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Abstract Compositional data are considered as data where relative contribu-
tions of parts on a whole, conveyed by (log-)ratios between them, are essential
for the analysis. In Symbolic Data Analysis (SDA), we are in the framework
of interval data when elements are characterized by variables whose values are
intervals on IR representing inherent variability. In this paper, we address the
special problem of the analysis of interval compositions, i.e., when the interval
data are obtained by the aggregation of compositions. It is assumed that the
interval information is represented by the respective midpoints and ranges,
and both sources of information are considered as compositions. In this con-
text, we introduce the representation of interval data as three-way data. In
the framework of the log-ratio approach from compositional data analysis, it
is outlined how interval compositions can be treated in an exploratory con-
text. The goal of the analysis is to represent the compositions by coordinates
which are interpretable in terms of the original compositional parts. This is
achieved by summarizing all relative information (logratios) about each part
into one coordinate from the coordinate system. Based on an example from
the European Union Statistics on Income and Living Conditions (EU-SILC),
several possibilities for an exploratory data analysis approach for interval com-
positions are outlined and investigated.
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1 Introduction

It is often the case that analysts have huge sets of data, recorded in very large
databases, but that the elements of interest are not the individual records
but rather some second-level entities. For instance, in a database of individual
expenses in different items, we are surely more interested in describing the
general behavior of a person (or some pre-defined class or group of persons)
rather than each of the expenses itself. The analysis then requires that the data
for each person (or group) be somehow aggregated to obtain the information
of interest. However, the observed variability for each person or within each
group, which cannot be kept by summary statistics, should not be disregarded,
so that data can no longer be properly described by the usual numerical and
categorical variables without an unacceptable loss of information. Symbolic
Data Analysis (henceforth SDA) (Billard and Diday, 2003; Bock and Diday,
2000; Diday and Noirhomme-Fraiture, 2008) provides a framework where the
variability observed may effectively be considered in the data representation,
and methods developed that take it into account. To describe groups of in-
dividuals or concepts, new variable types have been introduced, which may
now assume other forms of realizations, to take into account the data intrin-
sic variability, by assuming multiple, possibly weighted, values for each case
(see also Noirhomme-Fraiture and Brito, 2011). Let S = {s1, . . . , sn} be the
set of entities under analysis - the considered groups or concepts - which are
now the statistical units, and Yj , j = 1, . . . , D, the variables describing them.
Then each si ∈ S is represented by a symbolic description di = (di1, . . . , diD)
where dij = Yj(si) is a (finite) set of values or categories, an interval, or a
distribution over a given set of sub-intervals or categories.

1.1 Interval compositional variables

One case of particular interest is when individual (first-level) numerical data
are aggregated in the form of intervals, and represented by interval-valued vari-
ables, i.e., where dij = Yj(si) = [lij , uij ], j = 1, . . . , D, i = 1, . . . , n. However, it
is well-known that using the standard interval arithmetic (Moore, 1966) for the
statistical analysis of interval data quickly leads to wide intervals in the result-
ing quantities, useless in practice. In different works within the field of SDA,
an alternative approach has been considered, based on the representation of
multivariate interval data by the corresponding midpoints cij = (lij + uij)/2
and ranges rij = uij − lij . This has been successfully applied to statistical
analysis of interval data using known multivariate statistical methods (Brito
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and Duarte Silva, 2011; Lauro and Palumbo, 2005; Neto and De Carvalho,
2008, 2010; Teles and Brito, 2013).

Considering further inherent properties of the individual observations, a
natural question arises, of how to proceed with observations carrying rela-
tive information. In practice, the decision whether absolute information or
rather the relative structure should be extracted from the data at hand, re-
lies strongly on the purpose of the analysis. If relative information is in focus,
the ratios between the variables should be kept for the statistical processing
(Aitchison, 1986; Pawlowsky-Glahn et al, 2015a). In the standard case of in-
dividual observations, such data can be rescaled to an arbitrary sum of the
components without any loss of information (although the most used ones are
1 and 100, resulting in proportional and percentage representations, respec-
tively) – we refer to the principle of scale invariance of compositional data
analysis (Pawlowsky-Glahn et al, 2015a). Obviously, such type of observations
induce different geometrical properties from the standard multivariate obser-
vations (driven by the Euclidean geometry in the real space), represented by
the Aitchison geometry on the simplex (Billheimer et al, 2001; Pawlowsky-
Glahn and Egozcue, 2001; Egozcue and Pawlowsky-Glahn, 2006). The statis-
tical analysis of compositional data is then performed in new real variables,
constructed with respect to the Aitchison geometry. Because of their inter-
pretation in terms of (log-)ratios of the original compositional parts, we refer
to logratio analysis (Aitchison, 1986). If also the original scale of the data is
important for interpretation purposes, the sum of the variable’s values can
be stored in an additional variable and analyzed as a part of multivariate
information (Pawlowsky-Glahn et al, 2015b).

