Architecture for Transparent Binary
Acceleration of Loops with Memory Accesses

Nuno Paulino!, Jodo Canas Ferreiral, and Joao M. P. Cardoso?
b) b

L INESC TEC and Faculty of Engineering, University of Porto, Portugal
nuno.paulino@fe.up.pt, jcf@fe.up.pt
2 INESC TEC and Department of Informatics Engineering, Faculty of Engineering,
University of Porto, Portugal
jmpc@fe.up.pt

Abstract. This paper presents an extension to a hardware/software sys-
tem architecture in which repetitive instruction traces, called Megablocks,
are accelerated by a Reconfigurable Processing Unit (RPU). This scheme
is supported by a custom toolchain able to automatically generate a RPU
tailored for the execution of one or more Megablocks detected offline.
Switching between hardware and software execution is done transpar-
ently, without modifications to source code or executable binaries. Our
approach has been evaluated using an architecture with a MicroBlaze

General Purpose Processor (GPP) softcore. By using a memory sharing
mechanism, the RPU can access the GPP’s data memory, allowing the
acceleration of Megablocks with load/store operations. For a set of 21
embedded benchmarks, an average speedup of 1.43x is achieved, and a
potential speedup of 2.09x is predicted for an implementation using a
low overhead interface for communication between GPP and RPU.

Keywords: reconfigurable processor, memory access, Megablock, in-
struction trace, MicroBlaze, hardware acceleration, FPGA

1 Introduction

The use of dedicated hardware co-processors is an often-adopted solution to
accelerate demanding computational kernels. However, the hardware/software
(HW/SW) partitioning steps required to implement such co-processor based
systems are time consuming, requiring hardware expertise and integration with
a host system. Runtime reconfigurable coprocessor-based systems aim to resolve
these issues by automatically and transparently accelerating demanding soft-
ware kernels [1]. As a vast majority of such kernels operate on one or several
input/output data arrays, often of unknown size at compile time, which may
have random access patterns and data dependencies, it is important to focus on
co-processors capable of performing memory access efficiently.

HW/SW partitioning approaches differ in terms of where the partitioning
effort is applied. Typically, HW/SW partitioning applies high-level synthesis
techniques to source code, e.g. analysis/modification, to exploit more powerful

optimizations to generate HW components. We, however, address a low level
approach, usually referred to as binary acceleration, which attempts to find
(either online or offline) suitable candidate instruction traces for acceleration
when mapped to reconfigurable co-processors [2-5].

Several approaches have considered the use of RPUs acting as co-processors
and providing memory operations. Kim et al. use an RPU with local memo-
ries and address operation scheduling to reduce access conflicts to the available
ports [6]. Data arrays can be distributed among memories to optimize accesses.
This requires a code analysis step to determine access patterns. Other authors
specifically focus on binary acceleration. Beck et al. propose an approach to
transparently map at runtime basic blocks of instruction traces into an RPU [7].
There can be as many concurrent memory accesses as available memory ports.
Data access patterns can be random and known only at runtime. Paek et al.
propose an offline binary dissassembly step to generate RPU configurations [3].
Acceleration is considered for data-dominant loops with the number of iterations
known at compile time. Sequential memory accesses are supported, and data are
passed to/from the RPU via a shared memory mechanism.

As an extension of previous work [8], this paper proposes an architecture for
transparent binary acceleration which allows for an RPU to have transparent
access to a shared main memory. In our approach, kernels to be mapped to the
RPU are automatically identified from program execution traces, and are used
to generate a dedicated RPU supporting up to two concurrent memory accesses,
and including the Functional Units (FUs) needed to exploit the operation-level
parallelism of the kernels. This dedicated RPU is then used to accelerate program
execution transparently at runtime.

This paper is organized as follows. An overview of the proposed architecture
is presented in Section 2. Section 3 details the RPU architecture and the handling
of memory operations. Section 4 describes the module for transparent access to
data memory by the RPU. Section 5 explains the tool flow, the experimental
setup, and presents experimental results. Finally, Section 6 concludes the paper.

2 General Architecture Overview

The architecture and tools described in this paper are extensions of the ones
presented in [8] in order to provide RPU support for memory accesses. They
support the same four-step dynamic partitioning approach: (1) Loops within
computational kernels are identified from execution traces and represented as
Megablocks [9]; (2) Selected Megablocks (repeating code patterns) are trans-
formed into a RPU specification and corresponding configurations by a custom
toolchain, resulting in a specialized reconfigurable accelerator; (3) during run-
time, mapped Megablocks are identified at the start of their execution when the
GPP reaches the Megablock code; (4) execution of the mapped Megablocks is
migrated transparently to the RPU.

