, S. Kamil, J. Shun, and S. Ama-
rasinghe, “Compiling Graph Applications for GPUs with GraphIt,” in
2021 IEEE/ACM Int. Symp. Code Gener. Optim. Seoul, Korea (South):
IEEE, Feb. 2021, pp. 248–261.

[12] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR:
Scaling compiler infrastructure for domain specific computation,” in
2021 IEEE/ACM Intl. Symp. Code Gener. Optim, 2021, pp. 2–14.

[13] R. Nigam, S. Thomas, Z. Li, and A. Sampson, “A compiler infrastructure
for accelerator generators,” in Proc. 26th ACM Intl. Conf. Arch. Supp.
Prog. Lang. Oper. Syst. Virtual USA: ACM, Apr. 2021, pp. 804–817.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 05,2023 at 09:23:45 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T22:24:06-0400
	Preflight Ticket Signature

