
The Single-Writer Principle in CRDT Composition

Vitor Enes∗
HASLab / INESC TEC
Universidade do Minho

Braga, Portugal

Paulo Sérgio Almeida†
HASLab / INESC TEC
Universidade do Minho

Braga, Portugal

Carlos Baquero†
HASLab / INESC TEC
Universidade do Minho

Braga, Portugal

ABSTRACT
Multi-master replication in a distributed system setting allows each
node holding a replica to update and query the local replica, and
disseminate updates to other nodes. Obtaining high availability typ-
ically entails allowing replicas to diverge and requires a background
mechanism for re-establishing consistency. Conflict-free Replicated
Data Types (CRDTs) extend standard sequential data-types with
appropriate merge functions, and often can be composed together
to create more complex ones. In this work we add a generic CRDT
composition approach that explores the single-writer principle. By
carefully controlling which part of the composition can be updated
by each replica, we can derive efficient designs that cover new use-
cases. After introducing the new construction we exemplify some
uses, including how to emulate a simple Doodle functionality for
selecting a common meeting schedule among different participants.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms;

KEYWORDS
Single-Writer Principle, Eventual Consistency, CRDTs.
ACM Reference format:
Vitor Enes, Paulo Sérgio Almeida, and Carlos Baquero. 2017. The Single-
Writer Principle in CRDT Composition. In Proceedings of Programming
Models and Languages for Distributed Computing, Barcelona, Spain, June 20,
2017 (PMLDC ’17), 3 pages.
https://doi.org/10.1145/3166089.3168733

∗Project "TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with
Industrial Impact/NORTE-01-0145-FEDER-000020" is financed by the North Portugal
Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partner-
ship Agreement, and through the European Regional Development Fund (ERDF).
†The research leading to these results has received funding from the European Union’s
Horizon 2020 - The EU Framework Programme for Research and Innovation 2014-2020,
under grant agreement No. 732505, project LightKone.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PMLDC ’17, June 20, 2017, Barcelona, Spain
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-6356-3/17/06. . . $15.00
https://doi.org/10.1145/3166089.3168733

1 INTRODUCTION
Conflict-free Replicated Data Types [5] were designed to handle con-
current updates and resolve possible conflicts in a predictable and
meaningful way. Sequential data-types with non-commutative op-
erations lead to conflicts when these operations occur concurrently,
e.g., adding and removing the same element from a set. In this case,
CRDTs resolve the conflict by allowing the element to be in the
set (add-wins) or not be in the set (remove-wins). This decision is
application-specific, but these conflicting operations may not occur
in all applications.

Obtaining more powerful CRDTs by composition of more basic
ones has been addressed in various ways, one example being the
causal CRDTs [1] such as maps, in which the values are themselves
CRDTs. In such generic compositions, each individual component
must be designed in a way that it may be updated by multiple
participants. However, there are usage scenarios where each com-
ponent is semantically tied to a given participant, which is the
sole updater. One example is Doodle1, an online scheduling tool
for meetings, used by a group of people to decide on a date. Each
participant selects a set of desirable dates and Doodle aggregates
the responses from all participants, finding the dates that will work
best for everyone. In this scenario, each participant changes its
own value in the scheduling page, adding or removing dates. Using
current general CRDT designs (e.g., a map from participants to sets)
is unnecessarily complex, as it does not exploit this single-writer
scenario, where conflicting operations over each component will
never occur.

The single-writer principle in concurrent programming, where
each register is only written by a single process, is a powerful con-
cept, leading to simplifications or elegant designs, as the classic
Bakery algorithm [4]. In this paper we present a new design for
CRDT composition, exploiting the single-writer principle, to be
used in scenarios where each participant’s action is tracked indi-
vidually by single-writer versioned objects, and conflicting updates
will never occur by design.

In Section 2 we start by showing how we can build a join-
semilattice given a set of values of any sequential data-type; in
Section 3 we use this technique to build a single-writer versioned
object that stores the updates of a single participant; Section 4 de-
fines a generic collection of single-writer versioned objects, to be
used by several participants, and presents two concrete examples;
Section 5 concludes the paper with some final remarks.

