Robust State Estimation Based on Orthogonal
Methods and Maximum Correntropy Criterion

Victor Freitas Antonio Simdes Costa
Federal University of Santa Catarina
Floriandpolis, SC, Brazil

Emails: victor.silva@posgrad.ufsc.br, simoes.costa@ufsc.br

Abstract—This paper presents an orthogonal implementation
for power system state estimators based on the Maximum
Correntropy Criterion (MCC). The proposed approach leads
to a numerically robust estimator which exhibits self-healing
properties, in the sense that gross errors in analog measurements
are automatically rejected. As a consequence, robust estimates
are produced without the need of running the state estimator
again after bad data identification and removal. Numerical
robustness is achieved by means of a specialized orthogonal
algorithm based on fast Givens Rotations, which is able to handle
the dynamic measurement weighting mechanism implied by the
Parzen window concept associated to MCC. Results for a 3-bus
test system are presented to properly illustrate the Correntropy
principles, and several case studies conducted on the IEEE 30-bus
and 57-bus benchmark systems are used to validate the proposed
methodology.

Index Terms—Maximum Correntropy Criterion, Orthogonal
Algorithms, Real Time Power System Modeling, Robust State
Estimation.

I. INTRODUCTION

The classic solution for Power System State Estimation
(PSSE) provided by the Weighted Least Squares (WLS)
method provides satisfactory results as long as the measure-
ments processed by the estimator are free of gross errors. On
the other hand, the presence of any bad data will severely
contaminate the state estimates. It is therefore essential that
conventional estimators be equipped with bad data processing
capabilities to be executed as a post-processing stage. In case
the presence of gross errors is detected, the erroneous mea-
surements must be identified and removed, and state estimation
must be restarted in order to obtain bad data-free estimates.
Depending on the particular situation, the whole procedure
may demand a significant amount of computational effort and
computing time, what is clearly undesirable considering the
strict time limits to which PSSE is subject to in a real-time
environment.

The sensitivity of WLS solutions to bad data in PSSE is well
known and has motivated research efforts for alternative, more
robust PSSE methods. Accordingly, the use of non-quadratic
criteria has been proposed in order to automatically reject bad
data and provide good state estimates even when they are
present [1], [2]. However, those earlier efforts lacked a solid
theoretic basis to properly define the new estimation criteria.
In the nineties, other authors have explored robust statistics
concepts to derive non-quadratic estimators exhibiting more
solid theoretical background [3], [4].

More recent efforts to improve the robustness of PSSE
methods draw inspiration from contemporary developments
in the Information Theory field [5], [6], leading to a new
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generation of state estimation algorithms based on the Max-
imum Correntropy Criterion (MCC) [7], [8]. In addition to
being particularly resilient to the presence of bad data, the
accessory use of the Parzen window concept [9] enables a
controlled progression of the iterative process in order to
properly handle multiple solution difficulties that are always a
matter of concern with non-quadratic criteria.

Currently, solution methods based on the MCC approach
are based on variants of the numerically fragile Gauss-
Newton method [8] or metaheuristics techniques [7]. The
main contribution of this paper is to develop an orthogonal
solution for the maximum correntropy approach. Our purpose
is twofold: to impart numerical robustness to the method,
as well as to take advantage of the row-processing feature
of fast Givens orthogonal rotations to better implement the
variable measurement weighting mechanism inherent to the
MCC approach.

This paper is organized as follows. Section II briefly re-
views the background of MCC-based state estimation. The
proposed solution through fast Givens Rotations is dealt with
in Section III. The Parzen windows adjustment mechanism
for the proposed approach is detailed in Section IV. Section
V describes the solution algorithm. Illustrative results based
on the 3-bus test system and statistical analysis of several
simulations conducted with the IEEE 30-bus and 57-bus test
systems are presented in Section VI. Section VII summarizes
the main conclusions.

II. PSSE BASED ON MAXIMUM CORRENTROPY
CRITERION

A. PSSE modeling, Parzen Windows and Correntropy

Power system state estimation is aimed at determining the
optimal (in some pre-defined sense) solution to a system of
overdetermined and inconsistent set of nonlinear equations
given by:

z=h(x)+e (1)

where x is the n x 1 state vector composed by bus voltage
magnitudes and phase angles, and z, h(-) and € are m x 1
vectors containing the measurements, nonlinear functions re-
lating measured quantities and states, and measurement errors,
respectively. In the absence of bad data, € is assumed to be
normally distributed, zero mean, and uncorrelated, with known
variances which depend on meter accuracies.

