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ABSTRACT As technology and artificial intelligence conquer a place under the spotlight in the automotive
world, driver drowsiness monitoring systems have sparked much interest as a way to increase safety and
avoid sleepiness-related accidents. Such technologies, however, stumble upon the observation that each
driver presents a distinct set of behavioral and physiological manifestations of drowsiness, thus rendering
its objective assessment a non-trivial process. The AUTOMOTIVE project studied the application of signal
processing and machine learning techniques for driver-specific drowsiness detection in smart vehicles,
enabled by immersive driving simulators. More broadly, comprehensive research on biometrics using the
electrocardiogram (ECG) and face enables the continuous learning of subject-specific models of drowsiness
for more efficient monitoring. This paper aims to offer a holistic but comprehensive view of the research
and development work conducted for the AUTOMOTIVE project across the various addressed topics and
how it ultimately brings us closer to the target of improved driver drowsiness monitoring.

INDEX TERMS Biometrics, biosignals, computer vision, data, driver, drowsiness, simulator, vehicles.

I. INTRODUCTION

DRIVER status monitoring (DSM) systems have
emerged as an innovative solution to prevent drowsi-

ness and fatigue-related traffic accidents. Some major auto-
motive manufacturers, such as Ford, Toyota, BMW, and Nis-
san, have been developing DSM systems since the 2000s [1],
making use of visual, vehicle, and physiological measure-
ments to monitor and evaluate the state of the driver and
triggering automatic alerts if drowsiness is detected. By using
systems with a half-second warning time, one can expect an
estimated 60% decrease in the number of accidents, whereas
an extra second can prevent up to 90% of collisions [2].

To develop such systems, since real on-road drowsiness
acquisitions are generally unsafe, researchers often rely on
simulated environments. However, drivers’ behavior in such
scenarios is unrealistic since they do not perceive risk in a
similar way, resulting in discrepancies between the observed

behavioral patterns and the expected real-world observations.
Emulating on-road experiences more faithfully during

simulation-based acquisitions has resulted in improved data.
The collection of biological signals has had a similar ef-
fect [3], [4]. Several simulation-based data collection projects
have been recently conducted, including naturalistic driving
studies and field operational tests [5]. However, even when
considering these advances, the disparities between natural-
istic data and simulator-based acquisitions are still a relevant
challenge.

One other significant hurdle to the reliability of developed
products in real-life conditions is the high variability of
behavioral patterns across drivers. A drowsiness monitoring
system can present acceptable average accuracy levels for
a given set of drivers and, simultaneously, be inadequate at
recognizing the specific sleepiness patterns of other drivers.
This could be improved by taking advantage of biometric
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FIGURE 1: Holistic view of the AUTOMOTIVE Project, showing the links between the explored topics and how they ultimately
contribute for the central goal of improved driver drowsiness monitoring.

recognition solutions which, by delivering continuous iden-
tity predictions, would enable the continuous learning of
user-specific drowsiness models using the data acquired from
each driver. Although major automotive brands have been
introducing biometric recognition technology solutions, the
use of biometrics for continuous learning of driver-specific
models is still an open topic.

For both drowsiness monitoring and biometric recognition
in driving scenarios (as well as several related research
topics, e. g., emotion recognition) two human characteristics
stand out: the face and the electrocardiogram (ECG). The
face is the focus of most research, since it can be acquired
with inexpensive cameras, carries drowsiness information,
and is universally accepted as one of the most effective and
intuitive approaches for biometric recognition. However, its
performance is known to suffer significantly when the quality
of the acquisition is compromised by varying illumination,
occlusions, movement, among other factors [6], which should
be expected when monitoring a driver inside a moving vehi-
cle.

On the other hand, the ECG is generally robust against
illumination and visibility factors that would affect face
acquisitions. Research on ECG biometrics has quickly been
gaining traction due to its universality, ease of acquisition
and processing, difficult counterfeiting, and reliable distinc-
tiveness [7]. As a physiological signal, the ECG also varies
significantly with psychophysiological states, thus carrying
information on wellbeing factors such as sleepiness, stress, or
emotions. The need for continuous contact is a considerable
inconvenience, but this can be effectively minimized through
modern off-the-person acquisition techniques (such as the
CardioWheel [8] or the Nymi Band [9]).

With this, the complementary nature of the ECG and face

data for driving scenarios seems obvious. A multimodal solu-
tion would combine the benefits observed in recent years with
deep learning approaches for face recognition in highly un-
constrained scenarios [10], [11] with the meaningful strides
verified in ECG biometrics [12]. Its integration in a reliable,
robust, and personalized alert system combining multimodal
biometric recognition and drowsiness detection represents a
sizable challenge. The main hurdle concerns the processing
and classification of real data by algorithms developed on
simulated data. Nevertheless, this is still the most promising
path towards the next generation of intelligent recognition of
driver drowsiness.

This was the central goal of the AUTOMOTIVE project.
To advance the state-of-the-art algorithms regarding behav-
ioral variability patterns and acquisition quality, while deal-
ing with the domain mismatch between simulated scenar-
ios and real-world setups. The AUTOMOTIVE project was
conducted in Portugal and led by the Institute for Systems
and Computer Engineering, Technology and Science (IN-
ESC TEC), with the participation of the company CardioID
Technologies, the Instituto Superior de Engenharia de Lisboa
(ISEL), and the Universidade Lusófona de Humanidades e
Tecnologias (ULHT).

This paper presents the main achievements and highlights
of the AUTOMOTIVE project. This entails the description
of the meaningful strides achieved in its diverse research
topics (see Fig. 1) and how they contribute to the central
goal of advancing the state-of-the-art in driver drowsiness
monitoring. Beyond this introduction, this paper covers the
project’s work on driving simulators and data collection, in
section II; the pattern recognition methodologies for bio-
metrics, emotion recognition, and drowsiness monitoring,
in section III; and the general conclusions drawn from the
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FIGURE 2: Summary of the diverse measurement ap-
proaches used for driver drowsiness detection (adapted from
[13]).

AUTOMOTIVE project, in section IV.

II. DATA ACQUISITION
Driving research is a broad field with numerous projects typi-
cally carried either in simulated or naturalistic environments.
Virtual driving environments stand out due to the minimal
risk to the volunteers during the experiments and the possibil-
ity of fully controlling vehicle physics and traffic complexity.
As such, whether by collecting large-scale data and training
deep neural networks without any logistic restraints or by
emulating exact traffic circumstances to validate trained mod-
els in extreme scenarios, using simulator-based development
has been a key contributor to the great recent strides in
autonomous driving.

This section presents some driving simulation environ-
ments currently publicly available or provided upon request
for research purposes:
• Microsoft AirSim1 [14] was specifically designed as a

testing platform for artificial intelligence (AI) experi-
ments. This platform offers an application programming
interface (API) for acquiring sensor, telemetry, and im-
age data from large-scale urban and natural environ-
ments. Its cameras have photo-realistic lighting, real-
time depth view, and object segmentation. The control
of the vehicle is based on the Unreal physics engine;

• CARLA1 [15] enables complete programmatic con-
trol over the simulation. This platform includes an au-
tonomous driving sensor suite with configurable sensors
and ground-truth data, emulating a virtual city with dy-
namic pedestrians and vehicles. This simulator extends
a C++/Python API and manages remote procedure call
(RPC) communication through an event-based server-
client model;

• Deepdrive Voyage2 offers a TensorFlow engine for
deep reinforcement learning while providing extensive
hours of prerecorded training from a self-driving com-
petition between users performing complex maneuvers;

1Among the simulators, Microsoft AirSim and CARLA are open-source.
2GitHub: deepdrive/deepdrive, available on https://github.com/deepdrive/

deepdrive, more info at https://deepdrive.io/index.html.

TABLE 1: Main databases currently available for research
in biometrics and drowsiness monitoring with ECG and
face video (those used in the AUTOMOTIVE project are
highlighted in italics).

Database Data Type Access
DROZY, The ULG

Multimodality
Drowsiness Database [18]

KSS, ECG, Face Video Public

UTA
Real-Life

Drowsiness Dataset [19]
KSS, Face Video Upon Request

Swedish National
Road and Transport

Research Institute [20]
KSS, ECG Upon Request

Stress Recognition
in Automobile
Drivers [21]

ECG Public

UofTDB [22] ECG Upon Request

PTB [23] ECG Public

CYBHi [24] ECG Public

E-HOL [25] ECG Public

Youtube Faces Database [26] Face Video Public

NTHU
Driver Drowsiness

Detection Dataset [27]
Face Video Upon Request

• NVIDIA’s3 platform recreates actual locations with
very high levels of detail, realism, and complexity, thus
massively extending the development and validation of
deep learning models [16]. It has a first server that
renders the environment and generates simulated sen-
sor data and a second with the prototype self-driving
hardware engine that processes data as if deployed in-
vehicle.

Regarding the data that can be acquired in driving research,
either through simulated or naturalistic environments, the
most commonly used in-vehicle measurement sensors for de-
tecting driver drowsiness can be categorized into vehicle be-
havior, driver behavior, and physiological signals (according
to [17]). Fig. 2 organizes the types of information acquired
through these three forms of sensing. Some data is publicly
available (or provided upon request for research purposes) as
part of the databases presented in Table 1, where those used
in the current project are highlighted in bold.

