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On the Reliability Evaluation of Failure
Delayed Industrial Systems
Jose Faria*† and Americo Azevedo
This paper presents an analytical approach for the evaluation of multi-user safety critical systems presenting a failure delayed
behavior pattern. As a consequence of a failure event, the performance of these systems worsens progressively due to the
internal fault tolerance mechanisms or the complacency of the users regarding the temporary unavailability of the services.
A distinctive feature of the approach is the ability to handle stochastic models containing multiple processes with generalized
distributions. The approach is based on the determination of analytical expressions to measure reliability, for instance,
frequency and probability of failure states, which may be evaluated using general purpose mathematical tools. The paper
first reviews other well-established techniques employed in the assessment of non-Markovian systems, particularly those
based on stochastic Petri nets. The rationale of the new approach and its fundamental algorithms are presented together
with a set of illustrative examples which highlight the strengths of the approach, as well as its limitations. Copyright ©
2012 John Wiley & Sons, Ltd.
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1. Introduction

T
his paper presents a systematic approach to support the analysis and design of industrial engineering systems presenting a
failure delay behavior pattern, that is, systems whose performance worsens progressively as a consequence of a failure. As will
be extensively discussed, these systems contain multiple concurrent processes with generalized distributions that remain active

for several consecutive states and are not reinitialized each time a new state is entered. This is a behavioral pattern that corresponds to
the execution mechanism with a pre-emptive resume age policy described in1. Although there has been significant progress over the
past two decades, most of which based on stochastic Petri nets (SPN), such as those reported in 2 and3, the study of these systems
remains a largely open issue in reliability analysis. In fact, existing methods often impose restrictive assumptions on the structure
and behavior that limit their practical application to specific classes of systems. The approach presented here aims to further develop
this topic, and it may be considered a straightforward alternative to other well-established solutions used to analyze non-Markovian
systems, such as those presented in 4,5 and6, or those based on Monte Carlo simulation techniques, as reported in 7 and8.

The paper is organized as follows. A definition of failure delayed systems, as they are considered in the context of this paper, will be
presented in Section 2. It will also be shown that these systems present a number of structural and behavioral distinctive features,
namely the presence of non-exponential concurrent stochastic processes with similar time constants. In these circumstances, as
discussed in9, the reliability and performance indicators become highly sensitive to the shape of the stochastic distributions, and
therefore the use of non-Markovian techniques becomes mandatory.

Section 3 presents a review of the existing techniques for non-Markovian systems and discusses their shortcomings regarding the
evaluation of failure delayed systems. Then, the fundamental elements of the new approach are introduced in Section 4. In particular,
it will be discussed how the inherent features of failure delayed systems may be explored in order to derive a set of effective
evaluation algorithms devoted to this class of systems. The algorithm used to determine the frequency of the failure states will be
introduced first. Then, the algorithm for the probability of the failure states will be considered. For relatively small models, these
expressions for reliability and performance indices may be evaluated directly using general purpose mathematical tools. For larger
models, a dedicated tool based on symbolic calculation was developed. The presentation of this tool is beyond the scope of this
paper. However, a detailed discussion on its algorithms may be found in10.

In the final part of the paper, a set of complementary practical examples and numerical results are presented in order to illustrate
the practical application and usefulness of the approach. Finally, Sections 6 and 7 summarize the main contributions of the paper and
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its content. The application of the method to other engineering domains will also be addressed here. In particular, it will be discussed
how the approach can be extended to the analysis of complex business environments where a network of interacting activities and
resources provide business services to a number of heterogeneous users.
2. Failure delayed systems

In many industrial engineering systems, the users are complacent about a temporary unavailability of the service provided to them.
This means that, at first, the disturbances of a system failure are often negligible. However, if the failure persists, the system will enter
into successive degraded operation modes. The quality of service will then decay progressively until a successful repair action is
undertaken and the system restores its normal operation, or a catastrophic failure occurs.

Three systems presenting this kind of behavior and relating to very different engineering domains are represented in Figure 1. The
first example (Figure 1.a) concerns an electrical power system with an alternative power supply that feeds an industrial process; the
second example (Figure 1.b) relates to a manufacturing system with intermediate work-in-progress buffers between the cells; the third
example (Figure 1.c) looks at the distributed business information system of a large retail company. These systems are analyzed in
detail in 11,12 and13. For other examples of industrial failure delayed systems, see 14–16 or17.

In the three models, sup corresponds to the normal operating state of the system, while sfi corresponds to the failure states. The
failure, repair and propagation (or delay) processes are represented, respectively, by pli, pmi and pgi.

According to the model in Figure 1.a, after the main power system fails (process pl), the industrial process will be fed by an
alternative power supply for a time T1 (process pg1). If the duration of the failure is longer than T1, the industrial process will be halted,
but the control systems will continue to be supplied by an uninterruptible power supply (UPS) for a time T2 (process pg2). If the power
system restores its normal operation before T2, a warm restart of the industrial process will be possible (process pm1). If the autonomy
of the UPS is exceeded, a catastrophic failure state will be reached once the materials being processed will suffer irreversible damage,
causing a heavy loss (process pm2).

In the manufacturing system depicted in Figure 1.b, the cells and plant controllers receive their data from a plant data server. If this
server becomes unavailable (process pl), the plant will be able to continue producing because the cell and plant level production
plans are frozen for some time prior to the physical production (processes pgC and pgP). However, the plant will enter a sub-optimal
mode because it will not be possible to react to production events, such as new urgent orders. If an upstream cell halts its operation,
the downstream cells will continue to be fed by the intermediate work in process buffer (processes pgB). The consequences of the
failure will propagate downstream only when there is a shortage of products at the output of this buffer. If this production system
belongs to a just-in-time supply chain, the severity of the damages is likely to increase dramatically.

