
The ANTAREX Approach to Autotuning and Adaptivity
for Energy Efficient HPC Systems

Cristina Silvano,
Giovanni Agosta, Stefano

Cherubin, Davide
Gadioli, Gianluca

Palermo
DEIB – Politecnico di Milano

name.surname@polimi.it

Andrea Bartolini, Luca
Benini

IIS – Eidgenössische
Technische Hochschule Zürich

{barandre,
lbenini}@iis.ee.ethz.ch

Jan Martinovič, Martin
Palkovič, Kateřina

Slaninová
IT4Innovations, VSB –

Technical University of Ostrava
name.surname@vsb.cz

João Bispo, João M. P.
Cardoso, Pedro Pinto

FEUP – Universidade do Porto
{jbispo, jmpc,

pmsp}@fe.up.pt

Carlo Cavazzoni, Nico
Sanna
CINECA

n.surname@cineca.it

Andrea R. Beccari
Dompé Farmaceutici SpA

andrea.beccari@dompe.it

Radim Cmar
Sygic

rcmar@sygic.com

Erven Rohou
INRIA Rennes

erven.rohou@inria.fr

ABSTRACT
The main goal of the ANTAREX 1 project is to express by a Do-
main Specific Language (DSL) the application self-adaptivity and
to runtime manage and autotune applications for green and hetero-
geneous High Performance Computing (HPC) systems up to the
Exascale level. Key innovations of the project include the introduc-
tion of a separation of concerns between self-adaptivity strategies
and application functionalities. The DSL approach will allow the
definition of energy-efficiency, performance, and adaptivity strate-
gies as well as their enforcement at runtime through application
autotuning and resource and power management.

Keywords
High Performance Computing, Autotuning, Adaptivity, DSL, Com-
pilers, Energy Efficiency

1. INTRODUCTION
High Performance Computing (HPC) has been traditionally the

domain of grand scientific challenges and a few industrial domains
such as oil & gas or finance, where investments are large enough
to support massive computing infrastructures. Nowadays HPC is
recognized as a powerful technology to increase the competitive-
ness of nations and their industrial sectors, including small scale

1ANTAREX is supported by the EU H2020 FET-HPC program un-
der grant 671623

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

but high-tech businesses – to compete, you must compute has be-
come an ubiquitous slogan [1]. The current road-map for HPC sys-
tems aims at reaching the Exascale level (1018 FLOPS) within the
2023−24 timeframe – with a ×1000 improvement over Petascale,
reached in 2009, and a ×100 improvement over current systems.
Reaching Exascale poses the additional challenge of significantly
limiting the energy envelope, while providing massive increases in
computational capabilities – the target power envelope for future
Exascale system ranges between 20 and 30 MW. Thus, “Green”
HPC systems are being designed aiming at maximizing a FLOP-
S/W metric, rather than just FLOPS, and employing increasingly
heterogeneous architectures with GPGPU or MIC accelerators. On
average, the efficiency of heterogeneous systems is almost three
times that of homogeneous systems (i.e., 7, 032 MFLOPS/W vs
2, 304 MFLOPS/W2). This level of efficiency is still two orders of
magnitude lower than that needed for supporting Exascale systems
at the target power envelope of 20 MW. To this end, European ef-
forts have recently been focused on building supercomputers out
of the less power-hungry ARM cores and GPGPUs [2]. On the
other hand, the wide margin provided by modern chip manufac-
turing techniques, combined with the inability to exploit this space
to produce faster, more complex cores due to the breakdown of
Dennard scaling [3], has given rise to a pervasive diffusion of a
number of parallel computing architectures, up to the point where
even embedded systems feature multicore processors. The huge
design effort has led to a variety of approaches, in terms of core
interconnection and data management. Thus, the ability to port ap-
plications designed for current platforms, based on GPGPUs like
the NVIDIA Kepler or Tesla families, to heterogeneous systems
such as those currently designed for embedded systems is critical
to provide software support for future HPC.

Designing and implementing HPC applications is a difficult and
complex task, which requires mastering several specialized lan-
guages and tools for performance tuning. This is incompatible with
the current trend to open HPC infrastructures to a wider range of

2www.green500.org, June 2015

users. The current model where the HPC center staff directly sup-
ports the development of applications will become unsustainable in
the long term. Thus, the availability of effective standard program-
ming languages and APIs is crucial to provide migration paths to-
wards novel heterogeneous HPC platforms as well as to guarantee
the ability of developers to work effectively on these platforms. To
fulfil the 20MW target, energy-efficient heterogeneous supercom-
puters need to be coupled with a radically new software stack capa-
ble of exploiting the benefits offered by heterogeneity at different
levels (supercomputer, job, node).