One of AUTOMOTIVE’s objectives was to develop a
platform to simulate a real driving experience and effectively
collect multimodal data in real-time. Hence, two simulator
platforms were developed, where the main observable dif-
ference between the two relies on the immersiveness of the
environment. The first simulator, AUTOMOTIVE DD (Desk-
Driver) Simulator, runs on a simple desktop monitor with
the driver seated on a chair. The second, AUTOMOTIVE

3NVIDIA DRIVE Sim. Available on https://developer.nvidia.com/drive/
drive-sim.
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IHC (In-Half-Car) Simulator, includes a more realistic virtual
driving environment, projected onto wide screens surround-
ing the driver. For added realism, the driver is behind the
wheel of a real (parked) car cut in half.

Both simulator platforms integrate different sensory infor-
mation from different sources, namely:

• The electrocardiogram (ECG), acquired with the Car-
dioWheel, a machine learning solution that has sen-
sors embedded in the steering wheel and recognizes
the driver’s identity based on ECG [8]. Several heart
metrics features are automatically extracted, to be used
in the current work;

• Face video, acquired with the Intel RealSense™ SR300
camera, which simultaneously captures RGB, depth,
and infrared video channels. This camera’s software
development kit automatically detects 78 face land-
marks [28];

• Driving style events, i. e. dynamic signals such as ac-
celeration and braking, are obtained directly from the
simulator [28];

• Performance telemetry in simulated urban and highway
environments, i. e. information such as speed control,
lane following, acceleration, and braking inputs, are
obtained using the Mobileye™ collision-avoidance sys-
tem [28].

The designed experimental protocol for the acquisition is
the same for both simulators and is presented below.

A. EXPERIMENTAL PROTOCOL
The data acquisition protocol was influenced by the work of
Naurois et al. [29]. Its design addresses the need for robust
and complete data. Hence, we collect data regarding vehicle
movement (steering wheel angle, vehicle speed, accelera-
tion, and braking), the driver’s behavior (facial expressions
and features), physiology (their electrocardiogram), and their
sleepiness state, as well as additional information that can
be useful to further understand the subjects and their driving
experience.

Before the acquisition, we check if the volunteer has a
valid driver’s license, is not diagnosed with epilepsy, and is
not susceptible to kinecytosis (the short form of the Motion
Sickness Susceptibility Questionnaire [30] is applied for this
purpose). Furthermore, their susceptibility to sleepiness is as-
sessed by applying the Epworth Sleepiness Scale© [31], and
the Horne and Ostberg morningness-eveningness question-
naire is filled to determine the volunteer’s circadian rhythm
relation to the different times of the day. Other information is
collected, including the subject’s age, sex, self-assessed sleep
quality, coffee consumption, comfort with the driving task,
yearly driving frequency, general daily schedule, diagnosed
sleep conditions, and use of medication or devices that may
influence their natural heart rate.

On the day of the acquisition, the subject is asked to not
drink caffeinated nor alcoholic beverages and to sleep six
to nine hours the previous night. If possible, the acquisition

is scheduled after lunchtime, since the probability of falling
asleep in this period increases three-fold [32]. Just before
the start of the data collection, the volunteer has a short test
drive for as long as they need, to acclimate to the particular
driving experience in the simulator. This initial preparation
period aims to minimize the influence of the adaptation to
the simulator in the collected data.

After this initial period, the subject drives a car out of
an urban area and into a highway, taking approximately 2
minutes. They then drive on the aforementioned highway for
approximately sixty minutes before arriving at their destina-
tion, another urban area where the drive ends. During this
whole process, the driver is periodically asked (every 5 to
15 minutes) for their self-assessed score on the Karolinska
Sleepiness Scale (KSS), on a range from 1 (the highest level
of alertness) to 9 (the highest level of sleepiness, were the
subject is combating falling asleep). After the acquisition,
the general well-being of the subject is assessed (looking
for signs of kinecytosis), and they are asked to fill a final
questionnaire including the System Usability Scale.

B. AUTOMOTIVE DD SIMULATOR
1) Setup

This simulator’s graphics and physics are supported by
Unity 3D, a rendering and physics engine that has gained
widespread adoption in gaming and research areas, and is
featured in several state-of-the-art driving simulators. It is a
general-purpose platform that enables fast development and
prototyping of simulated environments while allowing for
flexible scripting control of all virtual environment elements
with C# or Javascript.

The designed virtual environment is composed of two ur-
ban areas connected by a highway. The urban areas provide a
set of complex road geometries and interaction opportunities
with a variety of agents (e. g., pedestrians, traffic signs,
crosswalks, intersections, buildings). Meanwhile, the high-
way gives this environment a flexible component, enabling
experiments of customizable length and duration, as well as
varying road monotony. The procedural generation of this
highway road is what creates this flexibility. It was imple-
mented by adapting the MicroGSD RoadArchitect4 module,
which generates a static road geometry from a spline defined
by user-placed nodes. The adaptation eliminated direct user
inputs on road geometry and instead parametrized node loca-
tion as a random distribution of 3D points. Such parameters
are:

• Segment size, the longitudinal distance between consec-
utive nodes;

• Number of nodes, which together define the total high-
way length;

• Number of lanes, that can range from single to three-
lane;

4MicroGSD: Road Architect for Unity. Available on https://github.com/
MicroGSD/RoadArchitect.
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FIGURE 3: Running simulation in the AUTOMOTIVE DD
Simulator: view from inside the vehicle.

• Transverse position and height range: from these, a
coordinate is randomly chosen, hence defining curve
and elevation variations along the highway.

By defining these parameters, a highway is generated for
every session, allowing us to control the experiment duration
and the complexity of the driving task and ensuring that infi-
nite road geometries with equivalent difficulties are available.
Furthermore, having the spline definition of road trajectory
makes it possible to define a set of non-playable character
(NPC) vehicles that travel the highway alongside the user.
Generating cars that follow the defined splines and whose
speeds are drawn from random distributions makes it possible
to simulate and adjust traffic dynamics for a more realistic
experience.

An example of the running simulation can be seen in
Fig. 3. The multimodal nature of this setup requires it to com-
municate with several sensors, each collecting data at differ-
ent rates. The setup incorporates state-of-the-art sensor de-
vices such as the CardioWheel, acquiring ECG at 1 kHz [8],
the PulseOn wrist-band, acquiring optical heart rate signals
at 25 Hz [33], [34], the MoveSense5 chest-band, acquiring
clinical-grade heart rate at 512 Hz, the Mobileye Connect6

collision-avoidance system, and the Intel RealSense7 camera,
performing RGB-depth facial analysis at 50 Hz. Furthermore,
the simulated environment processes the data provided by
these sensors and is also capable of producing performance
telemetry as control of speed limits, lane following angle,
obstacles, collision events, traffic violations, and accelera-
tion/braking inputs.

However, managing multiple high-throughput low-latency
data sources with precise sampling rates requires a
performance-focused architecture. This type of system is
usually set with a central queuing structure, where inputs

5MOVESENSE medical sensor. Available on https:
//www.movesense.com/wp-content/uploads/2020/12/
Movesense-Medical-Spec-Sheet-2020-12-v1.0.pdf.

6MOBILEYE: Technical Specification Sheet. Avail-
able on https://fleetsafe.com.au/wp-content/uploads/2019/06/
Mobileye-6-Technical-Spec-v0.2-1.pdf.

7Intel® RealSense™ Computer Vision: Depth and Tracking cameras.
Available on https://www.intelrealsense.com/.

and outputs are integrated - a classic example of the pro-
ducer/consumer model, typically implemented using Mes-
sage Queuing Telemetry Transport (MQTT) or Advanced
Message Queuing Protocol (AMQP).

Specifically designed for handling multiple real-time in-
tensive data streams, Apache Kafka is the proposed solution
as an integration middleware platform. The core simplicity
of this system favors performance and allows for massive
scalability: a server (zookeeper) receives data from several
producers and allows it to be consumed from a transaction
log distributed into multiple nodes (brokers). By replicating
messages through all brokers, Apache Kafka guarantees per-
formance and redundancy: if a node fails, consumption is
resumed at the next available broker. Typical use cases are
streaming services or telemetry analytics.

In terms of performance, changing the batch queue size
enables reaching a balance between transmission latency
and overall throughput, as higher throughput also implies
higher latency between production and consumption due
to batch buffering (see Table 2). With the Unity driving
simulator as API for production/consumption, and reducing
latency to 20 ms, the platform still manages approximately
five thousand messages per second, i. e., sample rates of
5 kHz in simultaneous parallel streams directly feeding the
rendering simulation. If larger messages are transmitted, both
the average latency and throughput drop significantly (see
Table 3), though the average bit rates can rise to 1 Gbit/s
depending on batch queue size.

To test the capabilities of this middleware platform, a
benchmarking test was performed at localhost with an i7-
8565U CPU, 16 GB DDR4 SDRAM, and a 256GB PCI
NVM SSD. Two sample messages of 1 kB and 1 MB were
used to evaluate performance at different batch sizes on a
two-broker configuration by sending three thousand identical
messages in each run. Timestamps were registered at pro-
duction and consumption for each message, then averaged at
test completion for average latency. Elapsed times for each
test offer average throughput (in messages per second). The
average bit rate converts average throughput from messages
per second to bits per second. Linger time for Apache Kafka
broker is set at 1 ms.

Apache Kafka’s low latency is paramount for a real-time
streaming platform, specifically for biometric systems or ob-
stacle detection alerts, both of which depend on millisecond-
level response times to be effective. Benchmark results (Ta-
ble 2 and Table 3) confirm that this platform can process
several thousand messages per second at millisecond trans-
mission latency. Overall, these are significantly faster than
regular socket communication and hence fulfill the require-
ments of a driving environment handling real-time analysis
of multiple sources with variable sampling intervals.

As a robust but loosely coupled integration architecture,
this platform can also integrate several different producing
and consuming modules, including adapting to an actual
driving environment (which can replace this simulator with
no further changes required).
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TABLE 2: Apache Kafka metrics for 1 kB sample messages.