Finally, Figure 1.c shows the information system of a business company from the retail sector. End users execute intra and inter-site
transactions (which both depend on the availability of a number of remote data servers) and may tolerate a temporary unavailability
of the information services. However, this complacency is different regarding intra and inter-sites transactions, and regarding the
operations executed in each site (end consumers’ point of sales, or logistical support). This behavior is represented in the model by
two concurrent failure propagation processes, pg1 and pg2.
Figure 1. Examples of failure delayed systems
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These three examples show that a progressive decay of performance after a failure, caused by an internal temporal redundancy
mechanism, or by the complacency of the users regarding the temporary unavailability of the services provided to them, is a common
behavior pattern in engineering systems.

The analysis of these models shows that failure delayed systems (hereafter referred to as FDS) present a number of common
features that have a direct impact on their reliability and performance evaluation. Let us assume that S is a repairable failure delayed
system and M is its behavior model (Figure 2). In this case, the following assumptions regarding S and M will be considered in the
context of this paper:

• S provides services to multiple users (for instance, downstream manufacturing cells, electrical consumers or information systems
users) each of which presents its own complacency regarding the unavailability of the services of S.

• S has a normal operating state which is represented in M as sup.
• In sup, one or more failure processes are active. Each one of these processes placorresponds to a particular failure mode a.
• The execution of a failure process leads S from sup to one of the initial failure states where the disturbances for the users will
typically be negligible.

• In each failure state, several concurrent delay processes, pgi, may be active. Each one of them corresponds to the complacency of
a particular type of user regarding the failures of the system.

• The execution of a delay process leads the system to a delayed failure state, such as san with n⩾0, where the severity of the damage
will increase with n.

• In each initial or delayed failure state, a repair process pmj may be active. The execution of this process leads the system to the sup.
In other words, it is assumed that the repair is a regenerative process that completely restores the normal operating conditions
(the extension of the model to non-regenerative repair will be discussed in Section 6).

• Failure, delay and repair processes may any type of distribution, deterministic or stochastic.
• When a transition occurs, the other processes that were also active in the initial may be de-activated, reinitialized or remain active
(and keeping their firing time). Simultaneously, other repair or delay processes may be activated on the arrival at the new state.

These assumptions are summarized in the meta-model presented in Figure 3. This meta-model represents the generic elements
that compose the model M of a particular FDS. The model M of a particular system S will contain one state corresponding to a normal
operation, several (1. . .N) initial and delayed failure states and several transitions. Each transition links two states and is fired by the
execution of a process. A process represents a physical (for instance, failure or repair) or functional (such as error propagation)
mechanism whose execution causes the transition from a previous to a post state. The execution time of a process may be
deterministic or stochastic (exponential or non-exponential). Several processes may be simultaneously active in the same state, and
the same process may remain active in several states.
Figure 2. Failure delayed system models
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In the normal operating state, only failure processes will be active. In each failure state (either initial or delayed), several delay
processes and 0 or 1 repair processes may be active. A failure transition links the normal state to an initial failure state and the process
assigned to it is assumed to be exponential. A delay transition links two failure states and a repair transition links a failure state to s0.
The processes assigned to these transitions may have any type of distribution.

It is important to emphasize that, according to the previous assumptions, sup and the initial failure states will be regeneration points
because, once arrived at one of these states, the future evolution of the system does not depend on its history. On the contrary, the
delayed failure states do not have this property because non-exponential delay processes may remain active in several consecutive
states without being reinitialized. In these conditions, the model implements an execution mechanism, usually referred to as the
pre-emptive resume age policy.18 The regeneration time points of the underlying regenerative Markov process are the instants of arrival
at the normal operating states sup, and at the initial failure states (later, it will be shown that it is possible to free the restriction
regarding the regeneration of the stochastic process at the initial failure states).

It should also be noted that a fundamental difference between the FDS meta-model and the Petri nets models is the fact that the
stochastic distributions are assigned directly to the processes, not to the transitions. This highly simplifies system modeling when a
non-exponential process remains active for several consecutive states without being reinitialized (that is, pre-emptive resume policy)
as this is often the case with the FDS.
3. Review of existing methods

The device of stages is one of the most frequently used techniques for the evaluation of non-Markovian systems. This technique
makes it possible to model a large range of experimental probability density functions using a set of additional exponential processes
in a sequence or in parallel. For example, a log-normal distribution often found in repair processes may be represented by a combina-
tion of a series of states with two states in parallel, as shown in 19 and20. First introduced in21, it has been applied to the evaluation of
reliability in fault-tolerant computer systems,22 and to the analysis of reliability in electrical power systems.23 An extension of the
method has been proposed in 24 to make it possible to assign a memory policy – resampling, enabling and memory, as defined
in 3

– to any timed transition. One of the most important features of the method is the possibility of designing automated tools to
support its application, as presented in25. This tool uses Petri nets as the modeling tool and converts the reachability set of the net
into a continuous time Markov chain defined over an extended state space. Although this method is very flexible, it restricts the firing
times of the stochastic processes so that they have phase-type distributions.26 Consequently, the method presents a major limitation
when the systems under analysis contain deterministic or quasi-deterministic processes. This happens because the number n of addi-
tional states (or stages) required to approximate an experimental distribution rises quadratically with the ratio s /m, with s being the
standard deviation of the distribution, andm its mean. If the system contains several simultaneously active non-exponential processes
(as is often the case with failure degradable systems), there will be an ‘explosion’ of the number of states in the equivalent Markov
chain, as the stages of each process should be combined with those of the concurrent processes.