ANTAREX addresses these challenging problems through a holis-
tic approach spanning all the decision layers composing the su-
percomputer software stack and exploiting effectively the full sys-
tem capabilities (including heterogeneity and energy management).
The main goal of the ANTAREX project is to express by a DSL the
application self-adaptivity and to runtime manage and autotune ap-
plications for green heterogeneous HPC systems up to Exascale.

One key innovation of the proposed approach consists of intro-
ducing a separation of concerns, where self-adaptivity and energy
efficient strategies are specified aside to the application function-
alities. This is promoted by the definition of a DSL inspired by
aspect-oriented programming concepts for heterogeneous systems.
The new DSL will be introduced for expressing at compile time the
adaptivity/energy/performance strategies and to enforce at runtime
application autotuning and resource and power management. The
goal is to support the parallelism, scalability and adaptivity of a dy-
namic workload by exploiting the full system capabilities (includ-
ing energy management) for emerging large-scale and extreme-
scale systems, while reducing the Total Cost of Ownership (TCO)
for companies and public organizations.

ANTAREX approach will be based on: (1) Introducing a new
DSL for expressing adaptivity and autotuning strategies; (2) En-
abling the performance/energy control capabilities by tuning soft-
ware knobs (including application parameters, code transforma-
tions and code variants); (3) Designing scalable and hierarchical
optimal control-loops capable of dynamically leveraging them to-
gether with performance/energy control knobs at different time scale
(compile-, deploy- and run-time) to always operate the supercom-
puter and each application at the maximum energy-efficient and
thermally-safe point. This can be done by monitoring the evolution
of the supercomputer as well as the application status and require-
ments and bringing this information to the ANTAREX energy/performance-
aware software stack.

The ANTAREX project is driven by two use cases taken from
highly relevant HPC application scenarios: (1) A biopharmaceuti-
cal HPC application for drug discovery deployed on the 1.21 PetaFlops
heterogeneous NeXtScale Intel-based IBM system based at CINECA
and (2) A self-adaptive navigation system for smart cities deployed
on the server-side on the 1.46 PetaFlops heterogeneous Intel® Xeon
Phi™ based system provided by IT4Innovations National Super-
computing Center. All the key ANTAREX innovations will be de-
signed and engineered since the beginning to be scaled-up to the
Exascale level. Performance metrics extracted from the two use
cases will be modelled to extrapolate these results towards Exas-
cale systems expected by the end of 2023.

The ANTAREX Consortium comprises a wealth of expertise in
all pertinent domains. Four top-ranked academic and research part-
ners (Politecnico di Milano, ETHZ Zurich, University of Porto
and INRIA) are complemented by the Italian Tier-0 Supercom-
puting Center (CINECA), the the Tier-1 Czech National Super-
computing Center (IT4Innovations) and two industrial application
providers, one of the leading biopharmaceutical companies in Eu-
rope (Dompé) and the top European navigation software company
(Sygic).

Application binary

C/C++ functional
descriptions

ANTAREX DSL specifications
(incl. templates)

S2S Compiler and Weaver

C/C++ w/ OpenMP, MPI,
OpenCL API

OpenCL C Kernels

C/C++ Split Compiler OpenCL C Compiler

Machine Code
w/ JIT Manager

OpenCL Kernels
(SPIR bitcode)

Runtime Library and Deploy-Time Compilers
MPI, OpenMP, and OpenCL host runtime
Runtime Resource Manager (RTRM)