The present work addresses the lack of support for memory accesses by our
previous RPUs. Fig. 1 shows the enhanced system architecture, which is com-

posed of a program/data dual-port Block RAM (BRAM) connected to Local
Memory Busses (LMBs), a GPP, an RPU connected to the GPP via a Pro-
cessor Local Bus (PLB), two Local Memory Bus (LMB) Multiplexer modules,
each connected to an LMB, and an LMB Injector module attached to the GPP’s

instruction bus.
LMB
m Injector (MicroBlaze)

Controllers

Fig. 1. Architecture overview. The RPU shares BRAM access with the GPP through
the LMB Multiplexer

As in the previous version of our architecture, the MicroBlaze executes un-
modified program code from local memories. The LMB Injector is responsible
for the migration step, which is accomplished by monitoring and modifying the
contents of the instruction bus. If the start address of a region of code mapped
to the RPU is detected, the Injector branches the GPP to a special subroutine
that handles the communication between the GPP and the RPU.

The Communication Routine (CR) sends operands from the GPP’s register
file to the RPU through the peripheral bus, followed by a start signal. The
RPU then gains control of the Local Memory Bus and accesses the BRAM by
asserting the switch signals of the LMB Multiplexers. Each such module allows
for two master devices to access a single-master LMB, sharing the entire address
space of a BRAM without incurring any overhead, and without introducing data
coherency issues. No memory address translation steps are necessary (cf. Sect. 4).

Once RPU execution ends, control of the LMBs is handed back to the GPP,
which executes the remainder of the CR, recovering results to its register file and
resuming software execution from the memory address where it was migrated.

The RPU can perform up to two simultaneous write/read accesses. Memory
accesses can be random with addresses being calculated in the RPU. As multiple
independent memory accesses occur in a wide range of Megablocks, access to
both ports of the memory by the RPU allows for the exploration of this latent
parallelism, with considerable potential speedups.

3 RPU Architecture

Fig. 2 shows the Reconfigurable Processing Unit (RPU) architecture (omitting
the PLB interface). The RPU contains an array of Functional Units (FUs) tai-

lored for a specific set of Megablocks [8]. Each row contains a number of FUs
able to execute in parallel. The FU layout shown in Fig. 2 represents a synthetic
example with 3 rows (details are omitted for clarity). Data are received from
the preceding row and propagated to the next. Passthrough components are in-
serted to enable connections between FUs on non-adjacent rows. An iteration
completes when all rows have computed their results, and data is fed back to the
first row. FUs are reused between configurations, and the depth (no. of rows) of
the RPU equals the longest Critical Path Length (CPL) of the dataflow graphs
representing all the implemented Megablocks.

From N Input Registers 2M Outputs — Status
i 3 RS ¢ 5 Z i Switch
Configuration Input Multiplexer “ 1
[[[[1..N !
- N Inputs [I
Skip Round haveData 3, 3 | Enable
Robin N 3, ; Ready
-« Ld/St %;’ NS 3 } Done
Addrs. & addr en } —
pua | = lload] = [load| [add| [add]..| g
a 1 =.
| =
\ anl \ \pass\ \ xor\ \pass\ | o
data addr | %
“— | Ipass| [bne| |pass|-| ' |3
7 i =
dataValid 2 store - i !
»| {addr, data} P > Done i
Load Data — M Outputs }

Configuration 4—"‘ M Oumu\t registers ‘\:—%2 Enable]

Fig. 2. Simplified diagram of the RPU’s internal architecture, including the memory
access handling mechanisms.

The RPU executes the equivalent of single path instructions traces that cross
control-flow boundaries, and so it has one entry point and several exit points.
This is exemplified in Fig. 2 by the bne operation which triggers a Done signal.
When any of these exit operations is triggered, the current iteration is discarded
and software execution is resumed.

