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Abstract—Many real-world robotic scenarios require perform-
ing task planning to decide courses of actions to be executed by
(possibly heterogeneous) robots. A classical centralized planning
approach that considers in the same search space all combina-
tions of robots and goals could lead to inefficient solutions that
do not scale well. Multi-Agent Planning (MAP) provides a good
framework to solve this kind of tasks efficiently. Some MAP
techniques have proposed to previously assign goals to agents
(robots) so that the planning effort decreases. However, these
techniques do not scale when the number of agents and goals
grow, as in most real world scenarios with big maps or goals that
cannot be reached by subsets of robots. In this paper we propose
to help the computation of which goals should be assigned to each
agent by using Actuation Maps (AMs). Given a map, AMs can
determine the regions each agent can actuate on. They help on
alleviating the effort of MAP techniques knowing which goals can
be tackled by each agent, as well as cheaply estimating the cost
of using each agent to achieve every goal. Experiments show that
when information extracted from AMs is provided to the Multi-
Agent planner, goal assignment is significantly faster, speeding-up
the planning process considerably. Experiments also show that
this approach greatly outperforms classical centralized planning.

I. INTRODUCTION

Real-world robotic scenarios in which a set of robots need to

solve a certain amount of tasks usually require the combination

of path-planning and motion-planning techniques. An example

of this type of scenarios is the coverage problem, which

consists of distributing the space among the set of robots, so

that each one explores a certain region of the environment.

The problem is to plan and find a route for each robot so that

all the feasible space is covered by the robots’ actuators, while

minimizing the execution time. Vacuum cleaning robots can

be potential candidates for this type of planning problem. We

assume we have a team of heterogeneous robots with different

sizes. While the smallest robot can reach more areas, a bigger

robot can clean more while traveling a smaller distance.

Nevertheless, other similar problems can also be solved with

our contributed technique, such as heterogeneous robots exe-

cuting vigilance tasks. As long as there exist some navigation

graph where we can extract information to help the planner

and agents with similar or different capabilities it will be a

potential domain to solve with our approach.

We have encoded our problem as a Multi-Agent Planning

(MAP) task. Automated planning is the field of Artificial

Intelligence which deals with the computation of plans. The

problem is modeled with the standard PDDL language [1].

For that purpose, we use a discrete representation of the map,

i.e., a 2D grid of waypoints. The robots can move from one

waypoint to another as long as they are grid neighbors and do

not collide with obstacles. Moreover, robots can actuate other

waypoints if their distance to the robot’s current position is

less than their actuation radius. The planner outputs a plan that

accomplishes all feasible actuation tasks, by moving the robots

to all the reachable locations from where they can actuate

the goal waypoints. Given the robot heterogeneity, some tasks

might only be feasible for a subset of the robots.

From a MAP point of view, the multi-robot problem we

propose to solve forces us to deal with two issues regarding

performance of the planning process: (1) the size of the search

space grows with the number of waypoints and goals; and (2)

some goals are not feasible for some robots. On one hand, real-

world scenarios are big enough to make almost impossible for

a planner to solve this problem in a reasonable amount of time

by just assigning all goals to all agents (following a centralized

planning approach). On the other hand, some Multi-Agent

planners invoke a goal-allocation phase before starting to plan,

computing smaller individuals plans [2]. However, during goal

allocation, a relaxed plan is computed per goal and robot to

either return an estimated cost or identify unfeasibility.

Therefore, to obtain path-planning related information we

contribute a methodology that combines Actuation Maps

(AMs) [3] with a multi-agent planner, using these maps as

a pre-processing step to speed-up the goal assignment phase.

These maps are built only once before the beginning of

the planning process, one per robot, at a very low cost in

comparison to the impact on time savings observed later

in goal assignment. Following the idea of the relaxed plan

computation during planning, our architecture computes an

estimated cost before-hand regarding the information that can

be directly extracted from AMs. As a result, the planner

receives the estimated cost information as input, and saves

time by avoiding the relaxed plan computation.

Domain-independent planning might not scale up well.

However, in most real-world domains, practitioners can benefit

from some domain-dependent knowledge and the challenge

is how to efficiently use this knowledge to allow planners
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to scale up. We take advantage of the fact that most robotic

tasks deal with a map where robots have to carry out several

activities, and that computing AMs can be done very cheaply.

If we provide that knowledge as input to a domain-independent

MAP system that performs task allocation, the integrated

system can scale up to real hard tasks.