In our case, the question is then about how to extract the relevant infor-
mation from the data matrix,

X1 . . . Xj . . . XD

s1 [l11, u11] . . . [l1j , u1j ] . . . [l1D, u1D]
. . . . . . . . . . . .
si [li1, ui1] . . . [lij , uij ] . . . [liD, uiD]
. . . . . . . . . . . .
sn [ln1, un1] . . . [lnj , unj ] . . . [lnD, unD]

where the single interval-valued variables represent quantitative descriptions
of relative contributions on the whole as well, we refer to interval composi-
tional data. Such data arise in many fields, where an aggregation is a natural
consequence of the huge data collection process. For example, when relative
structure of household expenditures is of primary interest, contributions of
single variables (foodstuff, housing, clothing, etc.) can be merged according to
regions or any other relevant key to intervals, formed usually by quantile char-
acteristics (lower and upper quartiles, 0.1- and 0.9-quantiles, or even some
standard deviation based interval, respectively). Of course, the aggregation
step of data processing is thus always scale dependent.
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1.2 Representations of interval compositional data

In the following, two approaches for a representation of interval compositional
data are discussed. Although just the first one is then further considered in the
paper, the aim of mentioning both is to point out that more options exist for
the purpose. Once again, the standard interval arithmetic fails in the context of
interval compositional data as it is not scale invariant, and further problems
arise when even a fixed constant sum representation is required (Pavlačka,
2013). A way out thus seems to represent each single interval [lij , uij ], i =
1, . . . , n, j = 1, . . . , D, by the corresponding midpoint and range.

A natural first choice seems to be to take cij for the midpoint and rij for the
range, as it has been done in interval data analysis in Brito and Duarte Silva
(2011). Considering both midpoints and ranges together, we get the starting
data for further statistical processing. Accordingly, this results in two n ×D
compositional data matrices C = (cij) and R = (rij). In both data sets just
the ratios between the variables are informative, although it needs to be con-
sidered from a more general perspective that the ranges are seen as relative
contributions on a “whole range”, as it follows from the definition of compo-
sitional data. In any case, rescaling the original interval values, represented
by midpoints and ranges, by any positive constant (for example, to get pro-
portional representations of midpoints for an easier interpretation) should not
affect their statistical analysis. Moreover, from the perspective of the Aitchison
geometry, ratios between the corresponding midpoint and range components,
that might have an attractive interpretation (like in the sense of a coefficient
of variation), can be considered, up to a possible scaling constant, as shift-
ing operation on the simplex, commonly known as perturbation between two
compositional vectors (Aitchison and Ng, 2005).

One could also think about another possibility to represent the interval
data, namely with cij =

√
lijuij and rij = ln(uij/lij). With this choice, the

resulting ranges are already scale invariant by definition, so the matrix R would
contain standard (positive) multivariate observations instead. Apparently, this
approach might seem to be methodologically most consistent. Although taking
the geometric mean instead of the arithmetic mean for the midpoints can be
indeed considered as a relevant alternative, different origins of both represen-
tations would cause further interpretational problems. Particularly, the ranges
rij are now logratios, forced to be positive by the definition. As most standard
statistical methods are designed for the real sample space, taking a logarithmic
transformation before their further processing would be recommendable. As a
consequence, values of such preprocessed ranges would be quite far away from
the original values and even hardly comparable with outputs of the logratio
methodology, proposed below for the midpoints. For this reason, we prefer the
previously formulated standard choice for the interval representation instead.

The rest of the paper is organized as follows. In the next section we recall
the coordinate system for compositional data and derive a coordinate repre-
sentation for interval compositions. Section 3 presents the analysis of interval
compositional data. In Section 4, an application to a real data set is presented,
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comparing results with those obtained using different approaches. Section 5
concludes the paper, pointing out directions for future work.

2 Coordinate representation of interval compositions

Compositional data are defined asD-part positive observations x = (x1, . . . , xD)′

carrying relative information. Compositions are characterized by the Aitchison
geometry on the simplex, the sample space of their constant sum representa-
tions (Egozcue and Pawlowsky-Glahn, 2006; Pawlowsky-Glahn et al, 2015a),
with Euclidean vector space structure of dimension D− 1. Since the standard
multivariate statistical analysis relies on the Euclidean geometry in real space
(Eaton, 1983), D − 1 orthonormal coordinates (with respect to the Aitchison
geometry) are required that allow to proceed in a reasonable way. Unfortu-
nately, it is not possible to derive D − 1 orthonormal coordinates which are
interpretable in terms of the original compositional parts x1, . . . , xD simulta-
neously. However, it is possible to employ isometric log-ratio (ilr) coordinates
(Egozcue et al, 2003) which allow for an interpretation. Among other (more
general) options (Egozcue and Pawlowsky-Glahn, 2005), one possible choice
is to consider D coordinate systems, where always just one of the coordinates
captures all the relative information about one of the compositional parts
(xk, k = 1, . . . , D), which is then of main interest for the interpretation. Con-
sequently, the remaining D−2 coordinates represent the resulting subcomposi-
tion by omitting the part xk (Fǐserová and Hron, 2011; Filzmoser et al, 2012).
Without loss of generality, let the first orthonormal coordinate have such a
property. Due to the Aitchison geometry and the nature of compositions, this
coordinate will have the form of a log-ratio of the chosen part to the remaining
parts in the composition, represented by their geometric mean. Concretely, for
a composition x and a chosen part xk we get (D− 1)-dimensional real vectors