Memory operations are implemented by special FUs. These special FUs are
not single-cycle and may have a variable latency. To support multi-cycle opera-
tions, each row of the array generates a ready signal which is asserted when all
multi-cycle FUs on that row assert their individual ready signals. The Iteration
Control module issues an Enable signal per row, and checks the status of that
row’s Ready signal immediately after issuing the enable. If the row is not ready,
the control logic waits until it can issue the enable, thereby stalling the array
while memory requests are handled Memory accesses are managed by the Mem-
ory Access Manager (MAM) shown on the left in Fig. 2. This module and details
about the load/store FUs are presented in Section 3.2. The MAM receives data

and addresses from all load/store FUs in the array. To determine the width of
some ports, the number of memory operations the MAM can handle is specified
at synthesis time. Actual memory accesses are performed via the RPU’s two
LMB ports, which interface with the LMBs through the LMB Multiplexers. As
we currently use a dual-port BRAM, the number of ports in this implementation
is limited to two.

3.1 Reconfiguration

Reconfiguration of the RPU is done by re-routing operands and by enabling
or disabling FUs. To select a configuration before activation of the RPU, a
configuration register is written to during CRs execution by the MicroBlaze.

The toolchain produces per-row HDL specifications of the connections be-
tween FUs of adjacent rows, thus minimizing the required resources to support
all configurations. Each FU input is driven by a selector which is tailored at
synthesis time to output one of a number of sources equal to the number of con-
figurations. The Megablock extraction performs constant propagation, leading
to some FU inputs remaining constant for all iterations during an execution. In-
stead of feeding the RPU with constant values at runtime, they are specified in
the configuration. The inter-row selectors can either fetch values from any one of
the outputs of the previous row or feed the input they drive with synthesis-time
specified constants. These row interconnections are omitted for clarity from the
example of Fig. 2, except for the one associated with the add FU in the first row,
which exemplifies three configurations . In this case, for two configurations, the
first input of the add is fed with a value from the N inputs available to the ar-
ray (either values from the input registers or feedback values), and for the third
configuration a constant value is supplied to the FU. There is one such selector
per FU input. If only one configuration is present, the inter-row connections are
optimized into wires.

Not all FUs in the RPU are actually used by each specific configuration.
Although data may be fed to operations such as additions and other arithmetic
even when their outputs are not used during execution, unused memory and exit
FUs must be disabled. Thus, each FU is also driven by an enable signal. One
of the load operations in Fig. 2 shows the enable signal being driven high by
the selected configuration. The following excerpts from the RPU specification
generated for the chgBrghtB benchmark illustrate how the inter-row selectors
and enable signals are specified by tool-generated parameters at synthesis time.

parameter [0:32%(N_ROWS*N_COLS)-1] parameter [0:(33*9*N_CONFIGS)-1]

FU_ENABLES = { ROW3_CONFIGS = {

{32°p11, (...) 1}, // Config. 1 //Config. 2
{32°b11, (...) I}, {32’h0, 1°b0}, {32°h0, 1°bO},
{32°b01, (...) I}, {32’nffff, 1°b1}, {32°h0, 1’b0O},
... ...

{32°v01, (...) } {32°h0, 1°b0}, {32°hff,1°b1}

}; // bit encoded enable signals }; // configurations per FU input

The left excerpt shows the enable bits for the FUs of the first column. The first
two FUs are used in both configurations, while the third only in the first. This
scheme of configuration specification limits the number of possible configurations
to 32. The right excerpt shows the specification for 3 selectors of one of the rows
of the RPU. Each row of defines one selector and each column represents a
configuration. A 32-bit parameter specifies either a constant value or output
index of the previous row. A 33rd bit distinguishes between each case. In this
example, the second selector feeds a constant (32’hFFFF) to its associated input
in configuration 1 and the first output of the previous row in configuration 2.

3.2 Memory Access Management

The RPU supports up to two simultaneous memory accesses by using the LMB
Mux to interface with the BRAM ports. The RPU supports read/write opera-
tions of bytes, half-words or 32-bit words by using the byte enable signals of the
LMB. The byte size of a memory operation is specified at runtime by one of the
inputs to the load/store FUs. Since the architecture is not restricted by different
address spaces for RPU and GPP, and because the RPU may receive memory
addresses as operands from the GPP at runtime, access to heap allocated data
is also possible.

Execution of a memory operation on the FU array is decoupled from the
memory access itself. That is, store and load FUs only issue memory access
requests to the MAM. Thus, more than two memory accesses can be issued in
the same clock cycle. The RPU may or may not stall execution until they are
processed, depending on the combination of operations and the current state.