The conventional approach for PSSE is based on the WLS
method, that minimizes the weighted sum of squared estima-
tion residuals [10]. The maximum correntropy criterion, on



the other hand, aims at extracting the maximum amount of
information from residual distribution related to the available
measurement set [5], [7]. This is accomplished through the
Correntropy concept, which measures the similarity between
measured and estimated values within a given “observation
window”. The latter is defined on the basis of the Parzen
window technique, which makes use of a Gaussian kernel
%o (+), centered on each candidate solution point x¥, and
whose width is specified by the o parameter [9]. Such a kernel
function for a particular measurement i is defined as
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where 2; = h;(&"). By using (2), the Correntropy function
V between the measurements contained in the whole vector
z and the corresponding estimated values of the measured
quantities is given by:

V(z,2) = %ZRU(% — hy()) A3)

i=1

According to the MCC criterion, the state estimates are
obtained by maximizing V(z, ). Using (3) and (2) and doing
away with constant factors that have no effect on optimization,
the MCC Problem can be stated as
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A desirable feature of Correntropy is that it is able to take into
account all even moments of the residual function z — h(&)
[5], depending on the width o of the Parzen window. Such
parameter plays an important role in the iterative optimization
process. For initially large o values, the MCC method is
basically equivalent to the conventional WLS approach, since
Correntropy reduces itself to the familiar Euclidean norm (Ls)
of the residuals. When o is progressively reduced during
the iterative process, the Correntropy properties are gradually
stressed, affecting mostly the residuals of large magnitudes.
The net effect is to apply other types of less sensitive norms
(Ly or even Lg) to them, thus substantially reducing their
effect on the final state estimation solution.

By applying the optimality conditions to Problem (4), it is
possible to show that the MCC solution can be obtained by
solving the following linear system in each iteration:

H"WH Az = H"WAZz (5)
where
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In the above equations, H is the Jacobian matrix of h(-)
calculated at a given point ¥, Az = 2z — h(x"*) and I is the
m X m identity matrix.

As indicated in (6), measurement weighting matrix W
is dynamically updated through the iterations in order to
implement the MCC principles, and this is the distinguishing

feature of MCC with respect to the WLS approach. Matrix W
must remain positive definite, and therefore care must be taken
to prevent it to inadvertently become numerically indefinite
in the course of the iterations. In the end of the each major
iteration, state vector values are updated according to

z*tD = 2k 4 Az, @)

This process goes on until || Az|| becomes smaller than a pre-
specified tolerance.

III. CORRENTOPY-BASED STATE ESTIMATION SOLUTION
THROUGH GIVENS ROTATIONS

Orthogonal methods have been employed to provide nu-
merically stable solutions for weighted least-squares problems
in general [11], and have also been successfully applied
to PSSE [12], [13]. They are particularly attractive in the
current application where, as discussed in the previous section,
measurement weights can significantly differ one from another.
Employing weights whose values are widely apart is a known
factor of numerical instability when solving equations whose
form is similar to the Normal Equation, such as (5). Those
arguments point out the importance of applying numerically
robust algorithms to obtain the MCC solution.

In this paper, we propose the use of a fast, three-multiplier
version of Givens rotations [11], hereafter referred to simply
as G3M, instead of directly solving equation (5). It basically
consists in successively applying orthogonal rotations to the
rows of matrix H (augmented by incremental vector AzZ)
scaled by the MCC weights that compose the diagonal matrix
W (see (6)). The original, 4-multiplier Givens rotations are
aimed at eventually reducing the overdetermined linearized
set of equations to a triangular system, whose easily obtained
solution provides the state correction vector Ax for that
particular iteration. The whole process can be summarized as:

Q(W%[H|Az])=[g 2} )

where Q is the orthogonal matrix reflecting the cumulative
effects of the rotations, U is the n x n upper triangular matrix,
cis an n x 1 vector and e is a scalar.

The fast G3M version of the rotations is based on factoring
matrix U as [11], [12]:

U=T:U0 )

In (9), T is a diagonal matrix and U is upper triangular with
all diagonal entries equal to one. Since Az is taken as an
extra column of H, vector c is also scaled accordingly and
renamed c. In addition to requiring only three multiplications
per rotations, the scaling artifice in (9) avoids costly square
root computations, and that is why the G3M method is often
referred to as fast Givens rotations [11].