Over the past two decades, several evaluation techniques based on SPN modeling have been developed in order to support the
reliability analysis and the performance evaluation of complex systems. When SPN were first introduced,27 all the random variables
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 781–797
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associated with the transitions were assumed to be exponentially distributed, so that the evolution of a Petri net could be mapped
into a continuous Markov chain. Since then, and in order to broaden the field of application of SPN, several classes of Petri nets
incorporating non-exponential features in their definition have been proposed. This is the case of the deterministic and SPN defined
in28, in which a single deterministic transition may exist in each marking. Subsequently, it was observed in 29 that the underlying
marking process is a Markov regenerative process. This made it possible for the model to be extended in order to accommodate immediate
transitions, exponentially distributed timed transitions and generally distributed timed transitions. However, an important restriction is
maintained – that at least one generally distributed timed transition is enabled in each marking. Two evaluation approaches were then
developed: one based on the derivation of the time-dependent transition probability matrix in the Laplace transform,29 and the other
based on the supplementary variables method.30

The restriction of a single non-exponential process in each marking was subsequently removed by the class of regenerative SPN
introduced in 1, through a time discretization approach and an approximation of non-exponential firing times by means of the phase
type distribution. A tool implementing this technique is presented in31. Another approach is presented in.32 This approach
allows models with concurrently enabled generally distributed transitions to be analyzed using a discrete time approximation of
the stochastic behavior of the marking process. However, these two techniques may lead to an explosion of the state space. In order
to deal with the state space explosion, 33 presents an efficient algorithm to generate and store the reachability graph based on a
symbolical representation of the macro states.

In spite of this progress, several restrictions still apply to the analytical evaluation of non-Markov systems, and no general solution is
available. In fact, each extension of the Petri net model normally represents a particular compromise between modeling power and
numerical tractability, designed to fit the requirements of a particular class of systems or studies.

This is also the case for the approach that will be presented below once it looks at the common behavioral and structural patterns
of FDS systems in order to provide a fully automated procedure that closely fits their characteristics and requirements.
4. New approach fundamentals

This section introduces the mathematical foundations to determine the two fundamental performance measures for repairable
systems: the frequencies of arrival and the probabilities of the states of the non-Markovian model M. The analytical expressions for
the frequencies will be considered first in chapter 4.1. Then, the state probability expressions will be addressed in chapter 4.2. The
expressions are obtained using a systematic procedure that takes as input the structure of the model (that is, the model’s states
and transitions as specified in the FDS meta-model) and the distributions of the additional stochastic processes.

The procedure is based on the notion of state trajectory: immediately after a failure event occurs, the system stays at one of the
initial failure states. Then, it returns to the normal operating state following one of the several possible trajectories, as shown in
Figure 4. A trajectory is an ordered set of failure states {sa1,s

a
2, s

a
3, . . . s

a
n} that starts at one of the regenerative initial failure states sa0.
Figure 4. Alternative trajectories
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For each pair of consecutive states, sak-1 and sak , there is a delay process pgi in M whose execution causes the transition from sak-1to sak .
For simple models, the trajectories may be determined by a visual inspection of the graph. For larger models, an automatic search
algorithm may be useful. The discussion of such algorithms is out of the scope of this paper. However, it can be easily derived from
the meta-model in Figure 2.

To present the procedure, the following notation will be adopted:

• ΛM and PM: two vectors such ΛM(s) and PM(s) contain the frequency and the probability of state s, respectively;
• sup: the normal operating state,
• pla: the failure process corresponding to failure mode a;
• sa0: the initial failure state corresponding to failure mode a;
• pgi and pmj: the processes corresponding to the propagation delay i and the repair action j, respectively;
• san: a delayed failure state subsequent to sa0 (n≥1);
• fp(t): the probability density function of process p.
4.1. Failure states frequency

Suppose that san is a failure state whose frequency is to be determined and thatΨ a
n is the set of trajectories starting at sa0 and ending at

san. The frequency of the failure state Λ san
� �

results from the sum of the frequencies of each trajectory c of Ψ a
n :

Λ san
� � ¼ X

c2Ψ a
n

Λ cð Þ (1)

The frequency of each trajectory c comes from the product of (i) the frequency of sa0 (note that accordingly to the meta-model of
Figure 2, all the trajectories of Ψ a

n have the same initial state) and (ii) the probability that, once arrived at sa0, the system follows c:

Λ san
� � ¼ Λ sa0

� � X
c2Ψ a

n

P cð Þ (2)

The determination of P(c)will be addressed hereafter, whereas that of Λ sa0
� �

will be addressed in chapter 4.3 because it requires
formulae that will be introduced only in 4.2.

4.1.1. Probability of a trajectory. The probability of a trajectory comes from the product of the probabilities of each one of its
transitions. Consider the following trajectory as an example:

c ¼ sa0; s
a
a; s

a
b; . . . s

a
r ; s

a
s

� �

Its probability will be:

P cð Þ ¼ P sa0 ! saa
� �� P saa ! sab

� �� . . .� P sar ! sas
� �

For the sake of simplicity of the expressions, it will be considered that, within each trajectory, the states are renumbered according
to their order, as exemplified in Figure 5 for the three trajectories considered above. As it was assumed that the delay and repair
Figure 5. Renumbering of the states within each trajectory
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processes may present non-exponential distributions and that these processes may remain active for several failure delayed states
without being reinitialized, the probability of a transition depends on the instants of the previous transitions, that is, the probability
of the transition si ! si+1 depends on the instants of the transitions s0 ! s1, . . . and si�1 ! si.