II. PLANNING WITH ACTUATION MAPS

As previously mentioned, this work combines Actuation

Maps (AM) with Multi-Agent Planning (MAP). The con-

tributed architecture can be seen in Figure 1.

Figure 1. Architecture for combining AMs and Multi-Agent Planning

Our system receives as input a Map Image which represents

a 2D environment (e.g. building floor plan), m Robot models

with the agent’s features, and a PDDL domain that represents

the type of planning task being solved (e.g. coverage prob-

lem). According to the PDDL domain description, the PDDL
generation node takes as input the image file with the map

and the robot models in order to generate a PDDL Problem.

The PDDL generation could use the default pixel resolution

when building the respective 2D grid of waypoints, but we

assume it can also sample it down for a more light-weight

representation of the environment.

By using the MAP technique from [4], the planning archi-

tecture would be equivalent to the bottom part of Figure 1. The

planner would take the PDDL problem and domain files, and

execute Goal-Assignment (GA). In this first step, a relaxed

problem is computed for all agent-goal pairs in order to

obtain an estimate cost. Then, goals are assigned to each robot

using that estimated cost and following a pre-determined GA

strategy. Agents plan individually with their own problem,

returning a potential solution (plan) in the end. All plans

are first merged into one single plan and then the solution

is parallelized, resulting in plan πmapm.

With that architecture, the time spent on planning depends

highly on the GA efficiency. Given that it has to solve a relaxed

problem for each agent-goal pair, repeating similar searches

multiple times, this method does not scale well with big maps

and a high number of robots. Therefore, we contribute a pre-

processing step, which uses the Actuation Maps to speed-up

GA. AMs are generated once before planning, determining

which regions are actuation-feasible for each one of the robots,

and also providing a cheap estimate of the cost of using each

agent to achieve each goal. The Discretization node converts

the pixel-based cost estimate into a grid-based cost, with the

same sampling rate used by the PDDL generation node.

Using the low cost estimates from the individual AMs,

the Merging node identifies the pairs robot-goal that are

unfeasible, compiling lists of both Unfeasible Goals per Agent
and the overall list of unfeasible goals. The Merging also

compiles a list with the Estimated Cost per Goal-Agent, saving

time by alleviating the efforts of MAP during GA. Because

the AMs are determined only once before planning, a greater

impact from pre-processing is expected for large sets of goals.

In this work we consider teams of circular robots that

actuate in a 2D environment, where the world is represented by

a 2D image that can be downsampled to a grid of waypoints.

The AM gives information about the actuation capabilities of

each robot, as a function of robot size and initial position [3].

In the vacuum cleaning robots example, AM represents the

regions of the world each robot can clean.

A. Problem Formulation

The kind of problems that can be solved using our approach

are identified by the following features: these problems always

have a navigation graph and a set of potential tasks to be

executed by an agent on each node of the graph (e.g. Rovers

or Transport domain). Thus, in these domains we can generate

the AMs and extract specific information to help the planner

solve more quickly the planning problems.

A single-agent planning task can be formally defined as a

tuple Π = {F,A, I,G}, where F is a set of propositions,

A is a set of instantiated actions, I ⊆ F is an initial

state, and G ⊆ F is a set of goals. We consider a MAP

formalization where a set of m agents, Φ = {φ1, . . . , φm},
has to solve the task Π. We define the Multi Agent Planning

(MAP) task as a set of planning subtasks, one for each agent,

M = {Π1, . . . ,Πm} where M refers to the MAP task. Each

planning subtask Πi includes only the facts, actions, goals

and initial state related to the agent φi. For representation

convenience, an equivalent lifted representation of each single-

agent planning task in PDDL would be a pair (domain,

problem): Πi = {Di, Pi}, as it is reflected in Figure 1 as

output after the goal assignment (GA) step.

In order to use MAP techniques, we modeled the domain

and problem using PDDL. The domain has two types of

objects: robots, which act as agents; and waypoints, which

represent positions in the discretized world. The goal of the
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problem is a list of waypoints to actuate on (positions that

need to be covered). The PDDL domain has four predicates:

• At (robot, waypoint): defines the robot position;

• Connected (robot, waypoint, waypoint): establishes con-

nectivity between waypoints;

• Reachable (robot, waypoint, waypoint): shows waypoints

actuated by robot located on specific waypoint;

• Actuated (waypoint): indicates which waypoints were

already actuated; this predicate is used to specify goals.