Batch Queue
(messages)

Average
Latency (s)

Average
Throughput
(message/s)

Average
Bitrate
(Mbit/s)

1 0.011 1157 9.256
10 0.021 5114 40.912

100 1.965 12851 102.808
1000 2.544 19991 159.928

TABLE 3: Apache Kafka metrics for 1 MB sample messages.

Batch Queue
(messages)

Average
Latency (s)

Average
Throughput
(message/s)

Average
Bitrate
(Mbit/s)

1 9.239 78 624
10 9.724 84 672

100 11.836 95 760
1000 22.629 145 1160

The resulting simulation is displayed on an ASUS Monitor
(model VS197DE TN 18.5" 16:9 60Hz FWXGA), which
stands in front of the driver. The steering wheel is a Logitech
G Dual-Motor Feedback Driving Force G29 Gaming Racing
Wheel with Responsive Pedals. A photograph of the platform
being used is shown in Fig. 4.

2) Collected Data
A different experimental protocol than the one previously
presented was designed to compare the heart rate variability
(HRV) features derived from the cardiac data collected using
the Cardiowheel, PulseOn, and MoveSense sensors. Results
confirming the equivalency of such features during driving
tasks would promote the introduction of physiological in-
sight in drowsiness detection systems, as that would imply
that off-the-person in-vehicle systems (CardioWheel) [8]
are effectively interchangeable with on-the-person systems
(MoveSense and PulseOn).

This particular experiment involved thirteen volunteers,
each participating in two half-hour drives on the AUTOMO-
TIVE DD Simulator. Participants would rate their drowsiness
level every five minutes using the KSS. Session scheduling
intended to cover a variety of alertness states, with each
participant having a session in the middle of the morning
and another in the late afternoon. For each of these, circadian
settings in the simulator were tuned to potentiate alertness
(using daylight in morning sessions) or drowsiness (night-
light in late afternoon sessions).

3) Data Applications
Using the collected data, the correlation between inter-beat
intervals (IBIs) from each source was computed, as well
as the similarity of the resulting HRV, evaluating time, fre-
quency, and non-linear domain features. The cardiac sig-
nals retrieved from each sensor were synchronized in each
session. From R-peak locations detected using the Pan-
Tompkins algorithm, series of IBIs were computed and af-
terward corrected using the algorithm described in [35].

Direct comparison of IBI sequences showed a satisfac-
tory level of equivalency between all data sources, although

FIGURE 4: Experimental setup of the AUTOMOTIVE DD
Simulator during use. In the monitor, the simulation is being
displayed in the view from outside the vehicle.

the PPG-based IBIs differ more consistently from the other
sources. This disparity is mitigated when IBI sequences are
transformed into sets of HRV features. This convergence is
justified since compressing a sequence of IBIs to a single
HRV feature loses the vascular modulation of the rhythm
measured by the wrist PPG sensor, but maintains the signif-
icant contribution of heart compression measured with the
cardiac sensors.

These results suggest the feasibility of flexible driver
drowsiness detection systems, using any type of cardiac
rhythm sensor to assess the driver’s state. The possibility
of such a flexible system can accelerate the implementa-
tion of driver monitoring systems based on cardiac features
and increase the functionality of advanced driver-assistance
systems (ADAS) by endowing them with prevention and
adjustment capabilities.

C. AUTOMOTIVE IHC SIMULATOR
1) Setup
Based on the Apache Kafka platform described in AUTO-
MOTIVE DD Simulator, the functionalities of acquisition
and storage of the physiologic data, as well as the biometric
recording, user identification, and authentication, are avail-
able for the integration of multiple simulation environments.
As such, a simulator developed externally to the current
project by the ULHT partner was integrated to create a more
immersive simulation.

The ULHT simulator offers several driving scenarios for
greater diversity during the driving sessions. These include
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highways, suburban roads, and urban scenarios. Moreover,
it includes the procedural generation of traffic events for the
analysis of the driver’s response. Accessing the database, the
event manager can provide event timestamps, allowing the
extraction of the physiological data that describes the driver’s
reaction to the corresponding events and, ultimately, their
driving performance.

The order of event occurrences must ensure some novelty
across different sessions for the same user. As the route
mandates a logical sequence in the highway and suburban
road environments, these driving sessions are expected to
include all planned events. On the other hand, to ensure a
consistent experience across all users, the vehicle has a GPS
available in the driving interface, indicating the route to fol-
low in the urban environment. This environment also stores
several invisible checkpoints in particular spots, such as road
intersections or avenues, which trigger events according to
the drivers’ proximity.

Some implemented suburban event scenarios are:
• Moving emergency vehicles;
• Stopped vehicles (including after accidents);
• Vehicles breaking road laws;
• Weather such as rain and fog.
Some urban event scenarios available in the simulator are:
• Pedestrians crossing the road (on crosswalks or not);
• Cyclists on the road;
• Traffic light intersections.
Summing up, with the integration of the ULHT simulator,

an automated event generator enables the simulation of more
realistic driving sessions (for example, commuting between
urban and suburban environments with regular traffic events).
An example of the running simulation can be seen in Fig. 5.
The resulting simulation was designed to be projected onto an
angled display surrounding the driver, who is sitting on a real
(parked) car with an integrated steering wheel and pedals. An
illustration of the planned setup can be seen in Fig. 6.

III. DEVELOPED ALGORITHMS
The following subsections describe several proposed meth-
ods and comparison studies carried out over the last years
of the AUTOMOTIVE project. Some of the challenges and
current state-of-the-art related work were already discussed
in [12]. This reference was the guideline for our published
research in electrocardiogram (ECG) presented below.

A. ECG BIOMETRICS
A biometric system aims to either identify or verify the
identity of a person based on a measurement of one or
multiple biometric traits [12]. Usually, it is composed of the
following modules: acquisition, quality assessment, feature
extraction, storage, and decision (see Fig. 7).

The biometric algorithm uses the data from the acquisition
and storage modules and performs quality assessment, fea-
ture extraction, and decision. The data is commonly finger-
print, iris, palmprint, or face images, but can also be medical

(a) Running simulation on the Highway scenario in the
AUTOMOTIVE IHC Simulator. Adverse weather conditions
are active (rain).

(b) Running simulation on the Suburban Road scenario in the
AUTOMOTIVE IHC Simulator.

(c) Running simulation on the Urban scenario in the AU-
TOMOTIVE IHC Simulator. Traffic lights, a pawn on the
crosswalk, and a GPS indicating the route to follow can be
seen.

FIGURE 5: Running simulation on different scenarios in
the AUTOMOTIVE IHC Simulator. Views from inside the
vehicle.

biometric measurements, such as the electroencephalogram
(EEG) or the electrocardiogram (ECG). The use of the ECG
as a biometric trait is relatively recent but has been gaining
momentum, as researchers explore deep learning methodolo-
gies applied to this signal and novel ECG acquisition setups
enable comfortable signal collection from daily objects [12],
[36].

In normal conditions, an ECG signal is a cyclic repetition
of five easily recognizable deflections: the P, Q, R, S, and
T waves (see Fig. 8). The ECG can be used to discriminate
between subjects in biometric recognition since it varies
according to the following inter-subject factors:

• Heart Geometry such as heart size or cardiac muscle
thickness affects the depolarization of the heart;
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FIGURE 6: Design of the experimental setup of AUTOMO-
TIVE IHC Simulator. 3 projectors are displayed on top of the
car. The throw distances of these projectors are represented.

• Individual Attributes such as age, weight, or pregnancy,
shifts the orientation of the electrical current conduction
vectors across the heart.

Nevertheless, intra-subject variability factors, such as
physical exercise or meditation, cardiac conditions, posture,
emotions, fatigue, and electrode characteristics and place-
ment, should not be overlooked since they may undermine
the process of biometric recognition [12].

The literature survey in [12] contributed towards the AU-
TOMOTIVE project as follows:

• History of ECG biometrics: a deep survey with the
evolution and current landscape of ECG-based biomet-
ric recognition based on the review of ninety-three state-
of-the-art publications;

• Fundamental background knowledge: a solid
overview of fundamental concepts (such as anatomy,
physiology, and intra-subject and inter-subject
variability), providing a comprehensive guide to
new and current researchers;

• Future research paths: a discussion of the most rele-
vant challenges and the most promising future possibil-
ities regarding research and development in each part of
ECG biometric systems, from acquisition to decision.

For the research topic of drowsiness monitoring, knowl-
edge from ECG biometrics is extremely relevant. One of the
major data sources for driver drowsiness recognition is the
ECG signal, and the topic of ECG biometrics has been cul-
tivating deeper insights that could benefit AUTOMOTIVE’s
target task. Beyond this, ECG biometric algorithms can of-
fer identity information required for continuous user-tuning
drowsiness monitoring algorithms and, ultimately, improve
their performance.

Acquisition Quality
Assessment

Feature
Extraction

Storage

Decision

ENROLLMENT

RECOGNITION

FIGURE 7: General structure of a biometric system (adapted
from [12]).

Atria
Depolarize

Ventricles
Repolarize

Atria Repolarize
Ventricles Depolarize

FIGURE 8: The heartbeat, its characteristic waveforms, and
their relationship with cardiac cycle polarization events on
the heart’s atria and ventricles (adapted from [12]).

The following sections delve deeper into the research
work conducted on ECG biometrics for the AUTOMOTIVE
project, inspired by the conclusions drawn by the literature
survey presented in [12].