After the matrix reduction step is concluded, the incremental
vector A is obtained by simply solving the triangular system

UAxz=c¢c (10)

A desirable feature of applying G3M to obtain the MCC
solution is the ease with which the varying weights in W are
taken into account during the process of applying the orthog-
onal rotations. Such property also facilitates the exclusion of



detected outliers by simply skipping the corresponding rows
of H (augmented by the associated measurement) during the
process of applying the rotations.

IV. PARZEN WINDOW ADJUSTMENT FOR THE
ORTHOGONAL MCC-ESTIMATOR

As discussed in Section II, Correntropy properties are
applied in conjunction with a procedure for Parzen window
adjustment. The latter is aimed at determining in each MCC
iteration the proper width of the Gaussian kernel within which
the similarity between measurements and the corresponding
estimated values is to be evaluated. That is to say, mea-
surements whose errors are outside the window are virtually
excluded from the estimation process. At the outset of the
iterations, Parzen window widths are initialized at a value
o0 sufficiently large to encompass all measurement errors. In
the subsequent iterations, the window width o* is gradually
decreased in order to reject the effects of outliers possibly
present in the measurement set. A lower bound is applied to o*
which depends on the assumed variances of the measurement
errors in (1). The Parzen window adjustment policy should
be such that whenever the available measurements are free
from gross errors, the MCC solution is equivalent to the WLS
solution.

It is possible to develop adjustment mechanisms such that
a single parameter o is employed to all measurements, what
amounts to adopting a unique “observation window” to all
available measurements. However, better results can be ob-
tained by using a Parzen window width to each measurement
individually. In this paper, the proposed adjustment mechanism
iteratively updates each Gaussian kernel size after computing
(7). Accordingly, the kernel width for measurement ¢ in
iteration k, af, is updated as a function of the maximum nor-
malized residual [10], weighted by the measurement standard
deviation, that is

ol =/ - max; (W) , ije{l....omN\S (1)
77

where €2 is the residual covariance matrix, S is the set of
outliers previously determined during estimation process, and
“\” stands for the set difference operator. Therefore, rule (11)
is applied only to measurements labeled as unsuspect up to
that iteration, since those in S have already been discarded.
It is important to emphasize that the maximum normalized
residual test is not employed here as a post processing bad data
identification procedure [10]. Rather, it is part of a strategy
to update the Parzen window width in order to iteratively
suppress bad data effects.

According to (11), the Gaussian kernel size value of each
measurement decreases through the iterations until all o;
values are lower than a pre-specified threshold o¢,,i,. As
previously remarked, threshold 0,,;, must be larger than the
standard deviation of measurement i in order to avoid the
undue exclusion of sound data from the estimation process.

V. MCC-ESTIMATOR ALGORITHM

This section presents the algorithm to solve the state estima-
tion problem under the maximum Correntropy criterion. The
solution of the proposed methodology approach, described in
Sections II to IV, relies on the specialized orthogonal algorithm

based on fast Givens rotations (G3M). It is assumed that the
available measurement set ensures system observability. The
main steps of the algorithm are described below.

Algorithm 1. Orthogonal MCC State Estimator

Define ¢° and o,,i,;
Initialize x° as flat start solution;
Initialize the iteration counter k < 0;
Make o; + o9;
While crllfC > Omin:
(a) Compute &
N;
(b) Calculate r; = z; — 2; and Q;;;
If |7“l| > O'Z]-C
z; is identified as gross measurement;
Include measurement i in the set S;

through G3M by using (8), (9), (10) and

O; < 0;
Otherwise update oF as in (11);
(c) Make &" ! + &";
(d) Update iteration counter: k < k + 1;
End While
End Algorithm and Return &;c¢c 2k,

The following remarks should be made about some intrinsic
characteristics of the proposed approach: (i) the adopted
Parzen window adjustment procedure establishes a threshold
for the residual absolute value |r;| in each iteration, which is
defined by its respective Gaussian kernel size ;. Therefore,
when |r;| becomes larger than its own “observation window”,
measurement z; is identified as an outlier and included in set
S. The respective Gaussian kernel is then zeroed out, indicat-
ing that no further information is to be extracted from that
measurement; (ii) to the benefit of computational efficiency,
measurements included in bad data set S are not actually
removed from the measurement vector. Instead, advantage is
taken from the G3M row-processing property. This enables a
virtual measurement removal by checking the current values of
the weights in matrix W. Since the erroneous measurements
violate the strictly positive weight restriction, outliers are
simply skipped by the orthogonal technique; (iii) initialization
based on arbitrary values (such as voltage flat start) is required
only in the first iteration, since in subsequent ones current state
estimates are used as initial state values.