Robots have to actuate every waypoint in the goal list of

the PDDL problem, as long as the task is feasible. Robots

can navigate through two connected waypoints or just actuate

another waypoint from their current waypoint position. Each

robot has its individual navigability graph of waypoints.

Finally, the two actions that are defined in the domain are

called navigate and actuate. The first one moves a robot from

its current waypoint location to a neighbor waypoint. The

second action is used to mark a waypoint as actuated if it

is reachable from the robot’s current waypoint location.

Navigate and actuate are the two actions that can be

executed by an agent when it is placed on a waypoint. Both

navigate and actuate have as effect the predicate actuated.

We do not address any kind of collision between robots

or capacity for the path between two waypoints. We assume

collisions can be resolved with post-processing replanning.

B. Multi-Agent Planner

In order to run the problem we have developed the Multi-

Agent planner called MA-Plan Merger (MAPM). The main

sequence of steps of this algorithm follows the structure

presented in [4]. However the structure has been improved

to use information from AMs. MAPM processes inputs from

AMs to skip the computation of relaxed plans during GA.

The pre-processing inputs to MAPM is the list of estimated

costs EC = {(g, φi, c) | g ∈ G,φi ∈ Φ, c = C(g, φi)} such

that c is computed as the number of steps for an agent to

reach the goal position g from its initial position, shown in

Figure 1 as the Estimated Cost per Goal-Agent node. The

Algorithm MAPM (Π, GAS,EC, P )

Inputs: M , GAS, EC, P
Output: πmapm

1 Φ′,M ′ = goal-assignment(M,GAS,EC)
2 Forall φ′i ∈ Φ′ do πi =plan(Πi, P )

3 πseq =merge(π1, . . . , πn) /* where n = |Φ′| */

4 If valid(πseq)

5 Then return πmapm =parallelize(πseq)

6 Else return no plan

Figure 2. High level description of the MAPM algorithm. Inputs: MAP task
(M ), Goal Assignment Strategy (GAS), Estimated Cost per robot-goal (EC),
Single-Agent Planner (P ). Output: resulting plan (πmapm).

cost of navigating between two neighbor grid waypoints is 1

unit. MAPM also receives as input a MAP task, which consists

of a PDDL domain and problem files (Figure 2). The PDDL

problem file includes the list of agents. In addition a goal-

assignment strategy (GAS) needs to be chosen to define the

way goals are assigned to agents by the system.

The first step of the MAPM algorithm is to allocate the

feasible goals to the agents (line 1). This step uses the

information of estimated costs received from AMs. Goal

assignment phase (GA) returns as output (1) a subset of Φ′

agents, Φ′ = {φ1, . . . , φn}, that will be the only ones who

will plan to solve the problem; and (2) a new MAP task

M ′ = {Π1, . . . ,Πn}. As a result, a specific PDDL domain

and problem will be generated for each φ′i agent which only

includes the goals each agent has to achieve. If a goal is

unfeasible for all the Φ′ agents, MAPM will discard it from

the new MAP task M ′. In order to perform task allocation [5]

some strategy has to be determined or implemented, as the

aim is to improve the efficiency of the planning process

afterwards. Load-Balance strategy, defined in [6], assigns each

goal g ∈ G to the best agent φi ∈ Φ, but it does not assign

to an agent more goals than the ratio of total goals divided

by number of agents. The Load-Balance assignment strategy

is used when minimizing the maximum number of actions

per agent (equivalent to minimizing makespan). As a second

option, we also took the Best-Cost strategy also defined in [6],

which assigns each goal to the agent that can achieve it with

the least cost. The Best-Cost strategy is used when minimizing

the total number of actions over all robots (plan length).

After the GA phase, as in [4], each agent in φ′ builds its

plan individually (line 2). Then the agents’ plans are merged

by a simple concatenation of plans in one resulting plan (line

3). If the merged plan is valid, we parallelize the plan (line 5)

generated by the merging step. Parallelization is performed in

two steps: converting the input total-order plan into a partial-

order one by a similar algorithm to [7]; and parallelizing this

partial-order plan by ordering actions in the first time step that

satisfies all ordering constraints in the partial-order plan.

To set up MAPM, an off-the-shelf planner had to be chosen.

Our configuration of MAPM uses LAMA-UNIT-COST as the

planner P of the algorithm. LAMA-UNIT-COST corresponds to

the first search that LAMA performs, using greedy-best-first

with unit costs for actions [8]. The merged plan is validated

using VAL [9], from the International Planning Competition1.