HPC Node MIC Accelerator GPGPU AcceleratorRuntime
Monitoring

RTRM Decision
Making

Application
Autotuning

Autotuning Space and
Strategies

software knobs

RTRM control loop

Au
to

tu
ni

ng
 c

on
tr

ol
 lo

op

Strategies in
ANTAREX DSL

Figure 1: The ANTAREX Tool Flow

2. THE ANTAREX APPROACH
The ANTAREX approach and related tool flow, shown in Fig-

ure 1, operates both at design-time and runtime. The application
functionality is expressed through C/C++ code (possibly including
legacy code), whereas the non-functional aspects of the application,
including parallelisation, mapping, and adaptivity strategies are ex-
pressed through the DSL developed in the project. One of the bene-
fits consists of facilitating the reuse of legacy code. In the definition
of these strategies, the application developer or system integrator
can leverage DSL templates that encapsulate specific mechanisms,
including how to generate code for OpenCL or OpenMP paralleli-
sation, and how to interact with the runtime resource manager. The
DSL weaver and refactoring tool will then enhance the C/C++ func-
tional specification with the desired adaptivity strategies, generat-
ing a version of the code that includes the necessary libraries as
well as the partitioning between the code for the general-purpose
processors and the code for the accelerators (such as GPGPUs and
MIC accelerators [4]). A mix of off-the-shelf and custom compil-
ers will be used to generate code, balancing development effort and
optimization level.

The ANTAREX compilation flow leverages a runtime phase with
compilation steps, through the use of split-compilation techniques.
The application autotuning is delayed to the runtime phase, where
the software knobs (application parameters, code transformations
and code variants) are configured according to the runtime informa-
tion coming from the execution environment. Finally the runtime
resource and power manager are used to control the resource us-
age for the underlying computing infrastructure given the changing
conditions. At runtime, the application control code, thanks to the
design-time phase, now contains also runtime monitoring and adap-
tivity strategies code derived from the DSL extra-functional speci-
fication. Thus, the application is continuously monitored to guaran-
tee the required Service Level Agreement (SLA), while communi-
cation with the runtime resource-manager takes place to control the
amount of processing resources needed by the application. The ap-
plication monitoring and autotuning will be supported by a runtime
layer implementing an application level collect-analyse-decide-act
loop.

3. THE ANTAREX DSL
HPC applications might profit by adapting to operational and

situational conditions, such as changes in contextual information
(e.g., workloads), in requirements (e.g., deadlines, energy), and

in resources availability (e.g., connectivity, number of processor
nodes available). A simplistic approach to both adaptation spec-
ification and implementation (see, e.g., [5]) employs hard coding
of, e.g., conditional expressions and parameterizations. In our ap-
proach, the specification of runtime adaptability strategies will rely
on a DSL implementing key concepts from Aspect-Oriented Pro-
gramming (AOP) [6]. AOP is based on the idea that the certain re-
quirements of a system (e.g., target-dependent optimizations) should
be specified separately from the source code that defines the func-
tionality of the program. An extra compilation step, performed by
a weaver, basically merges the original source code and the as-
pects into the intended program [7]. Using aspects to separate sec-
ondary concerns from the core objective of the program can re-
sult in cleaner programs and increased productivity (e.g., higher
reusability of target-dependent strategies). Moreover, the devel-
opment process of HPC applications typically involves two types
of experts (application-domain experts and HPC system architects)
that can split their responsibilities along the boundary of functional
description and extra-functional aspects.

3.1 LARA for Runtime Adaptivity and Com-
piler Optimization

LARA [8, 9] is an AOP approach to developers to capture non-
functional requirements and concerns in the form of strategies, which
are decoupled from the functional description of the application.
Compared to other approaches that usually focus on code injection
(e.g., [10] and [11]), LARA provides access to other types of ac-
tions, e.g., code refactoring and inclusion of additional information.
Additional types of actions may be defined in the language specifi-
cation and associated weaver, such as software/hardware partition-
ing [12] or compiler optimization sequences [13].

Figure 2 shows an example of a LARA aspect that profiles func-
tion calls in order to gather information about argument values and
their frequency. It injects code for an external C library that mon-
itors and stores the name of the function being called, its location
and the value of the arguments. A concern intended to be applied
over the target application is expressed as one or more aspect def-
initions, or aspectdef, the basic modular unit of LARA. Aspects,
similarly to functions, can receive inputs, and return outputs.

1 aspectdef ProfileArguments
2 input funcName end
3 select fCall end
4 apply
5 insert before %{profile_args(’[[funcName]]’,
6 [[$fCall.location]],
7 [[$fCall.argList]]);
8 }%;
9 end

10 condition $fCall.name == funcName end
11 end

Figure 2: Example of LARA aspect for profiling.

An aspect is comprised of three main steps. Firstly, one captures
the points of interest in the code using a select statement, which in
the example selects function calls. Then, using the apply statement,
one acts over the selected program points. In this case, it will insert
code before the function call. We can then define a condition state-
ment to constrain the execution of the apply (i.e., only the function
with the provided name is selected). LARA promotes modularity
and aspect reuse, and to allow the definition of more sophisticated
concerns, it is possible to embed JavaScript code inside aspects.