z(k) = (z
(k)
1 , . . . , z

(k)
D−1)′, k = 1, . . . , D,

z
(k)
i =

√
D − i

D − i+ 1
ln

x
(k)
i

D−i

√∏D
j=i+1 x

(k)
j

, i = 1, . . . , D − 1, (1)

where (x
(k)
1 , x

(k)
2 , . . . , x

(k)
k , x

(k)
k+1, . . . , x

(k)
D ) stands for such a permutation of the

parts (x1, . . . , xD) that always the k-th compositional part fills the first po-
sition, (xk, x1, . . . , xk−1, xk+1, . . . , xD). In such a configuration, the first ilr

variable z
(k)
1 explains all the relative information (logratios) about the original

compositional part xk, the coordinates z
(k)
2 , . . . , z

(k)
D−1 then explain the remain-

ing logratios in the composition (Fǐserová and Hron, 2011). Note that the only

important position is that of x
(k)
1 (that is interpretable through z

(k)
1 ), the other

parts can be chosen arbitrarily from the perspective of xk, because different or-
thonormal coordinate systems are orthogonal rotations of each other (Egozcue
et al, 2003). It is worth realizing that if all relative information concerning part
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xk in a given composition should be merged into one coordinate, then all pair-
wise logratios ln(xk/x1), . . . , ln(xk/xk−1), ln(xk/xk+1), . . . , ln(xk/xD) need to
be aggregated. So we arrive at

ln(xk/x1) + · · ·+ ln(xk/xk−1) + ln(xk/xk+1) + · · ·+ ln(xk/xD)

= (D − 1) ln
x
(k)
1

D−1
√∏D

j=2 x
(k)
j

.

Up to a scaling constant, this is nothing else than the coordinate z
(k)
1 from (1).

Of course, z
(k)
1 cannot be identified with the compositional part xk, as the other

parts are also naturally involved through the corresponding logratios. This
coordinate is formed by a logratio between the part xk and an “average part”,
resulting from the geometric mean of the remaining parts in the composition.

Therefore, values of z
(k)
1 represent a measure of dominance of the part xk with

respect to the other parts.
Thus, when any statistical inference concerning all compositional parts

(through the corresponding coordinates z
(k)
1 ) is of interest, D multivariate

statistical models need to be constructed. Note that by merging and analyz-

ing all coordinates z
(1)
1 , . . . , z

(D)
1 together, we would get (up to a scaling con-

stant
√

D−1
D ) the well-known centered log-ratio (clr) transformation (Aitchi-

son, 1986), defined as

y =

 x1

D

√∏D
i=1 xi

, . . . ,
xD

D

√∏D
i=1 xi

′ , (2)

that yield coordinates with respect to a generating system. It means that
there is one composition more than needed to form a basis with respect to
the Aitchison geometry; for concrete formulas, see Pawlowsky-Glahn et al
(2015a) (Chapter 4). However, since the covariance matrix of clr-transformed
data is singular, this coordinate representation is not suitable for multivariate
statistical analyses that are based on regular covariance matrices.

As mentioned in Section 1, midpoint and range representation of inter-
val compositional data yield for each interval composition (X1, . . . , XD)′ two
assigned compositional vectors c = (c1, . . . , cD)′ and r = (r1, . . . , rD)′, that
should be expressed in coordinates in order to enable their analysis using stan-
dard statistical methodology. Considering the clr transformation, as in (2), we
obtain yc for midpoints and yr for ranges. However, the aim here is to deal
with orthonormal coordinates c(k) and r(l), k, l ∈ {1, . . . , D} obtained as in (1)
. Taking their interpretation into account, we primarily focus on combinations
c(k), r(k), k = 1, . . . , D, that merge (relative) information about both mid-
point and range of the same (interval) part Xk = [lk, uk] with respect to the
remaining midpoint and range parts, respectively. Nevertheless, also the other
combinations, when k 6= l, i.e., considering the relation between the midpoint
of an interval part and the range of a another one, might be interesting in
some special cases.
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When analyzing standard interval data, it is proposed in Brito and Duarte
Silva (2011) to consider various structures of the block covariance matrix of
the joint vector of midpoints and ranges. The reason is that some of them (par-
ticularly for those that imply independence of midpoints and ranges under the
assumption of normality) correspond to more parsimonious models, which may
provide a good fit and result in less parameters to be estimated - which may
be important in presence of small samples. In Brito and Duarte Silva (2011)
the vector [c′, (r∗)′]′ is considered, where r∗ represents the logarithmic trans-
formation of the interval ranges r. In the compositional case, we are forced to
consider vectors [(c(k))′, (r(l))′]′ instead, i.e., use the ilr coordinates as defined
in (1). For the purpose of further simplifications, the covariance matrix can