C. Actuation Space

We briefly summarize here the process of building the

Actuation Space [3]. We assume there is an occupancy grid

map. In this image each pixel has a value with the probability

of the corresponding world position being occupied by an

obstacle. This occupancy grid map is first transformed into

a binary image using a fixed threshold.

We define G as the set with all pixel positions from the

input binary image. This input image (Environment Map Image

1http://icaps-conference.org/index.php/main/competitions
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in Figure 1) is represented by M, the set with the obstacle

pixel positions. We define the structuring element as an image

that represents the robot shape. Thus Ri is the set with pixel

positions from a circle with radius equal to the robot size. The

morphological dilation on the obstacle set M by Ri is:

M⊕Ri =
⋃

r∈Ri

Mr (1)

where Mr is the translation of M by vector r.

The visual output of applying this dilation operation to a

map of obstacles is the inflation of obstacles by the robot

size. The free configuration space, Cfree, is then defined as:

Cfreei = {p ∈ G | p /∈M⊕Ri} (2)

where G is the set with all the pixel positions. The free

configuration space represents the feasible robot positions.

In order to determine the Actuation Space instead, the

partial morphological closing operation is used. The partial

morphological closing was introduced in order to consider the

initial robot position when determining the Actuation Space.

In order to use the partial morphological closing, the algorithm

needs to find the navigable regions first. The set of navigable

regions from a starting robot point r0i is

Li(r
0
i ) = {p ∈ G | p connected to r0i ∧ p ∈ Cfreei } (3)

The navigable set Li(r
0
i ) is the set of points that are

connected to the initial position r0i through a path of adjacent

cells in the free configuration space.

Applying a second dilation operation to the navigable set

(subset of Cfree) instead of applying it to the free configuration

space, we obtain the partial morphological closing operation.

The Actuation Space is the dilation of the navigable space:

Ai(r
0
i ) = Li(r

0
i )⊕Ri (4)

In Figure 3 we show a simulated map with 2 robots with

different sizes, and the respective Actuation Spaces.

(a) Map & 2 Robots (b) Actuation Space 1 (c) Actuation Space 2

Figure 3. Simulated map and two heterogeneous robots with different sizes
in (a); colored regions in (b) and (c) represent actuation spaces for respective
robots, i.e. the points in the environment that each robot can actuate, depending
on their size and initial position shown in (a).

D. Actuation Map and Grid Downsampling

When converting the original map and the Actuation Space

to the PDDL description, it is possible to consider each indi-

vidual pixel as a waypoint in a grid with the size of the whole

image. However, that approach results in a high density of

points that makes the planning problem excessively complex.

We reduce the set of possible locations by downsampling the

grid of waypoints. The downsampling rate sr is set manually.

If the original pixel resolution is used, the resulting grid

of waypoints G′ contains all pixels and is equivalent to G,

otherwise it represents the grid after downsampling.

Using the Actuation Space it is possible to find the Es-

timated Cost (EC) list. For that purpose, we contribute the

following extension. We build the navigable space Li in an

iterative procedure, from the starting position r0i . In the first

iteration we have L0
i (r

0
i )← {r0i }, and then:

Lj
i (r

0
i ) = {p ∈ G | ∃q ∈ Lj−1

i (r0i ) : p neighbor of q

∧p ∈ Cfreei ∧ p �∈ La
i (r

0
i ) ∀a < j} (5)

When using this recursive rule to build the navigable space,

we guarantee that any point in the set Lj
i (r

0
i ) is exactly at

distance j from the initial position r0i . If we build the actuation

space sets with the intermediate navigable sets Lj
i (r

0
i ),

Aj
i (r

0
i ) = Lj

i (r
0
i )⊕Ri (6)

then the intermediate actuation set Aj
i (r

0
i ) represents the

points that can be actuated by the robot from positions whose

distance to r0i is j. The actuation space defined in the previous

section can also be alternatively defined as

Ai(r
0
i ) = {p ∈ G | ∃a : p ∈ Aa

i (r
0
i )} (7)

The Actuation Map is defined for g ∈ Ai(r
0
i ):

AMi(r
0
i , g) = min{j | g ∈ Aj

i (r
0
i )}+ 1 (8)

The Actuation Map AMi(r
0
i , g) represents, for each g ∈

Ai(r
0
i ), the minimum number of actions needed for the robot

to actuate the grid waypoint g if starting from the initial

position r0i , measured in the pixel-based grid G. In equation 8,

the minimum j∗ represents the minimum distance (number of

navigate actions) needed to travel from r0i to some point from

where g can be actuated. The added one in equation 8 accounts

for the actuate action needed to actuate g, after the j∗ navigate
actions to reach a place where the robot actuates g.