The case studies reported in the following section illustrate
the application of MCC-based state estimation.

VI. SIMULATION RESULTS

The proposed Orthogonal MCC-Estimator is evaluated
through several case studies conducted with three test systems:
a 3-bus test system, and the IEEE 30-bus and 57-bus networks.
The first one illustrates the properties and main features of
the MCC approach as compared with the WLS method, at a
level of detail which is only feasible with a small system. The
larger, more realistic power networks are employed to assess
the performance of the proposed estimator under a multitude
of scenarios that consider distinct load/generation conditions,
as well as the presence of multiple bad data.

All simulations have been conducted in MATLAB using
full nonlinear models for the test systems. A Gaussian ran-
dom number generator is used to simulate the measurement
errors, whose assumed accuracy levels are 3 x 103 p.u. for
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Fig. 1. 3-bus test-system

voltage magnitudes and 2 x 1072 p.u. for power flow and
injection measurements. The metering schemes are composed
of active/reactive power injection, active/reactive power flow,
and bus voltage magnitude measurements, which are evenly
distributed throughout the network. All power measurements
are taken in active/reactive pairs.

A. Illustrative results for the three-bus test system

This subsection presents the results of simulations carried
out with the 3-bus test system shown in Fig. 1. The voltage
magnitude measurement at bus 2 is assumed to be a gross
error, whose magnitude is equal to 15 standard deviations.
Table I shows the actual values for measured quantities ob-
tained from a power flow study, the measurement values, the
estimates obtained from both conventional WLS method and
the proposed MCC approach, and the corresponding residuals.
For convenience, the data and the results for the gross mea-
surement appear in bold face. It should be emphasized that no
post-processing stage for handling bad data has taken place,
so that all results have been obtained in the presence of the
gross measurement for the two methods.

TABLE 1
MEASUREMENT ESTIMATES AND RESIDUALS FROM WLS AND MCC
ESTIMATORS
Power Measur. Measur. estimates Residuals
Measur.
Flow Value WLS MCC WLS MCC
i 1.0500 1.0412 1.1111 1.0473 -0.0699 -0.0062
Va2  1.0000 1.2121 1.0640 0.9972 0.1482 0.2149
V3 0.9868 0.9889 1.0510 0.9838 -0.0622 0.0051
pi_2  0.7114 0.7102 0.7179 0.7165 -0.0077 -0.0063
p2_1  -0.7114 -0.7161 -0.7179 -0.7165 0.0018 0.0004
pi_3  0.8014 0.8117 0.8080 0.8094 0.0037 0.0023
p2_3 04114 04038 04165 0.4166 -0.0127 -0.0128
gqi_2 0.5271 0.5266 0.5205 0.5276 0.0061 -0.0011
g2_1 -0.4959 -0.4914 -0.5020 -0.4951 0.0106 0.0037
gi_z 0.3081 0.3095 0.3013 0.3102 0.0083 -0.0007
g2_3 0.0319 0.0319 0.0304 0.0332 0.0015 -0.0013
P 1.5129 1.5276 1.5259 1.5259 0.0017 0.0017
Py -0.3001 -0.3016 -0.3014 -0.2999 -0.0002 -0.0017
Ps -1.2000 -1.2141 -1.2129 -1.2128 -0.0012 -0.0013
Q1 0.8352 0.8391 0.8217 0.8379 0.0174 0.0013
Q2 -0.4639 -0.4639 -0.4716 -0.4619 0.0077 -0.0021
Qs -0.2504 -0.2512 -0.2690 -0.2490 0.0178 -0.0022

In order to have a global index to compare the performance
of the two methods, we make use of a nodal voltage metric
previously proposed in [14], given by:

2\ 3
) (12)

where V5 and V"¢ are the estimated and actual (obtained
from the underlying power flow study) bus voltage phasors,

7est Y Ftrue
Vet =

1
My = (N 2 i1

TABLE 11
STATE ESTIMATES GIVEN BY WLS AND MCC ESTIMATORS

Voltage Magnitudes Angles
Bus Power Power
Flow WLS MCC Flow WLS MCC
1 1.0500 L1111  1.0473 0.0 0.0 0.0
1.0000 1.0640 0.9972 | -0.0678 -0.0608  -0.0687
3 0.9868 1.0510 0.9838 | -0.1505 -0.1346  -0.1529
TABLE III
BUS VOLTAGE METRIC VALUES FOR WLS AND MCC ESTIMATORS
My, 0.0639 | 0.0032
35 T T T T T T
30+ WLS ¢ =0.01 q
ol MCC 6 =0.01
' Evolution of
/! McC
E 201 M (reduction of o)
a

0.1 -0.05 0 0.05 0.1 0.15 02 0.2¢
Error - p.u.