1) End-to-end deep learning models
Addressing the lack of end-to-end deep learning approaches
for ECG biometrics, a simple method was proposed for both
identification [37] and identity verification [38] tasks. The
goal was to fully take advantage of the potential and flexi-
bility of deep learning to integrate the whole ECG biometrics
pipeline into a single model. Such a model receives all the
information carried by the raw signals and is optimized as a
whole to freely choose which data is most useful for accurate
and robust decisions.

Proposed model: Inspired by the typical structure of a
convolutional neural network, the model is composed of two
parts: one for feature extraction followed by one for decision
(see Fig. 9). The feature extraction part is composed of four
convolutional layers (with, respectively 24, 24, 36, and 36
1× 5 filters), interleaved with 1× 5 max-pooling layers. The
decision part of the model is composed of a fully connected
layer. For identification (in [37]), this last layer has one
neuron for each identity and softmax activation. It is trained
to offer probabilities for each identity. For identity verifica-
tion (in [38]), the n-dimensional embeddings output by the
layer (with ReLU activation) are processed representations
of the input samples. The task of finding identity matches is
performed through their similarity to other embeddings.

Identification Experiments and Results: The work con-
ducted on [37] and [38] used mainly data from the University
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FIGURE 9: Architecture of the proposed model for ECG
identification and identity verification.

TABLE 4: Identification accuracy results obtained for the
explored experimental setups (* denotes results with data
augmentation based on random permutations).

Experimental Setup Identification Accuracy (%)
A (traditional pipeline) 90.6
B 93.1
C 92.0 (94.2*)
D (fully end-to-end) 92.7 (96.1*)

of Toronto ECG database (UofTDB) [22]. As the current
major off-the-person database, with recordings from 1019
subjects over multiple sessions and postures, it offers an
optimal setup to develop and evaluate robust ECG biometric
algorithms.

Firstly, for identification [37], a study was conducted on
the successive integration of processing stages into the deep
learning model. Let’s consider the traditional ECG biometric
algorithm pipeline divided into four stages: (1) denoising;
(2) preparation; (3) feature extraction; and (4) decision. This
study encompassed four experimental setups: (A) stages 1 +
2 + 3 + deep model; (B) stages 1 + 2 + deep model; (C)
stage 1 + deep model; and (D) only with the deep model.
This amounted to a progressive evolution from the traditional
ECG pipeline to a fully end-to-end model and enabled the
assessment of the benefits of using the latter.

The results (see Table 4) show that the traditional pipeline
results in the poorest accuracy. Setup B, with the deep model
performing just feature extraction and decision, corresponds
to the best results, followed closely by the fully end-to-end
model. Nevertheless, setups C and D can be improved with
data augmentation strategies. Data augmentation is generally
essential for avoiding overfitting deep learning models [39].
However, current strategies are highly specific for image-
based tasks. As such, data augmentation strategies were
specifically designed for ECG biometrics, aiming to mimic
common noise and distortions verified in realistic ECG sig-
nals. Out of seven types of data augmentation, four of-
fered improved performance: random permutations, magni-
tude scaling, baseline wander, and flip. Random permutations
offered the largest improvements, raising the accuracy in
setups C and D to 94.2% and 96.1%, respectively.

Identity Verification Experiments and Results: For

TABLE 5: Identity verification equal error rate (EER) results
(%) for the methodology proposed in [38], when compared
with state-of-the-art alternatives

.

Method Enrollment duration
5 s 10 s 15 s 30 s

Identification training 13.70 10.92 9.52 7.86
Triplet loss training 13.93 11.89 10.90 9.94
AC/LDA [41] 30.27 17.90 16.55 15.82
Autoencoder [42] 21.82 19.68 18.84 17.09
DCT [37], [43] 23.05 20.41 18.55 17.38

identity verification [38], two training strategies were ex-
plored: using the aforementioned identification training, and
using the triplet loss [40]. Several experiments were con-
ducted for a thorough and realistic evaluation of the perfor-
mance of the methods: using separate sets of subjects for
training and testing, shorter enrollment durations, and cross-
database tests on the PTB [23] and CYBHi [24] databases
(with less and more noisy signals, respectively).

The verification results (see Table 5) show that iden-
tification training surpasses the triplet loss training, espe-
cially when enrollment data is scarcer. Overall, the proposed
method was able to achieve equal error rates (EER) as low as
7.86% for 30 seconds of enrollment. The proposed method
performed significantly better than alternative state-of-the-art
approaches based on autocorrelation (AC/LDA) [41], autoen-
coders [42], and discrete cosine transforms (DCT) [37], [43]
when evaluated in the same conditions. Moreover, observing
the results on PTB and CYBHi (see [38]), one can con-
clude the proposed method is especially promising for more
realistic off-the-person data. Overall, combining all typical
pipeline processes into a single end-to-end model seems to be
the key for robust ECG biometric models in real applications.

The main contributions of this work for the AUTOMO-
TIVE project can be summarized as follows:
• End-to-end model: An end-to-end architecture was de-

veloped to perform biometric identification with ECG
signals. Despite being based on deep learning, its
relatively simple and lightweight structure, requiring
no pre-processing stages beyond signal normalization,
paves the way towards future deployment into embed-
ded systems in real scenarios, as foreseen by the AU-
TOMOTIVE project;

• Data augmentation for ECG signals: The proposed
data augmentation strategies, specifically tailored for
ECG signals, enable us to take full advantage of avail-
able data for more accurate and robust algorithms;

• Realistic performance evaluation setup: The evalua-
tion with off-the-person data and the careful division of
training, enrollment, and testing data results in a chal-
lenging and thoroughly realistic evaluation setup that
not only shows the improvements vs. the state-of-the-art
but also illustrates faithfully how the proposed method
would behave in real AUTOMOTIVE applications.

The end-to-end, robust, and lightweight model developed
in this work also provide a strong scaffolding for the future
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development of personalized drowsiness monitoring. The
availability of identity labels for new ECG data is essential
to teach general drowsiness monitoring models to recognize
subject-specific markers of drowsiness.

2) Long-term performance

The performance of biometric systems is known to decay
over time, eventually rendering them ineffective. Based on
previous studies on long-term ECG permanence [44] and
the prior knowledge of ECG variability [45], it is expected
that long-term signal variations will have a large effect on
real ECG biometric applications. The work described in
this section, presented in further detail in [46], aimed to
study ECG variability over time and its real impact on the
performance of state-of-the-art algorithms. Then, template
and model update strategies were implemented to bridge the
observed performance gap.

Identification Algorithms: Four state-of-the-art ECG-
based identification methods were implemented to serve as
foundation for the long-term performance tests. These were:
(1) the approach based on autocorrelation and discrete cosine
transform (DCT) proposed by Plataniotis et al. [47]; (2) the
methodology proposed by Tawfik et al. [48] using DCT coef-
ficients from average QRS; (3) an approach based on discrete
wavelet transform (DWT) proposed by Belgacem et al. [49];
and (4) the deep autoencoder proposed by Eduardo et al. [42].

Template Update Strategies: Two strategies of template
update were implemented to ensure the models are up-to-date
on the identity information of the enrolled subjects. The first
is FIFO (first-in-first-out): the database is updated using new
samples whose similarity to the current templates is above
a defined threshold (obtained empirically using the training
data), replacing the oldest template of the same identity.
The second is Fixation, where certain templates are fixed,
allowing only the remaining stored samples to be updated:
this ensures some initial labeled identity information remains
on the system over time.

Experiments: Experiments used the E-HOL-03-0202-003
database (commonly called E-HOL 24h). It consists of three-
lead Holter recordings of 202 healthy subjects. The training
set consisted of the last 30 seconds of the first 60 minutes, to
mimic short enrollment times and avoid the initial resting pe-
riod. To study performance over time, testing was performed
over seven time points: one immediately after enrollment,
another after one hour, and regularly until the end of the
records.

Results: The performance results at each test hour (see
Fig. 10) show that performance decays significantly, even
over relatively short periods. The template update techniques
were successful in reducing the performance decay over time.
The FIFO technique resulted in improvements of 8 − 9%
accuracy, on average, whereas the Fixation strategy resulted
in an average accuracy increase of 10%. Overall, the results
show long-term identification performance in ECG biomet-
rics is generally weak, and template update techniques should

FIGURE 10: Evolution of the state-of-the-art ECG-based
identification accuracy over time [46].

be studied further for enhancing the long-term performance
of state-of-the-art methods.

The main contributions of this work for the AUTOMO-
TIVE project can be summarized as follows:
• Deeper knowledge of long-term performance decay:

through this comprehensive study of the impact of ECG
variability over time on the performance of state-of-the-
art algorithms, the AUTOMOTIVE project now enjoys
deeper knowledge of the hurdles that should be over-
come to achieve suitable real applications;

• Comparison of update strategies: template update is
shown to be a must for real ECG biometric applications,
and the comparison of update strategies performed in
this work paves the way for more robust algorithms in
realistic scenarios.

For AUTOMOTIVE’s central topic of drowsiness detec-
tion, the knowledge and methods built in this work are
essential for robust long-term ECG biometrics. In turn, these
are paramount for the aforementioned continuous user-tuning
of drowsiness monitoring models.

B. xAI IN BIOMETRICS
In the absence of a mathematical definition, interpretability
is the degree to which a human can “understand the cause
of a decision” [50] or, in Machine Learning context, “con-
sistently predict the model’s result” [51]. Thus, a model is
more interpretable when it is easier for a person to identify
why it took a certain decision. Moreover, a model is more
interpretable than another if the former’s decisions are easier
to understand [50]. For biometrics, this challenge has only
just started to be unveiled, with researchers now beginning
to use interpretations to improve their biometric models [52],
[53].