Figure 3 presents an example of a LARA aspect that unrolls

innermost FOR loops whose iteration count is less than a given
threshold (it uses an action supported by the weaver - keyword do).
In this example this aspect will be called in a dynamic context after
we specialize a function for a given argument value.

1 aspectdef UnrollInnermostLoops
2 input $func, threshold end
3 select $func.loop{type==’for’} end
4 apply
5 do LoopUnroll(’full’);
6 end
7 condition
8 $loop.isInnermost && $loop.numIter <= threshold
9 end

10 end

Figure 3: Example of LARA aspect for loop unrolling.

Figure 4 shows an example of a possible dynamic aspect. This
aspect specifies the monitoring of calls to the function kernel in
runtime, and specialize it if the runtime value of parameter size
is between a range defined by lowT and highT. First, it statically
prepares the function call to support several versions of the func-
tion, according to the parameter size (the keyword call calls
an aspect). Then, dynamically, it specializes the function call for
the current value of the parameter size, and unrolls the loops of
the newly developed specialized function. Finally, it adds the spe-
cialized version as one of the possible function variants that can be
called.

1 aspectdef SpecializeKernel
2 input lowT, highT end
3

4 call spCall: PrepareSpecialize(’kernel’,’size’);
5

6 select fCall{’kernel’}.arg{’size’} end
7 apply dynamic
8 call spOut : Specialize($fCall, $arg.name,
9 $arg.runtimeValue);

10 call UnrollInnermostLoops(spOut.$func,
11 $arg.runtimeValue);
12 call AddVersion(spCall, spOut.$func,
13 $arg.runtimeValue);
14 end
15 condition
16 $arg.runtimeValue >= lowT &&
17 $arg.runtimeValue <= highT
18 end
19 end

Figure 4: Example of LARA aspect with dynamic weaving.

3.2 ANTAREX DSL Concepts
The current LARA infrastructure represents a solid foundation

to build a more sophisticated DSL that will enable us to specify
runtime adaptability strategies.

The ANTAREX DSL approach aims at reaching a higher ab-
straction level, to separate and express data communication and
computation parallelism, and to augment the capabilities of existing
programming models by passing hints and metadata to the com-
pilers for further optimization. The approach aims at improving
performance portability with respect to current programming mod-
els, such as OpenCL, where fine-tuning of performance (which is
very sensitive to even minimal variation in the architectural param-
eters [14, 15]) is left entirely to the programmer. This is done by

exploiting the capabilities of the DSL to automatically explore the
configuration space for the parallel code.

To this end, iterative compilation [16] techniques are attractive to
identify the best compiler optimizations for a given program/code
fragment by considering possible trade-offs. Given the diversity of
heterogeneous multiprocessors and the potential for optimizations
provided by runtime information, runtime optimization is also de-
sirable. To combine the two approaches, split compilation will be
used. The key idea is to split the compilation process in two steps
- offline, and online - and to offload as much of the complexity as
possible to the offline step, conveying the results to runtime opti-
mizers [17]. We will express code generation strategies to drive a
dynamic code generator in response to particular hardware features
as well as dynamic information. This combination of iterative- and
split-compilation will have a significant impact on the performance
of applications, but also on the productivity of programmers by
relieving programmers from the burden of repeatedly optimizing,
tuning, compiling and testing.

4. SELF-ADAPTIVITY & AUTOTUNING
The management of system adaptivity and autotuning is a key

issue in HPC systems, the system needs to react promptly to chang-
ing workloads and events, without impacting too much the extra-
functional characteristics, such as energy and thermal features [18,
19]. The motivation can be easily explained by the requirement to
meet the maximum performance/power ratio across all the possi-
ble deployments of the applications. This is especially important
when considering the rapid growth of computing infrastructures
that continue to evolve on one hand by increasing computing nodes,
while on other hand by increasing the performance exploiting het-
erogeneity in terms of accelerators/co-processors. Thus, there is
a requirement on applications to become adaptive with respect to
the computing resources. In this direction, another interesting ef-
fect is that there is a growing need of guaranteeing SLA both at the
server- and at the application-side. This need is related to the per-
formance of the application, but also to the maximum power budget
that can be allocated to a specific computation. In this context, ef-
forts are mainly focused on two main paths: i) the development
of an autotuning framework to configure and to adapt application-
level parameters and ii) to apply the concept of precision autotuning
to HPC applications.