Fig. 2. Evolution of the error PDF through the Parzen windowing process
for the MCC estimator and the error PDF of the WLS estimator

respectively. The metric values presented in Table III are
obtained by applying the performance index defined in (12)
to the results in the Table II.

Results in Tables I, IT and III confirm that the gross error on
measurement V5 severely affects the state estimates computed
by the WLS method. On the other hand, the estimates provided
by the MCC approach are virtually free from the erroneous
measurement effects.

To look into that difference of performance in more detail, a
gradual reduction of Parzen windows with a fixed decrement,
that is, 0P = oF — Ac with a fixed Ao, has been
implemented for MCC. This adjustment mechanism differs
from the proposed one based on (11) and admittedly leads to a
significantly slower convergence rate. It is used here only for
illustration purposes, since it allows a better visualization of
how the estimates for the residual probability density function
evolve through the iterations. The latter are shown as the
plots in red in Fig. 2. The same figure shows in blue the
corresponding pdf estimate obtained with the WLS method.
One can notice that the WLS pdf significantly departs from a
Gaussian function profile due to the influence of the bad data.
On the other hand, the green plot obtained from MCC for a
kernel width op;cc = 0.01 shows that most residual errors
are concentrated near zero, while a distant and isolated outlier
of magnitude +0.21 p.u. is clearly identified. This illustrates
how the effects of gross errors can be effectively suppressed
by the dynamic window width adjustment mechanism of the
MCC approach.



B. Performance assessment of the orthogonal MCC estimator
as applied to realistic power networks

In this subsection, the Givens rotations-based MCC estima-
tor is applied to two benchmark systems in order to perform
an overall evaluation of its bad data rejection properties under
a variety of operation conditions. The IEEE 30-bus and 57-bus
benchmark systems and the corresponding metering schemes
are presented in Figs. 3 and 4, respectively. Data for these
networks are available in [15]. Prior to applying the MCC-
based state estimator, numerous case studies based on such
test systems are conceived for distinct generation and load
profiles as follows:

(a) 8,000 distinct operating conditions are considered over
a 24-hour period for both networks encompassing light,
intermediate, and heavy loading levels (i.e. 70% to 100%
of full load);

(b) Measurements are simulated according to the metering
schemes shown in Figs. 3 and 4 by superposing Gaussian
noise with variance of 3% to the true values of the
measured quantities;

(c¢) The true values for measured quantities and state vari-
ables are obtained from power flow studies conducted on
each test system for all considered loading conditions.

In addition, all above cases are subject to the presence of
none, single or multiple bad data. Gross error magnitudes
are between 10 to 25 standard deviations, and the number
of bad data per simulation varies from 0 to 5. Among the
8,000 performed simulations per test system, 500 are bad
data-free and the remaining 7,500 include at least one gross
measurement.

The overall results for each of the test systems are summa-
rized in Table IV. In the table, a success (S) means that the
proposed algorithm has been able to capture all measurements
simulated with gross errors. Otherwise, the bad data processing
is labeled as failed (F). The results in Table IV show that for
cases without gross errors and with a single gross measurement
the algorithm accomplishes an 100% success rate, for both
test systems. This also means that, under those conditions, the
orthogonal MCC-based estimator is able to correctly estimate
the state variables and thus properly reject the effects of a
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Fig. 3. IEEE 30-bus test system

@ Bus injection
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Fig. 4. IEEE 57-bus test system
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TABLE IV
ALGORITHM EFFECTIVENESS IN THE PRESENCE OF 0-5 GROSS ERRORS

Error Number of Gross Errors
Mag. 0 1 2 3 4 5
F 0 2 9 9 30
EE 1071501 g 500 498 491 481 470
30-bus F 0 3 7 25 30
[157, 2001 500 497 483 475 470
F 0 0 7 20 39
[200, 2501 500 500 483 480 461
Efficiency 100.00% 100.00% 99.67% 97.13% 95.73% 93.40%
Error Number of Gross Errors
Mag. 0 1 2 3 4 5
F 0 3 2 24 38
EEE 1071570 g 500 497 478 476 462
57-bus F 0 3 26 26 i
[150,200] 500 487 474 474 456
F 0 2 15 31 33
(200,250 500 498 485 469 467
Efficiency 100.00% 100.00% 98.80% 95.80% 94.60% 92.33%

single bad data when they are present. For multiple bad data,
some unsuccessful cases occur whose relative number grows
slightly in proportion to the number of simulated outliers.
Nevertheless, the efficiency levels are still high, since success
rates of 93% and 92% are maintained even under the worst
condition of 5 simultaneous gross errors.