Finally, the Estimated Cost per Goal-Agent list EC is

EC = {〈g, φi, cost〉 | g ∈ G′ ∧ φi ∈ Φ

∧g ∈ Ai(r
0
i ) ∧ cost = ceil

(AMi(r
0
i , g)/sr

)} (9)

where sr is the downsampling rate. The division by sr trans-

forms the estimated cost of actions measured in the pixel-based

grid G, AMi(r
0
i , g), to the respective cost in the downsampled

grid of waypoints G′. The ceil function rounds the result to

the smallest integral that is not less than AMi(r
0
i , g)/sr.

III. EXPERIMENTS AND RESULTS

In this section we show some experiments that test the

impact of the pre-processing on the MAPM performance. We

have modeled three different scenarios that include up to

four agents with different sizes, and thus different actuation

capabilities. Planning results are shown using as metrics the

time in seconds, the length of the resulting plan and the

makespan. The makespan is the length of the parallel plan
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(number of execution steps, where several actions can be

executed at the same execution step). We designed three

different scenarios, shown in Figure 4, each one with two

levels of waypoint density (H, the higher, and L, the lower).

(a) Mutual Exclusive (450×220)

(b) Corridor
(500×200)

(c) Corridor
paths (500×200)

(d) Extremities (600×500)

Figure 4. Maps of the three scenarios used in the experiments. Grey regions
represent out-of-reach regions that can nevertheless contain goal waypoints,
which are unfeasible for all the robots. Robots are represented with blue circles
positioned in the region of their starting position. Solution for the Corridor
scenario is also presented, with the paths for the four robots.

Four different configurations of MAPM have been set up:

• MAPM Load-Balance (LB) with estimated-cost informa-

tion (EC). EC refers to the configuration that combines

Actuation Maps and MAP.

• MAPM Best-Cost (BC) with estimated-cost information

(EC), also combining Actuation Maps and MAP.

• MAPM LB, same as before but without EC information.

• MAPM BC same as before but without EC information.

Furthermore, the following state-of-the-art planners have

been chosen as a comparison baseline:

• ADP [10], a planner that automatically detects agents.

• LAMA [8], winner of IPC 2011.

• YAHSP [11], a state-of-the-art centralized planner.

The maximum time spent on the pre-processing for any

scenario was 170 milliseconds, for the Extremities problem

with 4 robots. We included the pre-processing times (to

generate the AMs) in the GA column of Table I, and in

the total time in Table III. Hardware used for running the

planner was IntelXeon 3,4GHz QuadCore 32GB RAM. AMs

were computed using a 2.5GHz DualCore 6GB RAM.

Tables I and II are shown to prove the remarkable impact

that information from Actuation Maps (AMs) has in combina-

tion with MAPM. Goal assignment (GA) times in Table I are

minimal in comparison with the ones from Table II when the

planner needs to compute the relaxed plans for every goal-

agent pair before starting to plan for the solution.

Total time results for each planner in each one of the six

problems are shown in table III. A maximum of two hours was

given to each planner to solve each scenario. YAHSP results

do not appear in the tables because it could not solve any of

the scenarios. Regarding total time, the fastest configuration is

MAPM-LB-EC if all total times are summed up. The impact of

combining information from actuation maps with MAP can be

easily appreciated by comparing MAPM-LB-EC and MAPM-LB.

Table I
TIME RESULTS IN SECONDS FOR MAPM LOAD-BALANCE CONFIGURATION

WITH ESTIMATED COST INFORMATION. TOTAL TIME, GOAL ASSIGNMENT,
INDIVIDUAL PLANNING AND PARALLELIZATION TIMES.

MAPM-LB-EC

Name TOTAL(s) GA Planning Parallel
CorridorH 33.58 0.64 24.37 8.57
CorridorL 6.18 0.26 4.62 1.30
ExtremH 602.68 3.06 428.28 171.34
ExtremL 58.32 0.92 40.93 16.47
MutExH 7.39 0.34 5.03 2.02
MutExL 1.39 0.12 1.04 0.23

Table II
TIME RESULTS IN SECONDS FOR MAPM LOAD-BALANCE CONFIGURATION

WITHOUT ESTIMATED COST INFORMATION. TOTAL TIME, GOAL

ASSIGNMENT, INDIVIDUAL PLANNING AND PARALLELIZATION TIMES.