Application Autotuning. Two types of approaches have been in-
vestigated so far to support application autotuning depending on
the level of knowledge about the target domain: white-boxes and
black-boxes. White-box techniques are those approaches based on
autotuning libraries that deeply use the domain specific knowledge
to fast surf the parameter space. On the other side, black-box tech-
niques do not require any knowledge on the underlying application,
but suffer of long convergence time and less custom possibilities.
The proposed framework falls in the area of grey-box approaches.
Starting from the idea of non-domain knowledge, it can rely on
code annotations to shrink the search space by focusing the auto-
tuner on a certain subspace. Moreover, the framework includes an
application monitoring loop to trigger the application adaptation.
The monitoring, together with application properties/features, rep-
resents the main support to the decision-making during the applica-
tion autotuning phase since it is used to perform statistical analysis
related to system performance and other SLA aspects. Continu-
ous on-line learning techniques are adopted to update the knowl-
edge from the data collected by the monitors, giving the possi-
bility to autotune the system according to the most recent oper-
ating conditions. Machine learning techniques are also adopted by
the decision-making engine to support autotuning by predicting the

most promising set of parameter settings.
Precision Autotuning. In recent years, customized precision has

emerged as a promising approach to achieve power/performance
trade-offs when an application can tolerate some loss of quality. In
ANTAREX, the benefits of customized precision HPC applications
will be investigated in tight collaboration with the domain experts
of the two use cases. We also plan to apply fully automatic dynamic
optimizations, based on profiling information, and data acquired at
runtime, e.g. dynamic range of function parameters.

In both cases, the use of the ANTAREX DSL will be crucial to
decouple the functional specification of the application from the
definition of software knobs (such as code variants or application
parameters) and from the precision tuning phase.

5. RUNTIME RESOURCE & POWER MAN-
AGEMENT

ANTAREX focuses on a holistic approach towards next-generation
energy-efficient Exascale supercomputers. While traditional design
of green supercomputers relies on the integration of best-in-class
energy-efficient components [20], recent works [21, 22] show that
as an effect of this design practice supercomputers are nowadays
heterogeneous system. Indeed, supercomputers are not only com-
posed by heterogeneous computing architectures (GPGPUs and CPUs),
but different instances of the same nominal component execute the
same application with 15% of variation in the energy-consumption.
Different applications on the same resources show different performance-
energy trade-offs, for which an optimal selection of operating points
can save from 18% to 50% of node energy with respect to the de-
fault frequency selection of the Linux OS power governor. More-
over it has been recently shown that environmental conditions, such
as ambient temperature, can significantly change the overall cool-
ing efficiency of a supercomputer, causing more than 10% Power
usage effectiveness (PUE) loss when transitioning from winter to
summer [23]. These sources of heterogeneity, coupled with cur-
rent worst case design practices, lead to significant loss in energy-
efficiency, and to some missed opportunities for runtime resource
and power management (RTRM, RTPM). ANTAREX leverages
RTRM and RTPM by combining: (1) novel introspection points,
application progress and dynamic requirements; (2) autotuning ca-
pabilities enabled by the DSL in the applications; and (3) infor-
mation coming from the processing elements of the Exascale ma-
chine and IT infrastructure and their respective performance knobs
(such as resource allocation, Dynamic Voltage and Frequency Scal-
ing, cooling effort, room temperature). Information flows con-
verge in a scalable multilayer resource management infrastructure.
The information will be used to allocate to each application the
set of resources and their operating points to maximize the overall
supercomputer energy-efficiency, while respecting SLA and safe
working conditions. The latter will be ensured by the resource
management solution by optimal selection of the cooling effort
and by a distributed optimal thermal management controller. The
ANTAREX power management and resource allocation approach
is based on: (1) Expanding the energy/performance control capabil-
ities by introducing novel software control knobs (such as software
reconfigurability and adaptability); (2) Designing scalable and hi-
erarchical optimal control-loops capable of dynamically leveraging
the control knobs together with classical performance/energy con-
trol knobs (job dispatching, resource management and DVFS) at
different time scale (compile time, deployment time and runtime);
(3) Monitoring the supercomputing evolution, the application status
and requirements, bringing this information to the energy/performance-
aware software stack. This approach will always enable the su-
percomputer and each application to operate at the most energy-

efficient and thermally-safe point.