1https://doodle.com

https://doi.org/10.1145/3166089.3168733
https://doi.org/10.1145/3166089.3168733
https://doodle.com

PMLDC ’17, June 20, 2017, Barcelona, Spain Vitor Enes, Paulo Sérgio Almeida, and Carlos Baquero

2 FROM SEQUENTIAL DATA-TYPES TO
JOIN-SEMILATTICES

Given any sequential data-type with values in Sµ , where µ ∈ Sµ is
the default value, we form a join-semilattice S⊤µ (called Sµ “sinked”)
by taking an element ⊤ < Sµ and defining ⊑ on S⊤µ = Sµ ∪ {⊤}

such that:

s ⊑ s ′ ≡ s = s ′ ∨ s ′ = ⊤

All the elements in Sµ are unordered, forming an antichain [3].
Two elements in S⊤µ are ordered if they are the same element or if
one of the elements is ⊤.

This technique allow us to define a join-semillatice given a set
of values of any sequential data-type, as depicted in Figure 1.

⊤

µ = 0 1 2 3 4

Figure 1: Example of S⊤µ with Sµ = {0, 1, 2, 3, 4}0

The binary join operator ⊔ on S⊤µ is defined as:

s ⊔ s ′ =

{
s if s = s ′

⊤ otherwise

3 SINGLE-WRITER VERSIONED OBJECT
State-based CRDTs model data evolution by inflation under a join-
semilattice. For instance, we can evolve a grow-only set {x ,y} by
adding a new element {z} and get {x ,y, z}. The corresponding
semilattice evolves by set union, and is ordered by set inclusion.
Since the evolution order is fixed, it is not possible to go back to
a smaller state from a larger one. Sets that can grow and shrink,
two-phase-sets, end up being modeled, with limitations, by a pair
of grow-only semilattices, one for added elements and another for
removed ones. A more general way to capture semilattice state that
can be safely inflated and deflated is to use it in the context of a
lexicographic product.

The lexicographic product A⊠ B of a total order A and a join-
semilattice B is a join-semilattice [1, 2], with the join of two lexico-
graphic pairs (a,b), (a′,b ′) ∈ A⊠ B defined as:

(a,b) ⊔ (a′,b ′) =


(a,b) if a = a′

(a′,b ′) if a < a′

(a,b ⊔ b ′) if a = a′

A single-writer versioned object with values in Sµ can be defined
asN⊠S⊤µ : the first component of the lexicographic pair is a natural
(that will serve as a version number) and the second component is
the current value of the object. The versioned object can be queried
or updated by

get((c,v)) = v

update(o, (c,v)) = (c + 1,o(v))

which return the value (get), and update the object by incre-
menting the version number and applying an operation o from the

sequential data-type to the current value. Used as single-writer,
i.e., with only one participant performing updates (increasing the
version number on each update), whenever the version c = c ′, also
the valuev = v ′, and the⊤ value will never be produced in a merge.

4 COLLECTION OF NAMED SINGLE-WRITER
VERSIONED OBJECTS

A collection of named single-writer versioned objects can be defined
as a map that stores, for each writer i ∈ I, a versioned object in Sµ .
Each partipicant can update the collection by passing an operation
from the sequential data-type to an apply operation, which will
update the map entry correponding to that partipipant. Each entry
is single-writer by design: for a map m, entry m(i) can only be
updated by participant i .

Notation. m{k 7→ v} updates map m, mapping k to v; m(k)
retrieves the value in mapm associated with key k (if that entry is
not present inm, (0, µ) is returned); the domain of mapm is given
by dom(m).

Collection⟨Sµ ⟩ = I ↪→ (N⊠ S⊤µ)

⊥ = {}

applyi (o,m) =m{i 7→ update(o,m(i))}

m ⊔m′ = {j 7→m(j) ⊔m′(j) | j ∈ dom(m) ∪ dom(m′)}

Figure 2: Generic collection of named single-writer ver-
sioned objects - participant i.