The work proposed by us in [54] was the first to use
interpretability to understand how ECG signals carry iden-
tity information, how that information changes with more
realistic acquisition settings, and discuss the possibility of
using such insights during training for improved robustness
to signal noise and variability. In addition, our work in [55]
was a pioneer at incorporating interpretability in face Pre-
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sentation Attach Detection (PAD) methods regarding a wide
range of attacks. We believe that the research in both of
those problems, inserted in the AUTOMOTIVE project, can
remarkably impact the outcomes of the next generation of
biometric systems: more accurate, more robust, and more
transparent.

1) xAI for ECG Biometrics
Research in ECG biometrics has been steadily evolving from
smaller databases of high-quality signals acquired in medical
settings (on-the-person settings) towards larger databases of
noisier signals acquired in more realistic scenarios (off-the-
person settings). One defining characteristic of this evolution
is the movement away from fiducial-based methodologies
in favor of holistic approaches. Initially, several approaches
successfully used the QRS complex (the key defining feature
of the ECG) or its amplitude or time measures for identifica-
tion, as it was considered more stable over time and across
variable conditions. However, using only QRS complexes
is increasingly uncommon as research evolves towards off-
the-person signals and larger databases. This denotes the
QRS may not be enough for identity recognition in large
populations and more realistic scenarios.

This subsection describes a study [54] conducted to un-
derstand how a state-of-the-art end-to-end model uses signal
information in diverse scenarios, leveraging the recent tools
developed for model interpretability. The structure of the
proposed methodology had the following main steps:

Biometric Identification Model: The model followed the
architecture proposed in [37], [38] (see section III-A1): an
end-to-end 1D convolutional neural network (CNN) with
four convolutional layers. Neighboring convolutional layers
were separated by max-pooling layers. The last convolutional
layer was followed by two fully-connected layers, of which
the first has 100 neurons and ReLU activation, and the last
has N neurons and softmax activation (N corresponds to
the number of considered identities). This model was trained
with either the PTB [23] or the UofTDB [22] databases, on
increasingly larger subsets of identities.

Interpretability Method: Interpretability is a quickly
growing topic that is contributing to the more complete
understanding of the often elusive behavior of deep learning
models [56]. To better understand the trained models for
ECG biometrics, the interpretability tools used in this work
were Occlusion [57], Saliency [58], Gradient-SHAP [59],
and DeepLIFT [60], as implemented in the Captum [61]
library for PyTorch.

Results: Analysing the explanations obtained (see an ex-
ample overview in Fig. 11), one can verify a trend from
smaller to larger identity subsets where the relevance of QRS,
initially dominant, is increasingly shared with other parts of
the signal. A similar dynamic is verified when comparing
explanations with on-the-person vs. off-the-person signals:
the focus is mostly on the QRS complex for the former, but
relevance is more evenly shared with other waveforms when
considering the latter.

FIGURE 11: Example average heartbeat with the relevance
of each portion (darker colour relates to higher relevance;
left: on-the-person with small identity set; right: off-the-
person with large identity set).

Overall, while the QRS seems to be the most important
part of the ECG signal for biometrics, it can only be re-
liably used alone for on-the-person scenarios with smaller
populations. When considering larger sets of identities and
more realistically noisy signals, the information carried by
other ECG waveforms is important for robust and accurate
decisions.

The main contribution of this work for the AUTOMOTIVE
project can be summarized as follows:
• Better understanding of ECG biometrics: the AUTO-

MOTIVE project moves forward with new evidence of
the relative relevance of the ECG waveforms on diverse
conditions of signal quality and population size. This
generated new knowledge that steers research towards
the right path to more robust and accurate ECG biomet-
ric algorithms;

• Application impact: this work was the first one in
interpretability for ECG biometrics, establishing a guide
for researchers in this field with several results, sugges-
tions for future work, and an intuitive way to visualize
interpretations for unidimensional signals.

For the topic of ECG biometrics, the exploration of
transparency-related topics through the use of interpretability
is important as research quickly moves towards deep learning
models. This leads to improved ECG biometrics which, by
itself, already benefits drowsiness monitoring as discussed
before. However, exploring interpretability and explainability
for 1D signals opens new doors to understand what informa-
tion is indeed useful for drowsiness monitoring, where it is
located in the physiological signals, and how to best capture
it.

2) xAI for Face PAD
In this subsection, a study on interpretability tools applied
on deep neural networks trained for PAD in face biometrics
is reported [55]. The structure of the proposed methodology
had the following main steps:

Presentation Attack Detection Network: The deep neu-
ral network model was a simple end-to-end convolutional
neural network composed of four convolutional layers, with
three max-pooling layers interposed between them, and three
fully connected layers. The four convolutional layers were
composed of 32, 32, 64, and 64 filters, respectively, with
size 3 × 3, unit stride, and padding. The max-pooling was
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performed in 2 × 2 regions with stride 2. The dense layers
were composed of 100, 100, and 2 neurons, respectively. All
convolutional and fully connected layers were followed by
rectified linear unit (ReLU) activations, except for the last
dense layer, which was followed by softmax activation.

Interpretability Method: The Gradient-weighted Class
Activation Mapping (GradCAM) tool was applied to the last
convolutional layer of the model, allowing for a) different
importance values to each neuron for a particular decision of
interest, b) explanations for any layer of the network, and c)
analysis of the model predictions at the class level.

Evaluation Frameworks:
• Mix-Attack: the model was trained and tested with bona

fide samples and all the varieties of attacks available;
• One-Attack:

-- The model was trained and tested with bona fide
samples and one single type of attack, which was
already seen by the network during the training
step;

-- The bona fide samples of one random subject were
present in the training set on one evaluation iter-
ation, and were then swapped to the test set for a
second evaluation run;

• Unseen-Attack: the model was trained with all but one
type of attack and tested with only this type, besides the
bona fide samples in train and test steps.

The main contribution of this work for the AUTOMOTIVE
project can be summarized as follows:
• Identification of desirable properties for general-

ization of deep neural models to unseen data and
attacks: the AUTOMOTIVE project moves forward
by using interpretability tools to state the following
properties of the models: 1) explanations for the same
sample should be similar whether or not it is seen during
training; 2) explanations for the same sample should be
similar whether or not the model is trained to detect
that specific attack; 3) explanations should be similar
for different samples with the same predicted label; and
4) explanations should be meaningful;

• Application Impact: this work was the first one in
interpretability for face biometrics, establishing a guide
for researchers in this field with several results and
suggestions for future work.

By exploring interpretability for face images, this work
also paves the way for more transparent driver drowsiness
monitoring based on face video. The knowledge acquired
with this study not only leads to improved biometric recog-
nition but also illustrates new frameworks to understand
what facial features are the most informative for recognizing
drowsiness in vehicle drivers.

C. GENERAL BIOMETRIC APPLICATIONS
1) Template security on end-to-end models
The task of recognizing identity requires the storage of highly
sensitive personal information. As such, three template se-

TABLE 6: Summary of the Secure Triplet Loss results for
scenario A.

Method EER (%) FNMR @
FMRV = 0.1%

FMRC

@ EER
Dsys

↔

Triplet Loss 12.56 0.9033 - -
STL w/KLD 13.58 0.8700 0.0 0.005
STL w/SL 13.33 0.9458 0.0 0.004
BF [62] 15.76 0.9242 0.0075 0.234
HE [63] 12.49 0.9573 0.0806 0.002

curity properties should be verified by any good biometric
system: cancelability, unlinkability, and irreversibility. These
are typically achieved through tailored feature extraction,
encryption, or biohashing schemes before storage and match-
ing. The most prominent of such schemes are Bloom Filters
(BF) [62] and Homomorphic Encryption (HE) [63].

However, the state-of-the-art in biometric recognition is
increasingly dominated by deep learning approaches, and
adding separate processes of protection and matching is
sub-optimal and creates additional hurdles that may limit
achievable performance. All of this calls for an integration
of template protection within deep learning models, and
since these are so flexible and have been able to learn so
many sophisticated tasks, why not have them learn template
protection as well?

Proposed Methodology: The Secure Triplet Loss (STL)
was proposed [64], [65] to achieve the aforementioned goals.
Having a model which receives a biometric sample and a can-
celability key and outputs a template, the training objective
function includes a component for identity and cancelability
and a component for linkability (further details in the original
publication [65]). The first component adapts the original
triplet loss to not only push away templates with different
identities but also templates with different keys, clustering
only templates that agree on both identity and key and thus
promoting cancelability. The second loss component mea-
sures the linkability of the templates in a batch, either through
the Kullback-Leibler divergence (STL w/KLD) or using the
differences in mean and standard deviation (STL w/SL).

Experiments: The proposed approach was evaluated for
identity verification in two scenarios: (A) training a network
“from scratch”, and (B) adapting and fine-tuning an existing
model to make it output protected templates. Scenario A was
explored for ECG biometrics, using the end-to-end approach
in [37], [38], [54], [66] and the UofTDB database [22]. Sce-
nario B was explored for face biometrics, using the Inception-
ResNet-V1 [67], pretrained on VGGFace2, with the YouTube
Faces database [26].

Results: The results on scenarios A and B are presented in
Table 6 and Table 7, respectively. Results are presented for
performance (equal error rate - EER; and false non-match
rate at 0.1% false match rate - FMR@FNMR = 0.1),
cancelability (false cancelability match rate at the EER point
- FMRC), and linkability (Dsys

↔ as proposed in [62]).
In scenario A, the results show the proposed method

largely avoids performance losses vs. the unprotected triplet
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TABLE 7: Summary of the Secure Triplet Loss results for
scenario B.