be rewritten as a 2(D− 1)× 2(D− 1) block matrix Σ =

(
Σc Σcr

Σrc Σr

)
, where

Σc and Σr are the covariance matrices of midpoints and ranges in orthonor-
mal coordinates c(k) and r(l) for any chosen k, l ∈ {1, . . . , D}, respectively,
and Σcr = Σ′rc is the covariance matrix between midpoints and ranges. The
special structure of Σ arises in practice usually directly from the design of
the experiment. Nevertheless, in case of interval compositional data, with a
restricted interpretation of the orthonormal coordinates, always just coordi-

nates representing one midpoint (c
(k)
1 ) and one range (r

(l)
1 ) can be considered

simultaneously for the analysis. Nevertheless, note that the covariance matrix
cannot be simply built using the first coordinate of all the permutations in (1);
in such a case the resulting 2D×2D covariance matrix would have at least two
null eigenvalues due to the relation of these coordinates to clr variables. This
would be very inconvenient for considering normal distribution (mentioned
below) as it becomes singular.

Obviously, the most frequent case is that of an unrestricted covariance
matrix. In some situations, it seems to be reasonable to consider uncorrelated
midpoints and ranges, i.e. Σcr = Σrc = 0. A possible further extension of the

latter case could also result in no correlation of the coordinates c
(k)
1 and r

(l)
1

with the remaining variables in c(k) and r(l), representing the corresponding
remaining subcompositions.

For all the above mentioned covariance structures it holds that elements
of the joint covariance matrix Σ can be reordered in form of a block-diagonal
covariance matrix that is advantageous for maximum likelihood estimation
of Σ from a random sample in case of normal distribution of both random
compositions c(k), r(l), i.e. normal distribution of any of their coordinate rep-
resentations (Brito and Duarte Silva, 2011; Mateu-Figueras and Pawlowsky-
Glahn, 2008). A concrete selected covariance structure can also be tested from
the sample using a range of tests on independence between random vectors
(Kojadinovic and Holmes, 2009; Morrison, 1990; Seber, 1984).
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3 Exploratory data analysis of interval compositions in coordinates

Although the nature of interval compositions differs substantially from the
case of standard multivariate observations, the same problems concerning their
statistical treatment arise. In particular, we are interested in the visualization
of patterns in data, including groups and outlying observations. The coordi-
nate representation of both midpoints and ranges of interval compositions en-
ables proceeding to standard exploratory statistical analysis. For most object-
oriented methods like cluster analysis or discriminant analysis, it is sufficient
to consider simply any coordinates c(k), r(l), where k, l ∈ {1, . . . , D} must not
even necessarily be the same (Filzmoser et al, 2012; Palarea-Albaladejo and
Mart́ın-Fernández, 2012). The reason is that, due to orthogonal relations be-
tween different ilr coordinates, results of such methods will be invariant to
the choice of k and l. Nevertheless, when also the original interval variables,
or patterns of midpoints/ranges are of primary interest, restrictions resulting
from the interpretation of the orthonormal coordinates should be taken into
account to accommodate the statistical procedures accordingly. Moreover, due
to the same dimension of the resulting data sets for both midpoints and ranges,
the coordinate representation of interval compositions can also be considered
as a special case of three-way data, where the observations form the first mode,
the compositional parts the second mode, and interactions between midpoints
and ranges are represented in the third mode.

Visualization of outlying observations in multivariate data sets belongs to
an initial task of any reasonable statistical processing. Outliers can strongly
influence descriptive characteristics like the arithmetic mean and the sample
covariance matrix that are used to construct, e.g., the well-known principal
component analysis for dimension reduction, thus they can destroy the over-
all view on the multivariate data structure. Obviously, this is also the case
in the statistical analysis of compositional data (Filzmoser and Hron, 2008;
Filzmoser et al, 2009), although due to the Aitchison geometry other sources
of outlyingness naturally arise (Filzmoser and Hron, 2011). With the coordi-
nate representation at hand, we introduce a generalization of the approach
from Filzmoser et al (2012), to see the effect of single interval variables Xk

on forming multivariate outliers. Concretely, it is possible to visualize both

coordinates c
(k)
1 and r

(k)
1 together using the bagplot to show location, spread

and skewness of the joint data distribution (Rousseeuw et al, 1999). Note that
the bagplot consists of three nested polygons, called the bag (includes reg-
ular observations), the loop (observations out of the bag, but still regular),
and the fence (observations outside are flagged as outliers). The center of the
data set is represented by the depth median, constructed using the Tukey
depth. In order to evaluate the degree of outlyingness, to each observation a
number corresponding to the actual data depth is assigned and the resulting
output can be visualized graphically in form of univariate scatterplots. In the
context of interval compositional data, outlier detection of the corresponding
coordinates carrying relative information on midpoints and ranges of the com-
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positional parts using the bagplot helps to reveal anomalous observations with
respect to both mentioned characteristics.