A generic collection is defined (Figure 2) by taking a sequential
data-type Sµ as parameter and by defining the applyi operation,
which takes a data-type operation o from the sequential data-type
as parameter. The join uses the generic definition for lexicographic
pairs, being data-type independent.

4.1 Collection of Named Sets
This collection stores per participant a set of values. When partic-
ipant i ∈ I adds an element e ∈ E to the set, we use the generic
applyi defined in Figure 2, passing an anonymous function λs ·s∪{e}
as a parameter: this function takes the current set value s ∈ P(E)
and adds the element e . If participant i is writing to the collection for
the first time, the default value µ = {} is passed to the anonymous
function (i.e., s = {}). A remove operation is defined in a similar
way. This collection also defines two query functions: union, to find
elements that are in some set in the collection; and intersection, to
find elements that are in all sets in the collection.

CollectionSet⟨E⟩ = Collection⟨P(E){}⟩

addi (e,m) = applyi (λs · s ∪ {e},m)

rmvi (e,m) = applyi (λs · s \ {e},m)

union(m) = ∪{get(m(j)) | j ∈ dom(m)}

intersection(m) = ∩{get(m(j)) | j ∈ dom(m)}

In Doodle, intersection could be used to find the dates where all
the participants are available to meet. More sophisticated queries
can be defined, for example, a query that returns a list of elements,

The Single-Writer Principle in CRDT Composition PMLDC ’17, June 20, 2017, Barcelona, Spain

sorted by number of occurrences in the collection (which would
be useful for an application like Doodle to find the best dates for a
meeting, even if some participants cannot attend).

4.2 Collection of Named Flags
This collections keeps a versioned flag per participant, allowing
each participant to enable and disable its flag. It also provides two
query functions to perform the logical and/or of the flags.

CollectionFlag = Collection⟨BFalse⟩

enablei (m) = applyi (λs · True,m)

disablei (m) = applyi (λs · False,m)

some(m) = ∨{get(m(j)) | j ∈ dom(m)}

all(m) = ∧{get(m(j)) | j ∈ dom(m)}

The concept of task can be modelled with this collection: a task
can be considered completed if all the participants completed the
task; or alternatively, if at least one of the participants completed
the task.

5 FINAL REMARKS
In this paper we have shown how the single-writer principle can be
used to construct a new class of CRDTs in which conflicting updates
never occur by design. We have also defined a generic collection of
single-writer versioned objects along with two concrete collections.

While this construction is classic in many systems and can be
already found in the design of some flavours of CRDT counters, it
was hidden inside specific implementations (e.g. counters defined
under section 7.3. in [1]). By making this pattern an explicit com-
position construct, and since it can be used to make CRDTs from
any sequential data-type, we aim to provide a new tool for safe
construction of complex CRDT compositions.

REFERENCES
[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2016. Delta State Repli-

cated Data Types. CoRR abs/1603.01529 (2016).
[2] Carlos Baquero, Paulo Sérgio Almeida, Alcino Cunha, and Carla Ferreira. 2015.

Composition of State-based CRDTs. (2015).
[3] Brian A. Davey and Hilary A. Priestley. 2002. Introduction to Lattices and Order.

Cambridge University Press.
[4] Leslie Lamport. 1974. A New Solution of Dijkstra’s Concurrent Programming

Problem. Commun. ACM 17, 8 (1974). https://doi.org/10.1145/361082.361093
[5] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011.

Conflict-Free Replicated Data Types,. In Stabilization, Safety, and Security of
Distributed Systems - 13th International Symposium. https://doi.org/10.1007/
978-3-642-24550-3_29

https://doi.org/10.1145/361082.361093
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29

	Abstract
	1 Introduction
	2 From Sequential Data-Types to Join-Semilattices
	3 Single-Writer Versioned Object
	4 Collection of Named Single-Writer Versioned Objects
	4.1 Collection of Named Sets
	4.2 Collection of Named Flags

	5 Final Remarks
	References