Therefore, if the random variable ti represents the time elapsed between the arrival at the initial failure states0 and the arrival at the
ith state si, the probability of a trajectory leading to the nth state,sn, may be expressed as:

P cð Þ¼ P s0 ! s1ð Þ � Pt1 s1 ! s2ð Þ � ::� Pt1 t2 ::tn-1 sn-1 ! snð Þ
or:

P cð Þ ¼
Yn
i¼1

Pt1 ::ti-1 si-1 ! sið Þ (3)

where Pt1 ::ti-1 si-1 ! sið Þ represents the conditional probability of transition from si�1 to si given that the previous transitions of c have
occurred at t1..ti�1. These conditional probabilities may, in turn, be evaluated according to the following expression:

Pt1; t2 ::ti-1 si-1 ! sið Þ ¼
Z 1

0
T t1ð Þ

Z 1

t1

T t2ð Þ ::
Z 1

ti�1

T tið Þ dti ::dt2dt1 (4)

where T(ti)is the density function of the random variable ti. Time ti depends on the set of stochastic processes that are active in state
si�1. If Ωn is the set of processes that are active in a state sk, and pi is the process that causes the transition from si�1 to si within the
trajectory (Figure 6), then the expression for T(ti) comes from the product of the density function of this process, fpi tið Þ, and from the
probability that the other processes p belonging to set Ωi�1 do not occur before ti (p2Ωi - 1and p 6¼ pi).

If p is one of the processes of Ωi�1 whose density function is fp(t) and became active at a previous instant t0p , then the density

function for the execution time of this process (knowing that it became active at t0p and it is still active at ti�1) is:

f
0
p tð Þ ¼

fp t � t0p

� �

1�
R ti�1

t0p
fp t� t0p

� �
dt

; t > ti�1

where t is an auxiliary variable with local scope. Therefore, it comes for T(ti):

T tið Þ ¼
fpi ti � t0pi

� �

1� R ti�1

t0pi
fpi t� t0pi

� �
dt

Y
p 2 Ωi

p 6¼ pi

R1
ti

fp t
0 � t0p

� �

1� R ti�1

t0p
fp t� t0p

� �
dtÞ

dt
0

0
BBBB@

1
CCCCA (5)

where:

• t0p is the instant at which process p is activated. This will always coincide with one of the random variables tj, with j< i �1;

•
fpi ti�t0pi

� �
1�
R ti�1

t0pi

fpi t�t0pið Þ dtrepresents the density function of the instant of transition from si�1 to si due to pi;

•

R1
ti

fp t’�t0pð Þ
1�
R ti�1

t0p
fp t�t0pð Þ dtÞdt

0
represents the probability that another process p of Ωi�1 does not occur before pi.

Now, combining (3), (4) and (5), the expression for the probability of the trajectory c may be obtained from:
Figure 6. Arrival at the ith state of the trajectory
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P cð Þ ¼
Z 1

0
T t1ð Þ

Z 1

t1

T t2ð Þ ::
Z 1

tn�1
T tnð Þdtn ::dt2dt1 (6)

If a process p stays active from state sk (that is, t0p= tk) to state sm, its density function will take part in the expressions T(tj) for

k ≤ j ≤m. Therefore, the contribution of p to P(c) will be:

R1
tkþ1

fp t
0 � tk

� �
dt

0

1
�

R1
tkþ2

fp t
0 � tk

� �
dt

0

1� R tkþ1

tk
fp t� tkð Þdt ::

R1
tmþ1

fp t� tkð Þdt0

1� R tm
tk

fp t� tkð Þdt

Since
R1
tlþ1

fp t� tkð Þdt equals (1� R tlþ1

tl
fp t� tkð Þdt), the global contribution of p to T(tk) will be equivalent to

R1
tmþ1

fp t� tkð Þdt.
This means that if a process is active from sk to sm, it is possible to consider the contribution of p to T(ti) only at state sm. This fact

leads to a significant simplification of the density functions:

T tið Þ ¼ fpi ti � t0pi

� � Y
p 2 Ωi�1

p=2Ωi

p 6¼ pi

Z 1

ti

fp t� t0p

� �
dt

0
BBBBBBBB@

1
CCCCCCCCA

(7)

The illustrative example presented below will help clarify this step.

4.1.1. Illustrative example: state frequency. To illustrate the practical application of the procedure presented above, consider state s14 in
the model of Figure 7.a.