If the concurrent memory operations are stores, the values to be written out
are either immediately sent to memory (if both ports are free), or are instead.
Since stores produce no data for use in the FU array, they introduce no latency,
and only stall the RPU if execution reaches their row before any buffered data
has not been written. For instance, two store operations occurring every 3 cycles
can be written to memory using only one memory port without stalling. Once
execution on the RPU ends, no more store operations are issued and buffered
data are flushed out to memory before the RPU releases the LMB Mux switches,
and allows the MicroBlaze to continue execution. Since the last iteration must
be discarded and executed in software, stores must not be scheduled before the
first enabled exit operation to maintain coherency. So, we adopt an As Late
as Possible (ALAP) scheduling scheme for stores. If dependent loads occur a
sufficient number of clock cycles after the issuing of the corresponding stores,
no problems occur. The number of cycles required varies with the number of
stores to be performed, and with the availability of the LMB ports on the MAM
when they are issued. The placement mechanism does not yet analyze RAW
dependencies.

Load operations behave differently, because they have no slack (due to the
way Megablocks are generated): the loaded value is always required by the fol-
lowing row. When a load operation is issued, the RPU stalls until it is handled.

Two load operations in the same row can be handled simultaneously, introduc-
ing a latency of 1 clock cycle. If more are present, each one must be handled
in order for execution to advance. There is currently no restriction on the num-
ber of allowed loads per row. The evaluated benchmarks have a maximum of 3
concurrent loads (perimeter benchmark).

The order in which the memory operations are treated is dictated by a selec-
tion logic performed by the MAM. Memory operations are treated in the same
clock cycle they are issued, if a port is available. Each port is assigned a memory
operation to handle in a round-robin fashion, which skips operations that do not
have their request signal asserted in order to reduce latency. Both ports can-
not choose the same operation simultaneously. For load operations, the selection
logic directs the read data bus of a given port to the respective load FU.

Although this architecture allows for the minimum possible latency for both
loads and stores, the selection logic can introduce critical path delays, if the
FU array contains many memory operations. For the tested benchmarks fft and
perimeter, which have 8 and 6 memory operations, respectively, the maximum
operating frequency of each RPU is comparable to the delay introduced by using
one hardware multiplier on our target FPGA.

4 The LMB Multiplexer

The LMB Multiplexer, shown in Fig. 3, is a peripheral with three LMB ports.
Two ports connect to bus masters and a third connects to the actual Local
Memory Bus. This allows for two masters to access a single LMB and its slave
devices. The multiplexer is completely transparent. It does not add signals to
the bus interfaces or clock cycles to data exchanges between the bus and a
master. The transaction behavior on the bus is unaltered, and no modifications
are required to either the bus or the master devices.

D:':' i 1 ¥ _

& 2 4 i | (= Buffered bus signals Q %
z < Q <
7] i Il - =

1 Fomimmmimmmmeo >m """""" i

& i LMBRdy =0 »/"
3 | > =
o & | i [Handler 1 g

| | Handler 2

Fig. 3. Two port LMB Multiplexer. Each master device is treated by a handler.

Both ports of the LMB Multiplexer are bidirectional. The module uses the
bus signals to perform synchronization and allow for a gracious handover of

bus control between the two masters. When a switch is requested, it occurs
immediately only if there is no unfinished bus transaction or if a response to the
last transaction is already present on the bus lines (so as not to issue another
request untimely). When switching, the outputs from the newly selected master
are immediately connected to the bus; the bus response signals are only sent to
the newly-selected master in the next clock cycle, so that the response to the
previous transaction is sent to the previously selected master.

When a master is not selected, its requests are sent to a handler module which
buffers up to one access request. The handler buffers all master downstream
signals when an address strobe is asserted. This is sufficient, since the LMB
interface is blocking. If a request is buffered, the handler module holds the LMB
Ready signal low, which halts the master. When a handler has a buffered request
and the master of that handler is reselected a one-cycle delay is added. The
buffered request must be strobed to the bus first. The master reads back the bus
response and is then ready to perform more transactions. Since the MicroBlaze
does not timeout when attempting to access the LMB it can wait indefinitely.
Switching between bus masters requires no additional handshaking. Each LMB
Mux also includes the same address mask as the memory controller of the bus
it interfaces with, ignoring any requests that do not match the address range.