A further step is to evaluate the relation between midpoints and ranges.
Obviously, the data structure of midpoints and ranges, respectively, can in
general differ, what can already be revealed from the bivariate analysis using
the bagplot. From the point of view of correlation analysis, in addition to

looking for pairwise (classical and robust) correlations between variables c
(k)
1

and r
(k)
1 , k = 1, . . . , D, we want to analyze an overall relation between both

vectors c(k) and r(k) to consider eventually a particular covariance structure
of the joint vector [(c(k))′, (r(k))′]′ as well as patterns, deviating from the main
trend. One possibility to do that is to perform canonical correlation analysis
in orthonormal coordinates (Filzmoser and Hron, 2009). Due to orthogonal
relations between different ilr coordinates of midpoints/ranges, it turns out
that for any choice of coordinates c(k), r(l) the canonical correlations will be
exactly the same. Plotting the first canonical variables together then helps to
reveal which observations do not follow the dominant data structure.

Other popular exploratory tool which will be of main interest in the fol-
lowing, are dimension reduction methods, based on singular value decompo-
sition of midpoints and ranges in coordinates. They result in the well-known
Principal Component Analysis (PCA), but also in the Parallel Factor Analy-
sis (PARAFAC) method, applied to three-way data by considering midpoints
and ranges as different layers. PCA of interval data has first been addressed
in Chouakria et al (2000) and Cazes et al (1997), representing the observed
intervals by their midpoints - the “centers method” - or by considering all the
vertices of the hypercube representing each of the n entities in a p-dimensional
space - the “vertices method”. In Lauro and Palumbo (2005) a different ap-
proach is followed, where each variable is represented by the midpoints and
ranges of its interval values. Three methods for principal component analysis
of fuzzy interval data are investigated in Giordani and Kiers (2006). Zuccolotto
(2007) uses a symbolic data approach for PCA of data described by the esti-
mated means of a p-dimensional variable. In Wang et al (2012) a new method
CIPCA is proposed , which takes a hypercube view with infinitely dense points
uniformly distributed, defines the inner product of interval-valued variables,
and transforms the PCA modeling into the computation of some inner prod-
ucts in the covariance matrix. Having the information on both midpoints and
ranges available, we can either proceed to apply PCA separately, or in form of
unfolded PCA, where common variables (coordinates) of midpoints and ranges
are considered for the analysis of the block data matrix. Due to relations be-
tween midpoints and ranges that can be expected for most practical examples,
the latter case seems to yield more reasonable results.

In case of compositional data, usually the clr coordinates are applied to
perform PCA as they lead to an intuitive interpretation of the biplot of load-
ings and scores (represented as vertices and points, respectively) (Aitchison
and Greenacre, 2002; Filzmoser et al, 2009). In particular, the links (dis-
tances) between vertices approximate the standard deviation of ln xi

xj
for i, j ∈
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{1, . . . , D}, which stands for a measure of strength of the relation between
these compositional parts. In other words, when the vertices coincide, or nearly
so, the ratio between the parts xi and xj is a constant, or nearly so. In case
of interval compositional data, biplots for both midpoints and ranges can be
constructed using the corresponding clr coordinates yc and yr (see (2)), re-
spectively, to see the effect of the interval representations separately.

As mentioned above, it could also be interesting to merge both midpoints
and ranges into one model to visualize the overall information on the input
observations. Although unfolded PCA enables displaying information on both
midpoints and ranges simultaneously in one common compositional biplot, we
can even proceed to consider the three-way analysis as midpoints and ranges
follow the coordinate representations of the same objects and variables. While
the third mode, corresponding to different interval representations, can be
used just to evaluate dissimilarity of midpoints and ranges, the first two modes
(observations and compositional parts) can be used to get an overall picture
of the multivariate data structure. For this purpose, basically two models are
available, both to be preferably performed in clr coordinates (Engle et al,
2014; Di Palma et al, 2015). Let us denote the n × D × 2 clr data matrix
Y = (yijk) of midpoints (first layer, k = 1) and ranges (second layer, k = 2).
One possibility is to apply a Tucker3 model, where a decomposition of the
array into sets of scores and loadings is performed that should describe the
data in a more condensed form than the input data array. For the above case
of interval compositional data in clr coordinates, the Tucker3 model is defined
as