Three trajectories lead to this state:

Ψ1 ¼ s10 ! s11 ! s14
� �

;Ψ2 ¼ s10 ! s12 ! s13 ! s14
� �

and Ψ3 ¼ s10 ! s11 ! s13 ! s14
� �

For the first trajectory c1 (Figure 7.b), the probabilities of the two transitions are:

P s10 ! s11
� � ¼

Z 1

0
pg1 t1ð Þ

Z 1

t1

pg2 tð Þdt dt1

P s11 ! s14
� � ¼

Z 1

t1

pg3 t2ð Þ
Z 1

t2

pg2 tð Þdt
1� R t1

0 pg2 tð Þdt

Z 1

t2

pm t� t1ð Þdt dt2

Thus, the probability of the trajectory is:
Figure 7. Illustrative example
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P Ψ1� � ¼
Z 1

0
pg1 t1ð Þ

Z 1

t1

pg3 t2ð Þ
Z 1

t2

pg2 tð Þdt
Z 1

t2

pm t� t1ð Þdt dt2dt1

The corresponding expressions for the second trajectory (Figure 7.c) are:

P s10 ! s12
� � ¼

Z 1

0
pg1 t1ð Þ

Z 1

t1

pg2 tð Þdt dt1

P s12 ! s13
� � ¼

Z 1

t1

pg2 t2ð Þ
1� R t1

0 pg2 tð Þdt

Z 1

t2

pg3 t� t1ð Þdt
Z 1

t2

pm t� t1ð Þdt dt2

P s13 ! s14
� � ¼

Z 1

t2

pg3 t3 � t1ð Þ
1� R t2

t1
pg3 t� t1ð Þdt

Z 1

t3

pm t
0 � t1

� �
dt

0

1� R t2
t1
pm t� t1ð Þdt dt3

P Ψ2
� � ¼

Z 1

0
pg1 t1ð Þ

Z 1

t1

pg2 t2ð Þ
Z 1

t2

pg3 t3 � t1ð Þdt
Z 1

t3

pm t� t1ð Þdt dt3dt2dt1

Similarly, for the third trajectory (figure 7.d):

P Ψ3� � ¼
Z 1

0
pg2 t1ð Þ

Z 1

t1
pg1 t2ð Þ

Z 1

t2

pg3 t3 � t1ð Þdt
Z
t1

1
pm t� t2ð Þdt dt3dt2dt1

4.2. Failure state probability

In this chapter, the procedure introduced in 4.1 will be extended in order to address the probability of the failure states. As before, let
us assume that san is a failure state of a model M,Ψa

n is the set of trajectories leading to san and P(c) is the probability of the trajectory c.
In these conditions, the probability of san may be obtained from:

P san
� � ¼ Λ sa0

� � X
c2Ψ a

n

P cð Þ ��tn;a (8)

where the new term
�
tn;a represents the mean sojourn time of san within c, that is, the time elapsed between the arrival at san and the

departure from this state when the system follows trajectory c.
If p is a process of Ωn, the mean sojourn time in state san when the transition to sanþ1 is caused by p results from the product of (i) the

mean execution time of p and (ii) the probability that the other processes of Ωn do not occur before p. This is represented by:

Z 1

tn

tnþ1 � tnð Þ fp tnþ1 � t0p
� � Y

p
0 2 Ωn

p
0 6¼ p

Z 1

tnþ1

fp0 t
0 � t0p0

� �
dt

0

0
BBBBB@

1
CCCCCA
dtnþ1

As the output transition from state san may be caused by any of the processes belonging to Ωn, the total sojourn time in this state
may be obtained from:

�
tn;a ¼

X
p2Ωn

Z 1

tn

tnþ1 � tnð Þ fp tnþ1 � t0p

� � Y
p

0 2 Ωn

p
0 6¼ p

Z 1

tnþ1

fp0 t� t0p0
� �

dt

0
BBBBB@

1
CCCCCA
dtnþ1 (9)

The expression of
�
tn;a depends on the instants of the previous transitions of c (due to the instants of activation t0p and t0p’ of the

processes belonging to Ωn. Therefore, this expression should be combined with the probability of c (6), yielding:
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P san
� � ¼ Λ sa0

� � X
c2Ψ a

n

Z 1

0
T t1ð Þ . . .

Z 1

tn�1

T tnð Þ�

�
X
p2Ωn

Z 1

tn

tnþ1 � tnð Þfp tnþ1 � t0p

� � Y
p

0 2 Ωn

p
0 6¼ p

Z 1

tnþ1

fp0 t� t0p0
� �

dt

0
BBBBB@

1
CCCCCA
dtnþ1

2
666664

3
777775
dtn�1 ::dt1 (10)

The expressions for the state probabilities (as the previous expressions for the state frequencies) depend on the frequency of arrival
at the initial failure state,Λ sa0

� �
, which will be addressed in chapter 4.3, after the following illustrative example.

4.2.1. Illustrative example: state probability. For the three trajectories considered before (Figure 7), the mean time that the system will
remain in state s5 is:

�
tc4;1 ¼

Z 1

t2

t3 � t2ð Þ pm t3 � t1ð Þ
1� R t2

t1
pm t� t1ð Þdt dt3

�
tc4;2 ¼

Z 1

t3

t4 � t3ð Þ pm t4 � t2ð Þ
1� R t3

t2
pm t� t2ð Þdt dt4

�
tc4;3 ¼

Z 1

t3

t4 � t3ð Þ pm t4 � t1ð Þ
1� R t3

t1
pm t� t1ð Þdt dt4

The combination of these expressions with those regarding the probability of the trajectories presented in 4.1.2 yields:

P c1
� ���tc4;1 ¼

Z 1

0
pg1 t1ð Þ

Z 1

t1
pg3 t2ð Þ

Z 1

t2

pg2 tð Þdt
Z 1

t2

t3 � t2ð Þpm t3 � t1ð Þ dt3 dt2dt1

P c2
� ���tc4;2 ¼

Z 1

0
pg1 t1ð Þ

Z 1

t1

pg2 t2ð Þ
Z 1

t2

pg3 t3 � t1ð Þdt
Z 1

t3

t4 � t3ð Þpm t4 � t2ð Þdt4dt3dt2dt1

P c3
� ���tc4;3 ¼

Z 1

0
pg2 t1ð Þ

Z 1

t1

pg1 tð Þ
Z 1

t2

pg3 t3 � t1ð Þdt
Z 1

t3

t4 � t3ð Þpm t4 � t1ð Þdt4dt3dt2dt1

As a final example, the determination of the probability of state s11 should be considered in which several processes are active. The
probability of the single transition that leads to this state is:

P cð Þ ¼
Z 1

0
pg1 t1ð Þ

Z 1

t1

pg2 tð Þdt dt1

The mean time spent in the state for the three output processes, pg2, pg3 and pm, are:

for pg2 :

Z 1

t1

t2 � t1ð Þ pg2 t2ð Þ
1� R t1

0 pg2 tð Þdt

Z 1

t2

pg3 t� t1ð Þdt
Z 1

t2

pm t� t1ð Þdt dt2

for pg3 :

Z 1

t1

t2 � t1ð Þpg3 t2 � t1ð Þ
Z 1

t2

pg2 t
0� �
dt

0

1� R t1
0 pg2 tð Þdt

Z 1

t2

pm t� t1ð Þdt dt2

for pm :

Z 1

t1

t2 � t1ð Þpm t2 � t1ð Þ
Z 1

t2

pg2 t
0� �
dt

0

1� R t1
0 pg2 tð Þdt

Z 1

t2

pg3 t� t1ð Þdt dt2

The combination of these expressions yields:

P cð Þ �
�
tc1;1 ¼

R1
0 pg1 t1ð Þ½R1

t1
t2 � t1ð Þpg2 t2ð Þ R1

t2 pg3 t� t1ð Þdt R1
t2 pm t� t1ð Þdt dt2þ

þ R1
t1

t2 � t1ð Þpg3 t2 � t1ð Þ R1
t2

pg2 tð Þdt R1
t2

pm t� t1ð Þdt dt2 þ
þ R1

t1
t2 � t1ð Þpm t2 � t1ð Þ R1

t2
pg2 tð Þdt R1

t2
pg3 t� t1ð Þdt dt2� dt1

4.3. Initial failure state frequencies

Depending on the distributions of the failure and the repair processes, four situations regarding the determination of frequencies for
the initial failure states have to be considered:
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• exponential failure processes and a common repair process
• exponential failure processes and several repair processes
• non-exponential failure processes and a common repair process
• non-exponential failure processes and several repair processes

Hereafter, only the situations corresponding to exponential failure processes, which are the most common ones, will be considered.
The analysis of the other two situations is addressed in annex.

4.2.1. Exponential failure processes and common repair process. This is the simplest and most common situation found in practical
applications regarding industrial FDS: the failure processes present exponential distributions; the repair processes are enabled
immediately after the occurrence of the failures; and they remain active until the system re-enters the normal operating state sup.

In this case, the set of failure states corresponding to a particular failure mode may be grouped into a single macro state because all
of them share the same repair process (figure 8). The mean sojourn time in the macro state corresponding to failure mode a is:

�
tS;a ¼

Z 1

0
t fma tð Þ dt

where fma tð Þ is the density function of the repair process corresponding to failure mode a. Once the failure rates la are constant and
the state probabilities verify:

P sup
� �þX

s2FM
P sð Þ ¼ 1

where FM is the set of failure states of M, the probability of the normal operating state may be obtained from:

P sup
� � ¼ 1

1þP
a

la
R 1
0 t fma tð Þdt (12)

Now, the frequency of the initial failure state corresponding to a particular failure mode a may be readily obtained from:

Λ sa0
� � ¼ laP sup

� �
(13)

4.2.2. Exponential failure processes and several repair processes. Figure 9 provides an example of a model where the set of states
corresponding to the same failure mode present different repair processes: in s0, there is no active repair process; after s1 is achieved,
the repair process pm1 is activated; if the catastrophic failure state s4 is achieved, a different repair process pm2 has to be performed in
order to restore the normal operation of the system. In this situation, it is no longer possible to consider the mean sojourn time in the
macro states as before. Instead, the sojourn time in each failure state should be considered. According to (8), the probability of a
failure state s may be obtained from:

P sð Þ ¼ P sup
� �

l
X
c2Ψ s

P cð Þ �
�
tcs (14)

where l is the failure process corresponding to the failure mode that leads to s. Therefore, the state probability may be obtained from
the following set of equations:
Figure 8. Macro-failure states
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Figure 9. Several repair processes
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P sup
� �þX

s2FM
P sð Þ ¼ 1 (15)

P sð Þ ¼ P sup
� �

l
X
c2Ψs

P cð Þ ��tcs

4.3. Evaluating reliability in mission systems

The expressions obtained in the previous chapters are related to the steady-state values of the frequency and probability of the failure
states. Here, the evaluation of the probability of arrival, at a particular failure state within a specified time frame, will be addressed. This
is particularly useful in the context of mission systems, which are expected to perform a function for a limited period of time. For these
systems, the fundamental reliability measure is the probability of arrival at a catastrophic failure state s before a specified period of

time Δ has elapsed since the beginning of the mission, ΛT
M s;Δð Þ.