Another factor to be evaluated is the quality of estimation
results, which is defined here as the ability of the proposed
approach to produce sufficiently accurate state estimates. The
nodal voltage metric (12) is used for that purpose and applied
to all successful cases presented in Table IV. A 0.01 p.u.
threshold is employed to define the accepted accuracy level,
that is, an estimator run is considered sufficiently accurate if
My < 0.01 p.u. The percentage rates of accurate results for
the two test systems as a function of the number of simulated
bad data are shown in Table V. Those results demonstrate that
a remarkably high percentage of the state estimates are well
adherent to the actual values.

Further investigation on the causes of the unsuccessful cases
have been carried out. It reveals that most of those cases are
due to the fact that the random sampling process used to select



TABLE V
QUALITY OF THE ESTIMATES FROM CASE STUDIES WITH BAD DATA

Test Number of Gross Errors
System 1 2 3 4 5
30-bus 100.00%  98.92% 97.64%  98.03%  96.76%
57-bus 100.00%  99.93%  99.86%  99.50%  99.78%
TABLE VI
OVERALL EFFICIENCY CONSIDERING ONLY CASES WITHOUT OF CMsS
AND CSs
Test Number of Gross Errors
System 1 2 3 4 5
30-bus 100.00%  99.87% 99.87%  99.87%  99.87%
57-bus 100.00%  99.93%  99.80%  99.87%  99.73%

measurements with gross errors occasionally produces cases
involving strongly correlated bad data. When processed by the
algorithm of Section V, such cases may give rise to critical
measurements (CMs) or critical sets of measurements (CSs)
contaminated with gross errors. As it is well known from
state estimation literature [10], [16], CMs and CSs pose severe
challenges to any bad data processing method which should be
resolved by measurement redundancy enhancement. If cases
involving gross errors on CMs and/or CSs are disregarded, the
success rates of the MCC-based estimator become superior to
99% for the two test-systems, as shown in Table VI.

Finally, Table VII summarizes the convergence rates of the
proposed algorithm. The table shows the average number of
iterations for both the outer MCC loop and the inner G3M
loop. Clearly, the number of MCC iterations tends to increase
with the bad data occurrences. As for the orthogonal solver
based on Givens rotations, 2 to 3 iterations are typically
required for convergence, regardless of how many gross errors
are present.

TABLE VII

AVERAGE CONVERGENCE RATES FOR THE ORTHOGONAL
MCC-ESTIMATOR

IEEE Average Number of Gross Errors
System Values 1 2 3 4 5
30-bus MCCiter. 287 401 454 556 691
G3M 247 243 242 234 233
$7-bus MCCiter. 292 383 480 580 6.76
G3M 230 234 232 230 226

VII. CONCLUSIONS AND FINAL REMARKS

This paper introduces an orthogonal implementation for
a novel state estimation algorithm based on the maximum
Correntropy principle. Correntropy fundamentals pertain to the
field of Information Theory, and are based on the rationale
of extracting maximum information from existing observation
gathered from a given process. The accessory use of dynami-
cally adjusted Parzen windows allows that outliers be screened
and suppressed during the iterations, which makes the method
resilient to the presence of bad data. On the other hand,
the proposed orthogonal implementation imparts numerical
robustness to the bad data suppression properties of Maximum
Correntropy Criterion.

Simulations conducted on a small network illustrate the
Correntropy properties as well as its robustness upon the
presence of gross errors. The mechanism proposed in this

paper for Parzen windows adjustment is tested through ex-
tensive simulations that include a variety of power system
operating conditions and the occurrence of multiple bad data,
by using two IEEE test systems. Reported results indicate
remarkable high rates of successful results, both in terms of
bad data suppression and final quality of the state estimates.
The average convergence rates of the proposed algorithm are
quite reasonable, particularly if one considers that the proposed
estimator does away with the conventional post-processing
stage for bad data identification and removal.
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