yijk =

P∑
p=1

Q∑
q=1

R∑
r=1

aipbjqckrgpqr + eijk,

i = 1, . . . , n, j = 1, . . . , D, k = 1, 2, where aip, bjq, ckr are loading elements,
gpqr are elements of the core array that stands for interactions between the
three modes, and eijk is an element of the error term. For the usual setting of
the number of factors, P = Q = R = 2, that enables to display the loadings
graphically (except of the third mode that is not interesting for graphical visu-
alization here), it is possible to proceed to a Tucker2 model that reduces only
two of the three modes to components. The core array then represents the
interactions among the elements of the midpoint-range mode and the com-
ponents of the reduced modes (capturing information on observations and
compositional parts, respectively) (Kroonenberg, 1983; Kroonenberg and De
Leeuw, 1980). Formally, the Tucker2 model for this concrete case can be writ-
ten as

yijk =

P∑
p=1

Q∑
q=1

aipbjqgpqk + eijk.

Moreover, the decision not to reduce the third mode has also methodological
background; similarly one would proceed, e.g., also with longitudinal data, for
which one typically may not want to reduce the time mode (Kroonenberg,
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1983). Note that another modification of the Tucker3 model is provided by
the well-known PARAFAC/Candecomp (CP) model (Bro, 1997), defined as

yijk =

R∑
r=1

airbjrckr + eijk,

i.e. the core array takes the form of a superidentity array. Nevertheless, as it
is not easily possible to avoid reducing the midpoint-range mode within the
framework of CP, we consider just the Tucker2 model in the following.

Finally, note that for dimension reduction methods, the special covariance
structure of midpoints and ranges in coordinates, as discussed in Section 2,
could be applied as well. We can just remark that only under the null hypothe-
sis Σcr = 0 it would be meaningful to perform PCA for midpoints and ranges
separately, otherwise we have to proceed necessarily to any kind of three-way
analysis (unfolded PCA, Tucker2 model).

4 Application

To illustrate the methodological considerations on an exploratory statistical
analysis of interval compositions, we employ a data set that was synthetically
generated from real Austrian EU-SILC (European Union Statistics on Income
and Living Conditions) data, quoted as eusilc in the R-library laeken (Al-
fons and Templ, 2013), where almost 15 000 observations were collected and
analyzed for a range of variables on living conditions in Austria. For the pur-
pose of our study, just four of them, employee (employee net income), self
(income from self-employment), unemploy (unemployment benefits) and old-
age (old-age benefits) were taken into account. Although the original data are
provided in Euro, we are indeed faced with compositional data, because the
primary interest is devoted to relative contributions of single compounds to
the overall income.

Here, we are interested in analysing and comparing the situation for both
genders in the different Austrian regions, and not on the information at in-
dividual level. Therefore, the nonzero income data are aggregated according
to the nine Austrian states - Burgenland (Bu), Carinthia (Ca), Lower Austria
(LA), Salzburg (Sa), Styria (St), Tyrol (Ty), Upper Austria (UA), Vienna
(Vi) and Vorarlberg (Vo) - and gender information (m, f). The resulting data
matrix has 18 rows (observations), both genders for each Austrian state, and
four variables. The aggregation is done in form of interquartile range and its
center, playing the role of ranges and midpoints, respectively. For example, for
the females from Styria, there are 458 non-zero values of the variable employee
available, and this information is aggregated in form of interquartile range and
its center in order to reduce the impact of data outliers. Thus, the large-scale
input data is reduced to the description of the 18 demographic groups of in-
terest (see Table 1). The symbolic data representation allows for a remarkable
reduction of the dataset, bringing it to a more manageable size, by aggregating
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data at the user’s chosen degree of granularity while keeping the information
on the intrinsic variability.

employee self unemploy old-age
Bu.f 11580 (11757 ) 8599 (8461 ) 5021 (5973 ) 10379 (7318 )
Bu.m 17851 (10800 ) 14721 (17009 ) 3697 (4376 ) 13851 (9061 )
Ca.f 13842 (11490 ) 9059 (8872 ) 2710 (2682 ) 11433 (7014 )
Ca.m 20484 (11104 ) 15010 (18256 ) 3970 (3007 ) 15953 (10383 )

...
...

...
...

...
Vo.f 11666 (11868 ) 6135 (4267 ) 2968 (3063 ) 12425 (8430 )
Vo.m 21166 (12870 ) 15828 (201230 ) 4060 (4607 ) 20753 (12591 )

Table 1 Midpoints (antique) and interquartile ranges (italic) for the aggregated Austrian
EU-SILC data (in EUR).

By following the above reasoning, the log-ratio analysis of midpoints and
ranges according to Sections 2 and 3 needs to be applied, because we focus on
the relative structure of income variables (rather than their absolute values).