To obtain the analytical expressions for this reliability measure, two main adjustments to the procedures presented above are
required: the transitions from the regenerative state sup to the initial failure states should be included in the trajectories; and the upper
limit of the integrals should be bounded to Δ. Let us suppose that san is a catastrophic failure state subsequent to failure mode a, and
Ψa

n denotes the set of trajectories that lead from sup to san. Then, the probability P(san,Δ) of arrival at s
a
n before Δ is:

P san;Δ
� � ¼ X

c2Ψ a
n

P c; Δð Þ (16)

where the probability of arriving at san at t<Δ following trajectory c, i.e. P(c,Δ) may be directly obtained from a set of expressions
similar to those of chapter 4.1, but now the upper integration limits are bounded to Δ:

P c;Δð Þ ¼
Z Δ

0
T t1ð Þ

Z Δ

t1

T t2ð Þ ::
Z Δ

tn�1
T tnð Þdtn ::dt2 dt1 (17)

T tið Þ ¼ fpi ti - t
0
pi

� � Y
p 2 Ωi�1

p=2Ωi

p 6¼ pi

Z 1

ti

fp t� t0p

� �
dt

0
BBBBBBBB@

1
CCCCCCCCA

(18)

Now, suppose that FC is the set of catastrophic failure states in a non-repairable mission system S. The reliability of S for a mission
with duration Δ may be obtained from:
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R Δð Þ ¼ 1�
X
s2FC

X
c2cs

P cS
;Δ

� �
(19)
5. Application example

This section presents several results regarding the evaluation of the model represented in Figure 10. It is assumed that s4 is a
catastrophic failure state and that its probability and frequency are to be evaluated. The analytical expressions for these two measures
have already been introduced in subchapters 4.1.2 and 4.2.1.

Two scenarios will be considered here for illustrative purposes:

• all the processes present exponential distributions (scenario 1)
• the repair and delay processes present third-order Erlang distributions (scenario 2)

For the sake of simplicity, it will also be assumed that the three delay processes are identical and that their mean
�
mpg is 3 h. For the

mean of the repair processes, several values will be considered ranging from
�
mpm/2 to 4

�
mpg . For the failure rate, a typical value of

10�3 h-1 is assumed.
Figures 11.a and 11.b represent the evolution of the probability and of the frequency of the catastrophic failure state with the

ratio r =
�
mpm/
�
mpg, for the two scenarios.
Figure 10. Application example
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Figure 11. Numerical results
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Figure 12 provides another important result. It shows the error that will be introduced in the evaluation of a system presenting
the non-Markovian behavior corresponding to scenario 2, using the Markovian model of scenario 1 (frequent in reliability analyses).
The error e in a reliability measurement R is calculated from:

eR¼ R1 - R2
R2

where R1 and R2 are the values corresponding to the two scenarios. These results reinforce the idea that when a model contains
concurrent processes with non-exponential distributions, the use of non-Markovian techniques is mandatory. In fact, even with this
simple system, the error may be higher than 1000%.
6. Discusson

The analysis of systems with a non-Markovian behavior is an intensely discussed problem, and, in recent years, several methods have
been developed targeted at more and more restricted classes of stochastic models and seeking to improve the performance of the
algorithms and the computational power required.

The paper has presented an approach for the evaluation of reliability and performance in systems containing a Markov regenera-
tive state (corresponding to a normal operation) and multiple concurrent processes with generalized distributions. The approach is
mainly targeted at the evaluation of industrial engineering systems which, as discussed in Section 2, typically contain a large number
of components and provide services to multiple users. As the users normally tolerate a temporary unavailability of services, these
systems will present a failure delayed behavior pattern.

A well-established analytical solution for the transient and steady-state evaluation of regenerative Markov systems is described in 1.
This solution allows immediate, exponentially distributed and generally distributed timed transitions to be considered. However, all
the non-exponential processes should be enabled at the same instant. As it has been shown, the approach presented here does
not impose this important restriction.

Other approaches to the evaluation of non-Markovian systems require the use of additional variables, whose number increases
quickly when the model contains several concurrent processes with narrow hyper-exponential distributions – deterministic or
quasi-deterministic processes –, as is the case of the device of stages.21 In these conditions, the approach presented here may offer
a more straightforward solution. In fact, the analytical expressions for the relevant reliability measurements may be obtained using a
systematic procedure taken directly from the structure of the model and the distributions of the stochastic processes. No auxiliary
variables are required, and the expressions may be evaluated using general purpose mathematical tools.

Another important characteristic of the new approach is the fact that the analytical expressions for the reliability measurements are
insensitive to the actual shape of the distributions of the stochastic processes. Therefore, in the evaluation of systems containing
deterministic or quasi-deterministic processes, this approach may offer a more effective solution.

The paper has primarily focused on the steady-state evaluation (probability and frequency of the failure states) of ergodic
repairable systems. However, as it was shown in chapter 4.4, the approach may be extended in order to address the evaluation of
reliability in transient conditions, as required in the analysis of mission-oriented systems.

In the paper, it was also assumed that the failure and the repair processes affect the global state of the system as a whole. In fact, it
was implicit in the meta-model of Figure 2 that (i) the execution of any one of the repair processes lead the system to the regenerative
state sup, (ii) the failure processes are active solely in sup and (iii) each failure process corresponds to an exclusive failure mode.
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However, the approach can also be extended in order to address the evaluation of multi-component systems with partial failure
and repair processes, as is the case of redundant structures. Assessing these systems can be difficult due to the fact that the set of
failure states do not form an acyclic graph. As a consequence, the same failure state may be visited several times between the instant
when a failure occurs, before the system returns to the regenerative state sup, so that the number of states within a trajectory is no
longer bounded. A possible approach to overcome this difficulty consists of replacing the state-diagram with a state-tree, so that
each passage in a non-regenerative state is considered a different state within the trajectory. If it can be assumed that the mean-
time-to-failure is much longer than the mean-time-to-repair (as is usually the case), the probabilities of the additional states will
decrease quickly. Therefore, for any arbitrary small value of the error tolerated in the evaluation, it will always be possible to truncate
the tree and limit the number of states in each trajectory.