Method EER (%) FNMR @
FMRV = 0.1%

FMRC

@ EER
Dsys

↔

Triplet Loss 13.99 0.8496 - -
STL w/KLD 15.93 0.8586 0.0089 0.132
STL w/SL 15.15 0.8771 0.0182 0.070
BF [62] 17.07 0.9103 0.0396 0.245
HE [63] 15.06 0.8312 0.0371 0.001

loss, offering better performance than with BF. The STL also
offers the best cancelability results and unlinkability levels
near those offered by HE. In scenario B, the STL verifies
some performance gap vs. the baseline, but is nevertheless
aligned with the state-of-the-art HE and considerably better
than BF. STL once again offered the best cancelability and
acceptable linkability results.

The main contributions of this work for the AUTOMO-
TIVE project can be summarized as follows:
• A novel method for biometric data protection: STL is

a simple and competitive alternative to state-of-the-art
template protection schemes. Through a tailored objec-
tive function, it teaches cancelability and unlinkability
to the biometric model, avoiding any separate protection
process. Thus, STL can be successfully applied for any
biometric trait and most trainable architectures, and not
only for new models but also to transform existing ones
and lead them to deliver protected templates;

• Security without performance losses: Conducted ex-
periments show that STL is able to match the state-
of-the-art in template protection (HE) in unlinkability.
Most importantly, STL attains the best template cance-
lability results while avoiding considerable performance
decay;

• Lightweight and flexible: As it only requires minor
architecture changes and no additional processes, STL
allows models to retain the original size and average in-
ference time while offering good security levels. More-
over, STL can be applied to new or existing models of
varying complexity, paving the way for the lightweight
in-vehicle biometric systems foreseen by AUTOMO-
TIVE.

The lightweight, flexible strategy for biometric template
protection proposed in [64], [65] is also of paramount rel-
evance for the new generation of driver drowsiness moni-
toring systems. To continuously learn subject-specific pat-
terns of drowsiness, such models require biometric systems,
which will need to securely store driver identity information.
Through the Secure Triplet Loss, this can be done effortlessly
and with minimal processing requirements, in a way that is
suitable for embedded systems in in-vehicle scenarios.

D. EMOTION RECOGNITION THROUGH ECG AND FACE
ANALYSIS
Automatic facial expression recognition (FER) has been one
of the key problems in the human-computer interaction field,

with growing application areas including neuromarketing,
crowd analytics, biometrics, or clinical monitoring [68]. Ex-
pression recognition is a task that human beings perform
daily and effortlessly, but it is not yet easily performed
by computers. Although recent methods, particularly those
using deep learning, have demonstrated remarkable perfor-
mances in highly controlled environments, the automatic
FER in real-world scenarios is still a very challenging
task [68]. In addition, the performance of deep models is still
below its full potential as training high capacity models in
small datasets, such as the ones available in the FER field,
usually result in overfitting.

To work around the problem of training high-capacity clas-
sifiers on small datasets, previous FER works have mainly
resorted to (i) transfer learning [69], where a CNN is typically
pre-trained in some domain-related dataset before being fine-
tuned to the target dataset; and (ii) classifier ensembles [70],
in which an ensemble of CNNs is created to combine their
decisions and, hence, reduce the model’s variance. However,
their benefits are tightly coupled with the source-target do-
main similarity.

In terms of motivation, the work of Liu et al. [71] is
probably the most related to the proposed methodology in the
AUTOMOTIVE project, as they also explore the psychologi-
cal theory that facial expressions are the result of the motions
of facial muscles.

However, some remain skeptical about emotion recogni-
tion based on facial expressions, as people are capable of
counterfeiting these to convey fake emotions [72]. It is known
that emotional states influence the autonomic nervous sys-
tem and, consequently, the morphology of the physiological
signals. This explains the current efforts towards affective
computing based on physiological signals (such as the ECG),
that cannot be voluntarily altered to fake emotions.

Despite several studies addressing emotion recognition
using physiological signals, it is still uncertain how emotion
variations translate into actual pattern alterations in each
physiological signal. Moreover, for the specific case of ECG-
based emotion recognition, despite the generally encouraging
results reported in the literature [73], there are a plethora of
problems to be addressed, mostly related to the scarcity of
data, their limited variety, and the subjectivity of correspond-
ing emotion labels.

These current challenges in ECG-based emotion recog-
nition reflect on the performance of the algorithms. These
often offer severely inferior accuracy when evaluated under
realistic scenarios, failing to live up to the expectations set
by the results reported in the literature. For example, the
methodologies proposed by [74]–[77] all offer relatively
high accuracy, but only when evaluated on random data
splits. One should expect performance to decay sharply once
the methods are evaluated on disjoint sets of recordings
(signal-independent) and subjects (subject-independent), as
they would in real applications.
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FIGURE 12: Schema of the proposed methodology for ECG-
based emotion recognition as proposed in [73]. MIL aggre-
gates individual predictions for consecutive segments into a
single recording prediction.

1) ECG Analysis
The work described in this section (and in [73] in further de-
tail) focused on the development of a methodology for emo-
tion recognition that takes advantage of the continuous nature
of the ECG signal for improved accuracy. Special efforts
were devoted to ensuring the evaluation settings adequately
mimic realistic signal-independent and subject-independent
settings, thus offering accurate performance estimates that
are more likely to be verified in real applications.

Methodology: The proposed methodology is built upon
the approach proposed in [77], taking advantage of the self-
learning pre-training that offered higher robustness despite
data scarcity. The approach (see Fig. 12) is based on a convo-
lutional neural network that receives short ECG segments.
Initially, the model is prepared and trained to recognize
a set of eight transformations applied to the input signals
(self-learning): noise addition, scaling, negation, temporal
inversion, permutation, time-warping, baseline wander, and
magnitude warping. After this pre-training stage, the con-
volutional layers are frozen and the top of the model is
adapted to provide valence and arousal predictions. Individ-
ual predictions from consecutive segments are combined into
long-time predictions using multiple instance learning (MIL)
through heuristic methods (maximum, mean, and median),
a multilayer perceptron (MLP), a long short-term memory
(LSTM) network, or a bi-directional LSTM (BiLSTM).

Experiments: Experiments used ECG signals from the
DREAMER [78], AMIGOS [79], and MAHNOB-HCI [80]
databases. For the individual predictions, 10-second seg-
ments were considered. All segments from each record-
ing were considered for the corresponding aggregated MIL
predictions. Data were either divided randomly between
training and testing (random division), divided by record-
ing (signal-independent setting), divided by subject (subject-
independent setting), or trained and tested in different
databases (cross-database setting).

Results: As expected, results show a sharp decay of per-
formance when we move from random data division settings
(the most common in the literature) to signal-independent
settings (more realistic). For the former, the methodology
achieves 75−79% accuracy on individual predictions vs. 54−
56% accuracy for the latter. In cross-database experiments,

trained on the DREAMER database, the method achieves
46− 53% accuracy on the AMIGOS database and 55− 61%
for the MAHNOB-HCI database. However, results appear to
improve once MIL is applied, especially when using heuristic
methods, which illustrates the benefit of considering the
continuity of the ECG for emotion recognition.

The main contributions of this work for the AUTOMO-
TIVE project can be summarized as follows:

• A realistic perspective over the state-of-the-art: This
work identified critical flaws in the way ECG-based
emotion recognition algorithms are evaluated. With this,
it was possible to restructure the evaluation settings
into more challenging and realistic scenarios for more
accurate results that are more likely to be verified in real
applications;

• An improved methodology for ECG-based affec-
tive computing: Taking advantage of the continuity
of the ECG signal, the base methodology was suc-
cessfully adapted with MIL techniques for improved
performance. This brings us closer to the target real
applications foreseen by the AUTOMOTIVE project.

2) Face Analysis

This subsection presents a proposed end-to-end deep
learning approach for emotion recognition using prior
knowledge on facial expressions [81]. The novel deep
learning network architecture along with a well-designed
loss function explicitly models both informative local facial
regions and expression recognition. The intuitive idea is
to learn the most relevant facial regions for expression
recognition, such as facial components (i. e., eyes, eyebrows,
nose, mouth) and expression wrinkles. To accomplish this
purpose, the proposed neural network is composed by three
main components, namely (i) the facial-parts component,
(ii) the representation component, and (iii) the classification
component (see Fig. 13).

I - Facial-Parts Component: The facial-parts component
learns an encoding-decoding function E(x) that maps
an input image x to a relevance map x̂, representing the
probability of each pixel being relevant for recognition. The
loss function, supported by the physiology knowledge that
facial expressions are decomposed into several action units
of facial muscles, is defined to enforce sparsity and spatial
contiguity on the activations of x̂. Thus, three regularization
strategies for regression of x̂ were proposed.

II - Representation Component: The representation
component learns an embedding function F (x, x̂) that
maps an input image x and its relevance map x̂ to a hidden
representation h. The relevance map x̂ from the facial-parts
component is used to filter the learned representation h,
leading it to only activate strongly to the most relevant facial
parts.
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FIGURE 13: Architecture of the proposed model for emotion
recognition based on facial expressions (adapted from [81]).

III - Classification Component: The classification com-
ponent consists of a sequence of fully connected layers
followed by a softmax output layer. The largest probability
output is chosen as the class prediction.

The main contribution of this work for the AUTOMOTIVE
project can be summarized as follows:
• Facial Expression Recognition Model: the AUTOMO-

TIVE project moves forward with a model of an end-
to-end deep neural network along with a loss function
defined to regularize the entire learning process so that
the proposed method can explicitly learn expression-
specific features; the approach is based on the strong
prior knowledge that facial expressions are the result of
the motions of some facial muscles and components;

• Application Impact: facial expressions represent an
important component for emotion recognition and
person identification with strong applications in au-
tonomous driving or mobility solutions. The model can
be explored for emotion categorization, action recogni-
tion, or well-being monitoring of vehicle occupants.