6. APPLICATION SCENARIOS
The ANTAREX project is driven by two industrial HPC appli-

cations chosen to address the self-adaptivity and scalability charac-
teristics of two highly relevant scenarios towards the Exascale era.

Use Case 1: Computer Accelerated Drug Discovery Computa-
tional discovery of new drugs is a compute-intensive task that is
critical to explore the huge space of chemicals with potential ap-
plicability as pharmaceutical drugs. Typical problems include the
prediction of properties of protein-ligand complexes (such as dock-
ing and affinity) and the verification of synthetic feasibility. These
problems are massively parallel, but demonstrate unpredictable im-
balances in the computational time, since the verification of each
point in the solution space requires a widely varying time. More-
over, different tasks might be more efficient on different type of
processors, especially in a heterogeneous system. Dynamic load
balancing and task placement are critical for the efficient solution
of such problems [24, 25].

Use Case 2: Self-Adaptive Navigation System To solve the grow-
ing automotive traffic load, it is necessary to find the best utilization
of an existing road network, under a variable workload. The basic
idea is to provide contextual information from server-side to tradi-
tional mobile navigation users and vice versa. The approach will
help to overcome the major shortcomings of the currently avail-
able navigation systems exploiting synergies between server-side
and client-side computation capabilities. The efficient operation of
such a system depends strongly on balancing data collection, big
data analysis and extreme computational power [26, 27].

Prototypes of these two use cases will be developed, integrated
and validated in relevant environments to practically assess the ben-
efits of the ANTAREX self-adaptive holistic approach, as well as
the scalability of the proposed approach towards Exascale systems.

Target Platforms The target platforms are the CINECA’s Tier-
1 IBM NeXtScale hybrid Linux cluster, based on Intel TrueScale
interconnect as well as Xeon Haswell processors and MIC acceler-
ators [4], and IT4Innovations Salomon supercomputer, which is a
PetaFlop class system consisting 1008 computational nodes. Each
node is equipped with 24 cores (two twelve-core Intel Haswell pro-
cessors). These computing nodes are interconnected by InfiniBand
FDR and Ethernet networks. Salomon also includes of 432 com-
pute nodes with MIC accelerators.

7. EARLY EVALUATION
To provide an early analysis of the combined impact of paralleli-

sation, precision tuning, compiler optimizations, we used a miniapp
extracted from the Drug Discovery application. The miniapp im-
plements one of the most time consuming computational kernel of
the LiGen de-novo drug design software [25]. In particular the
miniapp implements the computation of the internal inter-atomic
distances of a drug molecule (SumOfIntervalDistance) and the com-
putation of the overlap between the drug molecule and a set of pro-
tein active site probes (MeasureOverlap). Both computations are
heavily used to compute a geometrical component of drug docking
score. The miniapp does not introduce any change with respect to
the LiGen code, preserving the same source and class hierarchy,
whereas all the proprietary components and those not relevant for
performances have been stripped out.

We employ test configurations with 4000 atoms per molecule
and 400 ligands. We applied parallelisation via an OpenMP par-
allel for with reduction template applied to the outermost loop of
each kernel. We applied precision tuning, allowing the computation
to be run in any of a range of floating point types, as well as using

Table 1: Design Space characterization
Parameter Values

OpenMP Threads none, 2, 4, 8, 16
Precision __float128, double, float, int
Optimization -O0, -O1, -O2, -O3, -O

integers. Finally, we applied all high-level optimization flags (-Ox)
exposed by GCC. The overall Design Space for the combined set
of optimizations is reported in Table 1. We then performed a full
search of the Design Space on three different target machines, a
quad-core Intel i5, a 4x quad-core AMD NUMA, and a 2x octa-
core Intel Xeon with hyperthreading. For each hardware platform
and each kernel, we consider as the baseline the most effective opti-
mization level using maximum precision and 16 OpenMP threads.

In Table 2, we report for each kernel and hardware platform the
combination of parameters that provides the best speedup over the
baseline, while limiting error to less than 5%. Timings are averaged
over 30 computations with the same input data and configuration.
It is worth noting that, if the input size is small enough, for the
shorter kernel parallelisation at this level is not useful on the Xeon
machine. While integer computation does not provide sufficient
precision, single and double precision floating point arithmetics
are generally a good match to the data (originally stored as double
precision floating point) both for speed and precision. It is worth
noting that the parallel reduction is inherently more precise than
the sequential version, so __float128, which provides more preci-
sion for the sequential implementation of SumOfIntervalDistance
is never actually needed in the parallel codes. Finally, as expected
the more aggressive optimization levels often fail at matching the
features of the target architecture, which points to the need for finer
control of the compiler transformations.