The material presented in the paper is mainly focused on industrial engineering systems, but a similar approach may also be
applied to other classes of systems. In particular, complex business environments are now being studied in which a network of
interacting activities and resources provides business services to a number of heterogeneous users. In normal operating conditions,
each activity operates at an expected performance level. However, due to failures or other disturbing events such as demand
fluctuations, the performance level of one or more activities may decay, disturbing the downstream activities and the services
provided to the users.

The propagation of failures throughout the activity network will follow two main patterns: a logistical patter, which is the horizontal
propagation between activities linked by a producer/consumer relationship, and a management pattern, which is a vertical
propagation between operational and supervision activities. These propagation processes will normally involve propagation delays,
and therefore the behavior of these activity networks will also follow a failure delayed pattern. The extension of the algorithms
presented in the paper is now being investigated in order to cope with this new application domain.
7. Conclusion

The context, aims and organization of this paper were presented in Section 1. In the first part of Section 2, the concept of failure
delayed system was introduced, and three examples of this class of systems for different engineering domains were discussed. In
the second part of this section, the meta-model specifying the structure of the FDS models was discussed.

In Section 3, the existing techniques to assess non-Markovian systems were reviewed, along with their shortcomings. Then, the
fundamentals of the new approach were introduced in Section 4. Illustrative examples were provided for the evaluation of the failure
state probabilities and frequencies. In the final part of this section, the assessment of mission critical systems was also discussed.

Section 5 presents some numerical results that reinforce the idea that the usual assumption in reliability analyses, according to
which all the stochastic processes are exponentially distributed, leads to very significant calculation errors in the case of failure
delayed systems. Therefore, the use of non-Markovian techniques becomes mandatory.

Finally, Section 6 discusses the strengths and weaknesses of the approach presented in the paper and shows how it can be
extended to multi-component systems.
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Annex Initial states frequency for non-exponential failures

In chapter 4.3, the procedure to determine the frequencies of the initial failure states was discussed considering exponential failure
processes. This annex presents the procedures for the non-exponential failure processes. As before, two situations will be considered:
a single repair process common to all the states below each failure process, and different repair processes for each state.
A1. Non-exponential failure processes and common repair process

In this situation, the failure states may be grouped into macro states, as in 4.3.1. However, the frequencies of the initial failure
states cannot be obtained directly from (13) because the failure rates are not constant. Therefore, a different approach, based on

the frequency and on the sojourn time of state sup, Λ(sup) and
�
tsup , will be adopted. The probability of sup may be obtained from:

P sup
� � ¼ Λ sup

� ��
tsup

If Ωup is the set of failure processes that are active in sup and fpl(t) is the non-exponential density function of the failure
process pl (pl 2 Ωup), then the probability of a failure occurring at an instant t due to pl is:

fpl tð Þ
Y

pl
0 2 Ωup

pl
0 6¼ pl

f
pl

0 tð Þdt (A:1)

Therefore, the mean sojourn time in sup when the set of failure processes is considered may then be obtained from:

�
tsup ¼

X
pl2Ωup

Z 1

0
t fpl tð Þ

Y
pl

0 2 Ωup

pl
0 6¼ pl

f
pl

0 tð Þ dt (A:2)

The frequency of arrival at the macro state Sa results from the product of Λ(sup) and the probability of transition from sup to sa0:

Λ sa0
� � ¼ Λ sup

� �
P sup ! sa0
� �

(A:3)

If pla is the failure process that causes this transition, then:
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Λ sa0
� � ¼ Λ sup

� � Z 1

0
fpla tð Þ

Y
pl

0 2 Ωup

pl
0 6¼ pla

Z 1

t
fpl0 t

0
� �

dt
0
dt (A:4)

The probability of each macro state may be obtained from the product of its frequency and the mean sojourn time, which is:

P Sa0
� � ¼ Λ sa0

� � Z 1

0
t fma tð Þdt (A:5)

The combination of (1) and (4) allows the frequency of arrival to sup to be obtained from:

Λ sup
� � ¼ 1

�
tsup þ

P
pla2Ωup

R1
0 fpla tð Þ

Q
pl

02Ωup

pl
0 6¼ pla

R1
t f

pl
0 t0ð Þdt0 dt

0
BBBBB@

1
CCCCCA

R1
0 t fpma tð Þdt

(A:6)

Once Λ(sup ) is known, the frequencies of arrival at the initial failure states may then be readily evaluated using expression (13).
A2. Non-exponential failure processes and several repair process

In this case, the set of equations considered in chapter 4.3.2 may also be employed but, now, P(sup) has to be replaced by

Λ sup
� ��

tsup :

Λ sup
� ��

tsup þ
X
s2FS

P sð Þ ¼ 1 (A:7)

P sð Þ ¼ Λ sup
� �

P sup ! sa0
� � X

c2Ψs

P cð Þ�tcs ; for s 2 FM

The combination of these two expressions makes it possible to obtain Λ(sup ):

Λ sup
� � ¼ 1

�
tsup

P
s2FM

P
c2Ψs

P sup ! sa0
� �

P cð Þ
�
tcs

(A:8)

The frequencies of arrival at the initial failure states may be obtained from expression (2), once Λ(sup) is known.
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