Emotion recognition can complement and extend drowsi-
ness detection and, hence, help pave the way for an all-in-one
and more robust well-being monitoring system. Furthermore,
these techniques can help promote road safety, particularly
if used in the detection of negative emotional states in the
driver, such as anger or stress [82].

E. DROWSINESS DETECTION THROUGH ECG, PPG
AND EOG ANALYSIS
Normal human sleep is composed of a Rapid-Eye-Movement
(REM) stage and four non-REM stages. These stages have
well-defined characteristics and alternate cyclically, with a
standard human adult cycle lasting approximately 90 min-
utes. This cycle starts with a non-REM stage, and finishing
in REM sleep [83]. According to Keenan et al. [84], “sleep
is a reversible behavioral state of perceptual disengagement
from and unresponsiveness to the environment.”

The term drowsiness, often used interchangeably with the
terms fatigue and sleepiness in the literature, relates to a
physiological need to sleep, as it is the intermediate state
between wakefulness and sleep [85]. This state comes with
the impairment of visual perception, of higher cognitive
functions, the inability to maintain visually focused attention,
among other undesirable consequences for safe driving [86].

Since physiological needs cannot be continuously avoided,
a drowsy state always precedes a sleeping episode [85].
As such, if a drowsy state is detected then the body is
already struggling to remain awake, possibly indulging in
microsleeps in the process [87]. Microsleeps have been asso-
ciated with poor driving performance [88] and, during these
episodes, attention gaps can impair the driver’s ability to
respond to events [89].

Studies report great inter-subject variability in how drowsi-
ness affects drivers’ performance [90]. Even for a given
self-declared drowsiness level, indicators such as eye blink
duration vary considerably [29] and, thus, objectively and
non-intrusively measuring drowsiness has been a constant
challenge in research.

Some subjective scales are used to score drowsiness based
on the subjects’ responses concerning standardized sleep
symptoms. Some examples include the Epworth Sleepiness
Scale (ESS) [31], the Standford Sleepiness Scale (SSS) [91],
a Visual Analog Scale (VAS) [92], and the Karolinska
Sleepiness Scale (KSS) [93]. The Objective Sleepiness Scale
(OSS), which combines features of the electroencephalogram
(EEG) and eye movements, presents some disadvantages, in-
cluding the insufficient number of sleep stage categories [13]
and its intrusiveness.

The KSS is a nine-point scale that defines verbal reference
for each stage (1 - very alert; 3 - alert; 5 - neither alert nor
sleepy; 7 - sleepy but not fighting sleep; 9 - very sleepy
and fighting sleep [93]). The ground truth for the drowsiness
level is assessed by having the subject periodically report
their perceived score. Although not an objective measure-
ment and capable of influencing the driver’s state [13], [29],
the KSS is easy-to-apply, non-invasive, and widely used in
research [93]).

While in a state of drowsiness, the cardiac system signif-
icantly alters its behavior and, as such, the study of these
modifications can retrieve information regarding the alertness
level of a driver. When a subject is under drowsiness, their
heart rate becomes slower, more irregular, and blood pressure
drops [94]. Under this state, the parasympathetic nervous
system becomes more active and the sympathetic nervous
system activity decreases, while the opposite remains true
when the subject is under a wakeful state [94]–[98]. A re-
liable measure for the autonomic nervous system is the heart
rate variability (HRV), which measures the variation of the
cardiac cycle duration and is usually obtained through an R-
peak detection of the ECG and a frequency-domain analysis
[95].

Following this, a higher frequency (HF) band of the
HRV relates to the parasympathetic activity, while a lower
frequency (LF) band provides information about the sym-
pathetic activity. Hence, the state of an individual can be
characterized by calculating the ratio of (LF/HF) [99]. A
more profound division of frequency bands is presented in
Table 8.

Classification techniques based on the HRV, the ECG,
electrooculogram (EOG), face video, or other data types are
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TABLE 8: Frequency bands of HRV. The HF band relates to
the parasympathetic activity, predominant in sleepy states.

Component Frequency Range (Hz)
Ultra Low Frequency 6 0.003
Very Low Frequency 0.003 - 0.04

Low Frequency 0.04 - 0.15
High Frequency 0.15 - 0.4

commonly used to distinguish between drowsiness and alert-
ness. With methods such as Bayesian [100]–[103], Linear
Discriminant Analysis (LDA) [94], [100], [103]–[106], k-
Nearest-Neighbors (kNN) [106], [107], Support Vector Ma-
chines (SVM) [102], [106], [108], and Artificial Neural Net-
works (ANN) [109], [110] being harnessed for this subject.

Further concurring with the severity of the context of the
AUTOMOTIVE project, automotive manufacturers and other
companies have developed solutions targeting the detection
of drowsiness and attention during driving tasks. Some com-
mercial solutions (for a complete present-day review, see
[13]) include:

• Steer Device by STEER Inc.8, a bracelet that detects
the level of drowsiness through the heart rate and the
electrodermal activity (EDA);

• IR-LED by Siemens9, a camera system equipped with
an infrared light-emitting diode and an infrared light
sensor to detect microsleep events;

• FaceLAB Driver Safety by Seeing Machines [13],
which detects driver drowsiness in real-time through
eye blinks and percentage of eye closure (PERCLOS)
analysis, recording face video to track the head, eyes,
eyelids, and gaze;

• Driver Attention Warning by Saab10, which uses an
infrared camera to monitor eye blinks and track gaze
and head orientation;

• Driver Alert Control by Volvo11, which uses lane
departure as a detection feature, monitoring the car
movements concerning the road markings;

• Active Safety by Volkswagen12, which uses the Steer-
ing Wheel Angle (SWA) and lane departure as detection
features and continuously evaluates traffic signals;

• Attention Assist by Mercedes-Benz13, which uses the
SWA as a detection feature (it learns the driver steering

8Kickstarter: STEER: Wearable Device That Will Not Let You Fall Asleep
by Creative Mode. Available on https://www.kickstarter.com/projects/
creativemode/steer-you-will-never-fall-asleep-while-driving?lang=fr.

9Photonics.com: IR-LED Detects Drivers in Microsleep. Available
on https://www.photonics.com/Articles/IR-LED_Detects_Drivers_in_
Microsleep/a44727.

10Saab Driver Attention Warning System. Available onhttps://www.
saabnet.com/tsn/press/071102.html.

11Volvo Support: Driver Alert Control (DAC). Available on
https://www.volvocars.com/en-th/support/manuals/v40/2017w17/
driver-support/driver-alert-system/driver-alert-control-dac.

12Volkswagen UK: Driver alert system. Available on https://www.
volkswagen.co.uk/technology/car-safety/driver-alert-system.

13No Doze: Mercedes E-Class alerts drowsy drivers.
Available on https://www.autoweek.com/news/a2032716/
no-doze-mercedes-e-class-alerts-drowsy-drivers/.

TABLE 9: Summary of the open issues to be considered
in drowsiness detection regarding three types of information
that can be acquired from the driver (adapted from [13]).

Issues
Vehicle

Behavior
Physiological

Signal
Driver

Behavior
Use of standard objective
measures

X X X

Environment conditions
influence

X X

Difficulty to extract
symptoms

X

Circadian and wake phases X X X

Accuracy with
fewer sensors

X

Intrusive nature of sensors X

Impact of artifacts X

Real-time detection support X X

pattern at the beginning of a driving session), as well
as braking and acceleration events, the duration of the
session, and road conditions;

• Driver Attention Monitor by Lexus14, which tracks
eye and head movements to detect whether the driver
is looking forward or not, and includes an obstacle
detection feature.

After a comprehensive analysis of both current research
and commercial solutions for driver drowsiness detection
systems, Doudou et al. [13] discussed the open technological
issues in this field regarding three types of information that
can be acquired from the driver, as presented in Table 9.

In addition to these limitations, one frequent conclusion
in this field of research is that generalizing to different indi-
viduals is extremely difficult, as models perform significantly
worse on data from new subjects [111]. Simultaneously, large
amounts of high-quality data are needed to train and validate
drowsiness detection methods, which is still a challenge due
to the cost of deploying real-traffic monitoring systems and
the concerns regarding safety and data privacy.

The following subsections present the work conducted for
the AUTOMOTIVE project on the topic of drowsiness de-
tection. These endeavors aimed to study the aforementioned
limitations of the current state-of-the-art and advance the
field by proposing new and improved algorithms.

1) Intrusive and non-intrusive signal acquisition study
In this subsection, a combination of different methods of
intrusive and non-intrusive signals to achieve the best pos-
sible performance for driver drowsiness detection is re-
ported [112].

The method follows a standard workflow for a supervised
machine learning classification problem: 1) extracting fea-
tures, 2) randomly splitting data into training and testing
datasets, 3) choosing the best hyperparameters with ten-fold

14Lexus Safety Technology. Available on https://www.lexus.com/safety.
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cross-validation, and 4) evaluating classifiers using accuracy
and F1-score.

The ECG, EOG, and video measures such as the eyelid
distance, gaze angles, head pose, and pupil diameter in non-
overlapping two-minute windows were used as features. The
available KSS scale was considered to categorize sleepiness.
For the comparison study, five machine learning classifiers
were explored: Support Vector Machine (SVM), Random
Forest (RF), Artificial Neural Networks (ANN), Gradient
Boosting Tree (GBT), and K-Nearest Neighbors (kNN).