MAPM-LB

TOTAL(s) GA Planning Parallel
CorridorH 1232.97 1204.20 20.88 7.89
CorridorL 128.78 123.59 4.10 1.09
ExtremH timeout
ExtremL 3870.00 3823.75 32.89 13.36
MutExH 903.65 896.82 4.81 2.02
MutExL 69.41 68.19 0.98 0.24

Table IV shows results regarding the plans’ length and

also results regarding makespan. As ADP does not return a

makespan metric, we have applied our parallelization algo-

rithm to transform its total ordered plans into partial order

plans so that we can fairly compare the results.

The best configuration overall regarding Plan Length

is MAPM-BC-EC (called M-BC-E in the table). Regarding

makespan in Table IV, the Load-Balancing strategy is better,

as expected. Moreover, MAPM-LB-EC (M-LB-E) configuration

is the best one for problems with higher density of waypoints,

while MAPM-LB (M-LB) proves to be better for reducing

makespan in low density problems. This can be explained by

the discretization errors from equation 9, which are greater

when the down sampling rate is bigger. These errors result in

slightly inaccurate cost estimates that change goal assignment.

IV. RELATED WORK

A MAP approach that als uses a pre-processing step

is the automated agent decomposition for multi-robot task

planning [12]. In that work the pre-processing step exploits

decompositions of the problem in domains with a lower level

of interaction, boosting the final performance. ADP [10] is also
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Table III
TOTAL TIME RESULTS IN SECONDS. MAPM WITH ESTIMATED-COST INFORMATION IN LOAD-BALANCE; MAPM WITHOUT ESTIMATED COST INFORMATION

IN LB; MAPM WITH ESTIMATED COST INFORMATION IN BEST-COST; MAPM WITHOUT ESTIMATED COST INFORMATION IN BC; ADP AND LAMA.

Total Time including Pre-Processing (s)
MAPM-LB-EC MAPM-LB MAPM-BC-EC MAPM-BC ADP LAMA

CorridorH 33.58 1232.97 41.53 2839.79 mem.limit timeout
CorridorL 6.18 128.78 9.07 135.58 104.47 5.75
ExtremH 602.68 timeout 1788.69 timeout mem.limit timeout
ExtremL 58.32 3870.00 112.03 3929 mem.limit timeout
MutExH 7.39 903.65 7.27 910.18 5.54 6.29
MutExL 1.39 69.41 1.38 72.24 0.84 1.12

Table IV
PLAN LENGTH AND MAKESPAN: MAPM WITH ESTIMATED-COST INFORMATION IN LOAD-BALANCE; MAPM WITHOUT ESTIMATED COST INFORMATION IN

LB; MAPM WITH ESTIMATED-COST IN BEST-COST; MAPM WITHOUT ESTIMATED COST INFORMATION IN BC; ADP AND LAMA.

Plan Length Makespan
M-LB-E M-LB M-BC-E M-BC ADP LAMA M-LB-E M-LB M-BC-E M-BC ADP LAMA

CorridorH 1289 1268 1226 1136 403 408 461 734
CorridorL 605 598 588 475 1403 470 219 189 303 458 1313 286
ExtremH 3428 3116 1453 1929
ExtremL 1490 1587 1365 1233 556 511 928 1140
MutExH 642 642 642 642 748 642 116 116 116 116 162 116
MutExL 277 277 277 277 278 277 59 59 59 59 60 59

related with that decomposition work. Our approach factorizes

the problem regarding goals and agents, creating independent

subtasks for each agent, but the domain is never changed.

The methodology that uses morphological operations in or-

der to build the Actuation Maps was previously introduced [3].

It has been shown that similar transformation can be used to

obtain Actuation Maps for any-shape robots as well [13]. Other

relevant multi-robot planning problem in robotics is inspection,

which searches for paths that can perceive a set of targets,

where neural network solutions have been proposed [14].

There are similar environments to our problem defined in

previous planning domains, like VisitAll and Rovers domain.

V. CONCLUSIONS AND FUTURE WORK

In this paper we showed how to combine information from

Actuation Maps with Multi-Agent Planning to solve a multi-

robot problem more efficiently. We used a pre-processing step

to determine feasibility of robot-goal pairs and to extract an

estimated cost, used later to avoid computing relaxed plans

during goal assignment. Total solving times were significantly

improved when pre-processing information was provided to

MAPM. As future work, we would like to extend the pre-

processing technique to other domains and robot models.
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