As a first step, it might be useful to visualize the original aggregated data
structure, i.e., midpoints and ranges compositions. As compositional data can
be expressed as observations with one dimension less than the actual num-
ber of parts (proportions, percentages), it is possible to display the three-part
midpoints and ranges in form of a ternary diagram. A ternary diagram is
an equilateral triangle X1X2X3 such that a composition x = (x1, x2, x3)′ is
plotted at a distance x1 from the opposite side of vertex X1, at a distance
x2 from the opposite side of vertex X2, and at a distance x3 from the oppo-
site side of vertex X3 (see, e.g. Aitchison, 1986, for further details). Since two
compositional vectors correspond to each group under analysis, both need to
be displayed simultaneously to see possible systematic patterns between mid-
points and ranges. Because our data set has four parts, just those parts related
to active age respondents were considered. Accordingly, midpoints and ranges
for subcompositions with parts x1 =employee, x2 =self and x3 =unemploy
are visualized in Figure 1 (left), joined by segments with respect to the Aitchi-
son geometry (Egozcue and Pawlowsky-Glahn, 2006). The ternary diagram
reveals essentially the same pattern of midpoints and ranges for most of the
observations. This is even easier to see when both midpoints and ranges are

expressed in orthonormal coordinates z
(1)
1 , z

(1)
2 which stand in favor of the

employee variable (any other choice would lead just to a rotation of the data
structure). In other words, the variable employee is taken in the nominator of
formula (1), and thus all relative information about employee is expressed in

the coordinate z
(1)
1 . The coordinate z

(1)
2 expresses the (scaled) log-ratio of self

to unemploy ; explicitly

z
(1)
1 =

√
2√
3

ln
x1√
x2x3

, z
(1)
2 =

1√
2

ln
x2
x3
.
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Fig. 1 Interval compositional observations (EU-SILC data set) in the ternary diagram
(left) and in orthonormal coordinates (right). Midpoints are shown by ◦, ranges are marked
by +.

In the plots of Figure 1, the midpoints are shown by the symbol ◦, and the
ranges by +. Midpoints and ranges are connected for the same gender-state
group. From both figures one can conclude that the part employee dominates

for the midpoints (higher values for z
(1)
1 ), and that the variability in ranges

is conveyed mostly by the variable self. There are also some subgroups and
outliers visible. For example, the female group of Vorarlberg (Vo.f) has a much
higher midpoint and range for the variable employee, relative to the other
variables. For the group Bu.f, on the other hand, the unemployment benefits
are much more dominating than for the other groups, in terms of both midpoint
and range.

In order to see relations between coordinates that correspond to midpoints
and ranges of single compositional parts (in the sense of a coordinate represen-
tation (1)), four bagplots are shown in Figure 2. It is easy to see that except
of employee there is quite strong positive relation between the corresponding
midpoints and ranges. This is a kind of justification for the rather systematic
pattern between midpoints and ranges in Figure 1, even when the variable
old-age was not employed there. We also find back the two outliers Sa.m and
Bu.f in the unemployment benefits, that were visible already in Figure 1.

Before we proceed to dimension reduction methods, it is interesting to
see whether the covariance matrix of the random vector [(c(k))′, (r(l))′]′ for
any k, l = 1, . . . , 4 can be expressed in block diagonal form, i.e. we perform
an independence test between (c(k))′ and (r(l))′. As we cannot strictly refer
to a random sample in case of symbolic data analysis, an empirical test is
preferable. From a range of possibilities, we have chosen an independence test
among continuous random vectors based on the empirical copula process (Ko-
jadinovic and Holmes, 2009), where the corresponding p-values are obtained
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Fig. 2 Bivariate analysis of coordinates of midpoints and ranges for single parts in the EU-
SILC data set: employee (upper left), self (upper right), unemploy (lower left) and old-age
(lower right).

through the bootstrap/permutation methodology. Obviously, the result of the
test will in principle not depend on the particular input coordinates. For a par-
ticular bootstrap realization, we obtained p = 0.089, so that the independence
would be nearly rejected on the usual significance level α = 0.05.

As a consequence of independence testing, we start also with PCA per-
formed on both midpoints and ranges separately before we proceed to three-
way analysis. The resulting biplots are displayed in Figure 3. Both biplots
explain about 97% of the total variability in the respective data sets, thus
they reflect the multivariate compositional data structure very well. Although
there are some differences between both biplots, basic features are common
for both midpoints and ranges. In both cases, the first principal component
separates well male from female information, with clearly defined outliers in
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Fig. 3 Compositional biplots for both midpoints (left) and ranges (right).

both gender groups (Sa.m, Vo.f). The relative importance and also the corre-
sponding relative variability, represented in the range information, of the un-
employment benefits is higher for female income structure. Men tend to prefer
self-employment. As expected, there is no relation of the relative amount of
old-age benefits to any of both groups.