8. CONCLUSIONS
Exascale HPC systems will need the definition of new software

stacks to fully exploit heterogeneity, while meeting power efficiency
requirements. The goal of ANTAREX is to provide a holistic system-
wide adaptive approach for next generation HPC systems. Our
long-term vision is to explore an innovative application program-
ming paradigm and description methodology to decouple functional
and extra-functional aspects of the application. The impact and
benefits of such technology are far reaching, beyond traditional
HPC domains.

References
[1] J. Curley, “HPC and Big Data,” Innovation, vol. 12, no. 3, Jul.

2014.

[2] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic,
A. Ramirez, and M. Valero, “Supercomputing with Commod-
ity CPUs: Are Mobile SoCs Ready for HPC?” in Proc. Int’l
Conf. on High Performance Computing, Networking, Storage
and Analysis. ACM, 2013, pp. 40:1–40:12.

[3] M. Bohr, “A 30 Year Retrospective on Dennard’s MOSFET
Scaling Paper,” IEEE SSCS Newsletter, vol. 12, no. 1, pp. 11–
13, Winter 2007.

[4] G. Chrysos, “Intel® Xeon PhiTM Coprocessor-the Architec-
ture,” Intel Whitepaper, 2014.

Table 2: Exploration of the compiler parameters for the UC1 MiniApp. Speedups are computed over the fastest version with
maximum parallelism (16) and precision (__float128). A constraint limiting the maximum error to 5% was imposed.

Kernel Hardware OpenMP Threads Precision Optimization Speedup Error

MeasureOverlap 4-core Intel i5-2500 3.30GHz 16 double -Os 6.1 0.0%
SumOfIntervalDistance 4-core Intel i5-2500 3.30GHz 4 double -Os 4.0 0.0%
MeasureOverlap 4x4-core AMD Opteron 8378 2.40GHz 16 float -O3 2.7 0.0%
SumOfIntervalDistance 4x4-core AMD Opteron 8378 2.40GHz 16 double -Os 2.7 0.0%
MeasureOverlap 2x8-core Intel Xeon E5-2630v3 2.40GHz none double -O2 2.4 0.0%
SumOfIntervalDistance 2x8-core Intel Xeon E5-2630v3 2.40GHz 16 float -Ofast 3.6 0.00065%

[5] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and
E. Gjorven, “Using architecture models for runtime adaptabil-
ity,” IEEE Softw., vol. 23, no. 2, pp. 62–70, Mar. 2006.

[6] J. Irwin, G. Kickzales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, and J.-M. Loingtier, “Aspect-oriented Program-
ming,” in ECOOP’97 – Object-Oriented Programming, ser.
Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 1997, vol. 1241, pp. 220–242.

[7] T. Elrad, R. E. Filman, and A. Bader, “Aspect-oriented
Programming: Introduction,” Communications of the ACM,
vol. 44, no. 10, pp. 29–32, 2001.

[8] J. M. P. Cardoso, T. Carvalho, J. G. F. Coutinho, W. Luk,
R. Nobre, P. Diniz, and Z. Petrov, “LARA: An Aspect-
oriented Programming Language for Embedded Systems,” in
Proc. 11th Annual Int’l Conf. on Aspect-oriented Software
Development. ACM, 2012, pp. 179–190.

[9] J. M. P. Cardoso, J. G. F. Coutinho, T. Carvalho, P. C. Diniz,
Z. Petrov, W. Luk, and F. Gonćalves, “Performance-driven in-
strumentation and mapping strategies using the LARA aspect-
oriented programming approach,” Software: Practice and Ex-
perience, Dec. 2014.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “An Overview of AspectJ,” in ECOOP 2001
– Object-Oriented Programming, 2001, pp. 327–354.

[11] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “As-
pectC++: An Aspect-oriented Extension to the C++ Pro-
gramming Language,” in Proc. 40th Int’l Conf on Tools Pa-
cific: Objects for Internet, Mobile and Embedded Applica-
tions, 2002, pp. 53–60.

[12] J. M. Cardoso, T. Carvalho, J. G. Coutinho, R. Nobre,
R. Nane, P. C. Diniz, Z. Petrov, W. Luk, and K. Bertels, “Con-
trolling a complete hardware synthesis toolchain with LARA
aspects,” Microprocessors and Microsystems, vol. 37, no. 8,
pp. 1073–1089, 2013.