In a summary of the obtained results, the work states
that it is preferable to follow a hybrid approach including
ECG features in addition to EOG or video features. Also,
no classifier seems to be significantly superior to the others,
and an imbalance between the alert and drowsy classes has a
substantial impact on classification accuracy.

The main contribution of this work for the AUTOMOTIVE
project can be summarized as follows:
• A reference scheme for researchers in driver han-

dover strategies: the AUTOMOTIVE project moves
forward with a baseline reference scheme that compares
intrusive and non-intrusive signal acquisition methods
to detect driver drowsiness;

• Application Impact: As presented in section II, the
main approaches used for detecting driver drowsiness in
real-time can be divided into three categories: vehicle-
based measures, behavioral measures, and physiological
measures. While each method has its strengths and
weaknesses, being important to assess the combina-
tion of different measures to achieve the best possible
performance, real-world drowsiness detection solutions
need to use non-intrusive acquisition methods. With this
in mind, one approach for drowsiness detection is to
consider a non-intrusive camera-based method with a
physiological method. However, which combination is
the best? How much performance gains can one attain
by fusing multiple data sources? This study discussed
these questions, whose answers have wide applicability
to other topics related to wellbeing monitoring.

2) Subject-dependent for driver fatigue classification
This subsection presents the first in-depth study on the use of
ECG and EOG for subject-dependent classification in driver
sleepiness/fatigue under realistic driving conditions [113].
The proposed methodology starts with a preprocessing stage,
specific to each signal, followed by a feature extraction step.
The classification procedure was composed of three different
tests: multimodality, subject-independent classification, and
imbalanced class distributions. KSS ratings collected every
fifth minute during the experiments were used as labels.
ANNs, RF, SVM, and GBT were used and, based on accuracy
values and ten-fold cross-validation, the best combination
was selected. Next, the proposed methodology is summa-
rized.

Preprocessing and feature extraction: The preprocess-
ing of ECG consisted of a bandpass Butterworth filter with

cut-off frequencies of 4 and 50 Hz, and the feature extraction
of ECG consisted in the following calculations: a) for R-peak
detection, the signal was divided into two-minute windows;
the R-peaks selected are the ones that contain typical heart-
beat values and the lowest RR standard deviation (RRSD)
value; b) 8 time-domain statistical features were calculated
using HRV time series; c) 8 frequency-domain features were
calculated from the power spectrum density (PSD) of the
HRV signal. The preprocessing of EOG consisted of a band-
pass Butterworth filter with cut-off frequencies of 0.1 and 30
Hz and convolution with a Hamming window. The feature
extraction of EOG consisted of several procedures to extract
blink events and eye saccades.

Classification: Multimodality scenario: the data were ran-
domly split between a training set (70%) and a test set (30%).
Subject-dependent scenario: a) Training and testing sets were
split randomly; b) Training set: data from n − 1 subjects
and 30% of the data from the n-th subject. Testing set: 70%
data from the nth subject; c) Training set: data from n-1
subjects and 10% of the data from the nth subject. Testing set:
90% data from the nth subject. Subject-independent scenario:
Training set: data from n-1 subjects and 0% of the data
from the nth subject. Testing set: 100% data from the nth
subject. Imbalanced class distributions: A ratio between the
number of samples in each class is considered for balancing
misclassification costs and, therefore, balancing data for each
class.

Based on the obtained results, this work finds that the
accuracy improves when a combination of ECG and EOG
features is used. Moreover, results show significantly worse
performance in subject-independent classification, especially
for the sleepy class. In conclusion, applying methods for
imbalanced distributions can be a promising approach.

The main contribution of this work for the AUTOMOTIVE
project can be summarized as follows:

• A reference scheme for researchers in driver han-
dover strategies: the AUTOMOTIVE project moves
forward with a baseline study on the use of ECG
and EOG for subject-dependent classification in driver
sleepiness/fatigue under realistic driving conditions.
Several crucial conclusions that help further develop-
ments were possible to state under this work. For in-
stance, individual differences are present in the phys-
iological signals and the labels, the reliability of the
sleepiness ground truth has an impact on the design
and the optimization of the classifiers, combinations of
different measures (e.g., lane deviations, mathematical
models of sleepiness) can improve the results in real
driving conditions;

• Application Impact: New lines of research arose from
this work, such as the use of biometrics to develop
subject-personalized models for drowsiness detection
with lifelong learning.
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3) Peripheral cardiac signal acquisition and use in
drowsiness classification
This subsection presents a study of the feasibility of produc-
ing a drowsiness detection system based on peripheral car-
diac signal [35]. This study encompassed three main stages:

Signal collection and conversion into streams of inter-
beat intervals (IBIs): To collect cardiac rhythm information,
the chest strap Movesense, the capacitive steering wheel Car-
dioWheel, and the wrist photoplethysmograph (PPG) sensor
PulseOn were used. The CardioWheel (ECG-based) directly
provided the IBIs and the Pan-Tompkins algorithm was used
to detect the R-peaks in the Movesense electrocardiographic
signals. For the PPG sensor, an online filter that mimics
recursive moving average removal was applied to one-second
windows, and an adaptive threshold peak detection algorithm
was implemented to locate peaks on the PPG signal. An IBI
corrector system was then created to treat the outliers that re-
sulted from moments of poor electrical contact and artifacts.
This system was shown to be capable of reconstructing the
sequence of IBIs from signals corrupted with 10% missed
detections and additional 10% false peaks with less than 7.5
ms of mean absolute deviation from the true signal. This
system is relevant to ensure that all collected information is
used to calculate the HRV.

Development of a model based on IBIs values to detect
drowsiness: For this stage, only data collected through a
chest ECG was used. An initial set of time and frequency
domain features was used to compare 4 decision models
(SMV, one-class SVM, GBT, and ANN) and it was realized
that, independently of the architecture, the model performed
poorly in arbitrary individuals. Personalized models were
then investigated with great improvements for the twelve
selected individuals of the Swedish National Road and Trans-
port Research Institute dataset with a trustworthy self-report
and balanced experience of alert and drowsy states. The SVM
model was selected as the best fitted to binarily classify the
personalized state of drowsiness and, by revising features and
tuning hyper-parameters (defining an SVM with linear kernel
and C parameter 0.3), a mean performance of 0.63 ± 0.03
MCC (Matthews Correlation Coefficient) was attained.

Model comparison with IBIs measured from periph-
eral signal: Following the previous stages, the capability of
the model to detect drowsiness with IBIs measured from a
peripheral signal was tested. Per the experiment described
in sections II-B2 and II-B3, chest ECG, hands ECG, and
wrist PPG were collected, converted into IBIs, and the HRV
features were calculated for every 2-minute window in each
of the signals. Although only the data from 2 subjects sur-
vived the criteria followed by the Swedish National Road and
Transport Research Institute dataset, the model trained with
chest ECG remained fairly performing when applied to wrist
PPG, with the scores ranging from 0.34 to 0.61 MCC.

Summing up the obtained results, this work found that
even though the proposed system based on peripheral cardiac
signal is feasible, future efforts should be devoted to tackling
the limited size of the analyzed population. Furthermore,

given that it is hypothesized that a limited set of individual
models can be representative of the possible ranges of HRV
for a general population, gathering and combining this set
in a voting scheme or other ensemble classification frame-
work might be a promising approach to finally developing
a generalized, subject-independent system to detect driver
drowsiness.

The main contribution of this work for the AUTOMOTIVE
project can be summarized as follows:
• A reference scheme for researchers in driver han-

dover strategies: the AUTOMOTIVE project moves
forward with a baseline study on the subject-dependent
binary classification of driver drowsiness based on
the peripheral cardiac signal, which is acquired non-
intrusively. The present study concurs with the subject-
dependent study presented on 2) in terms of the re-
liability of the sleepiness ground truth. Upon further
analysis of the data where the models were constantly
performing badly, an unbalance in classes was observed,
as not all participants have managed to provide enough
ratings associated with being sleepy for the model to
properly learn the separation boundary between the two
classes, indicating that a balanced class distribution is
important for the topic at hand.

• Application Impact: This work showed that on a re-
stricted dataset driver drowsiness detection systems can
be capable of using any format of cardiac rhythm sensor
to assess the driver’s state. More research in a more
variety of sensors can contribute to the development of
more flexible driver monitoring systems and advanced
driver-assistance systems (ADAS).

IV. CONCLUSION AND FUTURE WORK
This paper presented the breakthroughs and achievements
towards driver drowsiness monitoring throughout the AUTO-
MOTIVE project. Despite the diversity of explored research
topics, AUTOMOTIVE has kept its single central target: to
usher in the new generation of driver drowsiness systems.

AUTOMOTIVE’s efforts towards immersive driving sim-
ulators with realistic procedural road generation and state-
of-the-art labeling strategies brought us the ability to col-
lect more and better data. The extensive research on ECG-
based biometric recognition opened the door to user-tuned
continuously-learning drowsiness algorithms. The developed
emotion and drowsiness methodologies have addressed the
main problems currently besieging the research community
and delaying the real deployment of reliable commercial ap-
plications. And, the innovative studies on interpretability lead
us to more transparent and trustworthy monitoring systems.

Despite these contributions, many hurdles are still uncon-
quered. Further effort should be devoted to the full integration
of these algorithms into a final robust drowsiness monitor-
ing system. Other relevant challenges that remain are the
development of even more realistic simulator prototypes or
even larger initiatives for the acquisition of naturalistic data.
Furthermore, new approaches are needed for model training
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less focused on subjective labels, strategies to learn from
continuous unlabeled data sources, and models that maintain
high-performance levels in hyper-realistic long-term usage
scenarios.
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