The picture is completely changed if we move to biplots of the original
midpoints and logarithmized ranges. This approach was proposed in Brito
and Duarte Silva (2011) for standard interval data and for completeness’ sake,
it is mentioned here as well. Although taking the logarithmic transformation
of ranges was motivated in particular to enable using the normal distribution
for both representations, it has also purely compositional consequences. In
addition to preserve the compositional information it also keeps information
of the geometric mean of ranges (Pawlowsky-Glahn et al, 2015a). Neverthe-
less, by taking the original midpoints the relative character of the data set is
ignored, also considering two different scales for the analysis (multiplicative
for midpoints and additive for log-ranges) can cause further interpretational
problems. Thus, it cannot be generally recommended, even when the amount
of explained variability by the first two principal components is quite com-
parable (97% for midpoints and 92% for log-ranges). While the basic data
configuration (differences between male and female income structure) is quite
comparable (except of that previous outliers vanished for the original ranges),
the interpretation of variables (see loadings) is completely different, in case
of midpoints the covariance structure is apparently distorted. The reason for
that seems to be different scales, as mentioned above, but also inappropriate
sample spaces of both compositional data sets. In fact, an analysis in terms of
Brito and Duarte Silva (2011) would be appropriate if the absolute values of
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Fig. 4 Standard biplots for both midpoints (left) and log-ranges (right).

allowances would be of primary interest, but not their relative structure as it
is the case here.

For this reason, for the three-way analysis we employ just the log-ratio
analysis (described in Section 3). At first the effect of merging midpoints and
ranges together can be analyzed using unfolded PCA and the respective com-
positional biplot (Figure 5), where the partial information corresponding to
the same demographic groups are joined by a segment. We can see that the
basic information on observations, visible already for the separate analysis
(data structure, outliers) is well reflected in the biplot. Also the relative effect
of self-employment for the male income structure is clearly visible, female in-
come structure is now driven by more parts simultaneously, following rather
regional patterns. Moreover, there is quite a strong relation between mid-
points and ranges, reflected by almost the same direction and orientation of
the segment lines. Note that in the default setting, the compositional biplot
is represented by the covariance biplot (Aitchison and Greenacre, 2002) that
favours the display of variables (or links between vertices). The points for
the individuals, scores, are scaled, thus distorting the projected Aitchison dis-
tances between points. Therefore, as an alternative, also the form biplot can
be inspected for which the interpretation in terms of points is more relevant.
However, in this case both biplot versions are very similar to each other.

Finally, we proceed to the Tucker2 model for three-way log-ratio analysis
of midpoints and ranges. Here the information on midpoints and ranges is
merged into single objects, represented in the first mode, while the original
parts (in form of their corresponding clr variables) are displayed in the second
mode. As in the previous analyses, again quite a similar structure among the
observations can be observed in the first mode (Figure 6, left). This supports
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the consistency of the performed analysis based on the log-ratio approach.
Also the relations between the clr variables reflect the case of unfolded PCA
(and even the case of separate compositional biplots for midpoints and ranges),
see Figure 6 (right). A close relation between employee net income and old-
age benefits corresponds well to the expected reality. Namely, both kinds of
income are rather state dependent (old age benefits almost exclusively), so the
proportion between employee net income and old-age benefits should be more
or less the same among the regions of Austria and the gender groups. On the
other hand, unemployment and self-employment can differ much more due to
specific regional effects.

5 Summary

Symbolic data are often the result of aggregating larger amounts of numerical
information to intervals, which convey the variability intrinsic to the groups
of interest. The intervals can then be represented in form of midpoints and
ranges. We introduced a three-way representation of interval data, which al-
lows for a wide range of multivariate analyses – and may open the way to
novel approaches. If the multivariate data are compositions, only the pairwise
proportions between the compositional parts carry the essential information
that needs to be analyzed. This concept applies also to symbolic data, where
relative information of midpoints and ranges is of interest.

In this paper we used the log-ratio approach to analyze the relative informa-
tion (Aitchison, 1986). In particular, ilr-coordinates were employed (Egozcue
et al, 2003), which is a standard procedure nowadays in many applications
(Pawlowsky-Glahn et al, 2015a). This approach has the appeal that one can
work in the usual Euclidean geometry rather than in the simplex, and that it
allows to construct coordinates with an interpretation in terms of the original
parts.

We addressed several possibilities for an exploratory data analysis in this
context. In essence, one is interested in a similar data inspection as in an
analysis of standard data: groups and outliers among the observations, rela-
tions between the variables, relations between variables and observations. For
this type of interval data with midpoint and range representation, it is also
of interest to analyze the relation between midpoints and ranges. This is be-
cause this relation needs to be taken into account for a joint modeling (Brito
and Duarte Silva, 2011). The exploratory tools listed here are definitely not
comprehensive, and they can be extended to the specific needs of the analysis.
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