5 Experimental Evaluation

The toolchain that supports the presented approach is an extension of the tools
described in detail in [8]. The Megablock Extractor processes the executable files,
simulates them, and uses the trace information to identify candidate Megablocks.
These are passed to the RPU synthesis tool, which generates a parameterized
HDL description of the RPU along with the configuration information. A second
tool produces additional HDL specifications for the LMB Injector and CR code.

The CRs are added to the executable by being packed into arrays and com-
piled along with the benchmark, and then linked to predefined memory positions.
The toolchain can produce CRs and HDL for a system in which the GPP/RPU
communication is done through the PLB, or for a variant where modules are con-
nected by low-overhead point-to-point Fast Simplex Links (FSLs). The results
presented here were obtained with a PLB-based implementation.

5.1 Benchmark Results

The RPU’s memory access mechanism was tested with 18 benchmarks selected
from Texas Instrument’s IMGLIB, from the SNU-RT Benchmark Suite and other
assorted sources [10-12]. For most of these benchmarks, only one Megablock was
implemented. Three additional synthetic benchmarks were written to produce
RPUs implementing several Megablocks, for the sake of validation. The resulting
RPUs have at least one memory operation.

The test bed was a Digilent Atlys board with a Xilinx Spartan 6 LX45
FPGA. Xilinx EDK 12.3 was used for synthesis and bitstream generation, the

system clock was set to 66 MHz, and the MicroBlaze processor was synthesized
for minimum instruction latency. Benchmarks were compiled by mb-gcc 4.1.2
with the -O2 flag.

The chosen kernels operate on data arrays of various sizes. For the SNU-
cre benchmark there are two load operations, one which performs a load of a
half-word and another, a byte addressed load. The RPU often receives operands
which are memory positions of data arrays, and the addresses for data accesses
are computed during execution. The number of concurrent memory accesses
allows for a good use of the RPU’s memory ports, as most generated RPU con-
figurations have at most two simultaneous loads/stores. Synthetic benchmarks
syntl, synt2 and synt3 are sequences of calls to routines belonging to other
benchmarks. Benchmarks synt1 and synt2 have 6 configurations, and synt3 has
3. To evaluate the worst case scenario, the benchmarks were written so that each
set of kernels is called 500 times with an RPU reconfiguration on every call.

Table 1 summarizes the characteristics of the generated RPUs, the Instruc-
tions per Clock (IPC) achieved by hardware and the software IPC, for com-
parison. The #Lds/Sts column contains the number of load/store FUs in the
RPU (not necessarily concurrent). The #Ops and #Passes columns specify
how many FUs are actual operations (loads/stores included) and how many
are passthroughs. The #Rows column refers to the number of rows of the RPU.

The Hw. IPC is the ratio between the number of enabled FUs (excluding
pass-through components) and the number of cycles required to execute all of
the rows of the RPU (i.e. one loop iteration). The number of cycles required does
not equal the number of rows due to the multi-cycle memory operations (whose
latency depends on their concurrency). For the tested benchmarks (excluding
synthetic examples), memory operations introduce an average latency of 2.33
clock cycles. For cases with more than one configuration, the Sw. IPC was
computed as the average of the IPCs for all corresponding Megablocks. The Hw.
IPC was computed from the average number of enabled FUs per configuration
and the average number of clock cycles required to complete an iteration.

The number of execution clock cycles was measured using a custom timer
peripheral. The following measurements were made: 1) number of cycles during
which the RPU is stalled; 2) number of cycles spent executing operations on
the RPU (stall cycles included); 3) number of cycles required to execute the
mapped Megablocks (in hardware or software) including communication and
other overheads introduced by the migration mechanism; and 4) number of the
cycles spent executing the entire benchmark, again including all overheads. Mea-
surements for both hardware and software execution can be taken from the same
implementation as the migration step can be easily disabled.