[13] R. Nobre, L. G. Martins, and J. M. Cardoso, “Use of Previ-
ously Acquired Positioning of Optimizations for Phase Order-
ing Exploration,” in Proc. of Int’l Workshop on Software and
Compilers for Embedded Systems. ACM, 2015, pp. 58–67.

[14] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale, “To-
wards Transparently Tackling Functionality and Performance
Issues across Different OpenCL Platforms,” in Int’l Symp. on
Comp. and Networking (CANDAR), Dec 2014, pp. 130–136.

[15] G. Agosta, A. Barenghi, A. Di Federico, and G. Pelosi,
“OpenCL Performance Portability for General-purpose Com-
putation on Graphics Processor Units: an Exploration on

Cryptographic Primitives,” Concurrency and Computation:
Practice and Experience, 2014.

[16] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and
E. Rohou, “Iterative compilation in a non-linear optimisation
space,” 1998.

[17] A. Cohen and E. Rohou, “Processor virtualization and split
compilation for heterogeneous multicore embedded systems,”
in Proc. 47th Design Automation Conference. ACM, 2010,
pp. 102–107.

[18] E. Paone, D. Gadioli, G. Palermo, V. Zaccaria, and C. Silvano,
“Evaluating orthogonality between application auto-tuning
and run-time resource management for adaptive opencl ap-
plications,” in IEEE 25th Int’l Conf. on Application-Specific
Systems, Architectures and Processors, ASAP 2014, Zürich
(CH), June 18-20, 2014, 2014, pp. 161–168.

[19] E. Paone, F. Robino, G. Palermo, V. Zaccaria, I. Sander,
and C. Silvano, “Customization of opencl applications for
efficient task mapping under heterogeneous platform con-
straints,” in Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, DATE 2015, Greno-
ble, France, March 9-13, 2015, 2015, pp. 736–741.

[20] B. Subramaniam, W. Saunders, T. Scogland, and W.-c. Feng,
“Trends in Energy-Efficient Computing: A Perspective from
the Green500,” in Int’l Green Computing Conf., June 2013.

[21] F. Fraternali, A. Bartolini, C. Cavazzoni, G. Tecchiolli, and
L. Benini, “Quantifying the Impact of Variability on the En-
ergy Efficiency for a Next-generation Ultra-green Supercom-
puter,” in Proc. 2014 Int’l Symp. on Low Power Electronics
and Design. ACM, 2014, pp. 295–298.

[22] A. Auweter, A. Bode, M. Brehm, L. Brochard, N. Hammer,
H. Huber, R. Panda, F. Thomas, and T. Wilde, “A Case Study
of Energy Aware Scheduling on SuperMUC,” in Supercom-
puting. Springer, 2014, vol. 8488, pp. 394–409.

[23] A. Borghesi, C. Conficoni, M. Lombardi, and A. Bartolini,
“MS3: a Mediterranean-Stile Job Scheduler for Supercom-
puters - do less when it’s too hot!” in 2015 Int’l Conf. on
High Perf. Comp. & Simulation. IEEE, 2015.

[24] C. Beato, A. R. Beccari, C. Cavazzoni, S. Lorenzi, and
G. Costantino, “Use of experimental design to optimize dock-
ing performance: The case of ligendock, the docking module
of ligen, a new de novo design program,” J. Chem. Inf. Model.,
vol. 53, no. 6, pp. 1503–1517, 2013.

[25] A. R. Beccari, C. Cavazzoni, C. Beato, and G. Costantino,
“LiGen: A High Performance Workflow for Chemistry
Driven de Novo Design,” J. Chem. Inf. Model., vol. 53, no. 6,
pp. 1518–1527, 2013.

[26] R. Tomis, J. Martinovič, K. Slaninová, L. Rapant, and I. Von-
drák, “Time-dependent route planning for the highways in the
czech republic,” in Proc. Int’l Conf. on Computer Information
Systems and Industrial Management, CISIM 2015, 2015.

[27] D. Fedorčák, T. Kocyan, M. Hájek, D. Szturcová, and J. Mar-
tinovič, “viaRODOS: Monitoring and Visualisation of Cur-
rent Traffic Situation on Highways,” in Computer Informa-
tion Systems and Industrial Management. Springer, 2014,
vol. 8838, pp. 290–300.