The Spd. column refers to the overall benchmark speedup, computed from
4). Overhead introduced by the execution of the CRs (i.e. GPP-RPU communi-
cation over the PLB) was derived from 2) and 3). The last column contains the
potential overall speedup were this overhead completely removed. For the chosen
benchmarks, the overhead accounts for an average of 32.9 % of the time required
for migration and RPU execution. Each call of the RPU takes an average of 193

Table 1. RPU Characteristics and achieved Speedups

Benchmark #Lds/Sts #O0ps #Passes #Rows Hw.IPC Sw.IPC Spd. Spd.(no OH)

blit1 1/1 10 17 3 2.50 0.92 1.45 1.47
chgBrghtl 1/1 11 31 7 1.38 0.92 0.97 1.20
chgBrght2 1/1 11 20 5 1.83 091 0.54 1.80
quantize 1/1 11 35 6 1.57 0.92 1.90 2.14
SNU _crc 2/0 16 29 9 1.45 0.92 1.01 1.02
blit"" 1/2 14 27 4 2.10 0.92 2.38 2.48
boundary* 1/2 12 18 3 3.00 093 1.17 3.73
dotprod! 2/0 9 11 4 1.80 0.88 1.77 1.80
fir2! 2/1 12 17 4 2.00 0.91 1.40 1.78
perimeter? 5/1 19 12 3 3.17 0.94 1.82 2.51
bob_hash? 1/0 11 24 8 1.22 091 1.53 1.55
chgBrghtB* 1/2 16 31 7 1.38 0.92 0.47 2.22
fFt 4/4 30 78 7 3.00 0.96 0.52 2.27
motEstim? 2/1 13 48 7 1.63 0.93 0.54 1.75
sad_8x8 2 2/0 14 39 8 1.56 0.92 0.52 1.73
checkbits® 1/1 64 169 16 3.65 0.98 3.56 3.94
compositing® 2/1 18 78 10 1.64 0.95 2.09 2.27
pop._arrayl® 1/0 22 94 15 1.38 0.96 1.86 2.11
synt1l 6/3 36 27 4 2.36 0.91 2.09 2.52
synt2 6/5 53 88 8 1.79 0.92 0.68 1.64
synt3 4/3 93 180 16 2.00 097 1.85 1.97

Included in synt! 2Included in synt2; *Included in synt3.
“Benchmark has two Megablocks.

clock cycles. Even so, the average speedup achieved for the Megablocks alone is
1.52x. The overall speedup (with overhead included) is 1.41x. In some cases the
overhead imposed an overall slowdown, although the mapped Megablocks were
accelerated. By eliminating this overhead (for instance, using a FSL between
the GPP and the RPU) the average potential speedup is 2.10x, and a speedup
occurs for all cases. These averages do not include synthetic benchmarks.

5.2 Discussion

The benchmarks for which the Hw. IPC is largest are the ones with the greatest
potential speedup. Memory operations reduce the IPC because of the latency
they introduce, which accounts for stall cycles. Stalls only occur when more
than 2 simultaneous memory operations are issued. Even then, this depends
on the type of memory operation, since stores can be buffered and handled
in later cycles. Therefore, latency above the minimum possible memory access
time is only introduced when a load operation cannot be handled in the cycle
it is issued. This occurs for the perimeter benchmark, but its execution still
achieves the third best speedup (w/o overhead) of all the tested benchmarks.

The slowdowns that occur are due to the small number of iterations performed
in hardware, which do not make up for the communication overhead.

Stall cycles account for an average 19.5 % of the total number of cycles spent
on the RPU, excluding synthetic benchmarks. The largest stall time (57.1%
of the total execution time) occurs for the perimeter benchmark due to two
consecutive rows with 3 concurrent accesses each. Execution of the checkbits
benchmark stalls only 5.91 % of the time, because it has only one load operation.
Although the compositing benchmark contains two loads and one store, only the
two loads occur in the same row, introducing only the minimum latency of one
clock cycle and resulting in the third lowest stall time of 9.12 %.

Regarding resources, the generated RPUs use on average 6.3 % of the avail-
able 27288 Lookup Tables (LUTs) and 4.3 % of 54576 Flip Flops (FFs). Max-
imum utilization for these resources is, respectively, 15.1 % (pop_arrayl bench-
mark) and 8.5 % (fft benchmark), while the minimum values are 2.1 % and 1.8 %
(both for the dotprod benchmark). The average synthesis frequency of the indi-
vidual RPU was 114 MHz. The lowest frequency, 62 MHz, occurs for the fft RPU.
The associated critical path delay is due to the MAM selection logic. The high-
est frequency is 170 MHz for, chgBrght1. Although the frequency of all RPUs,
save for fft, exceeds the base 66 MHz system clock used for most benchmarks, the
clock frequency had to be lowered to 50 MHz (for the perimeter, fft benchmarks)
and syntd benchmarks) or 33 MHz (for benchmarks synt! and synt2).

Some of the FUs are reused between configurations. Specifically, a total of
36, 37 and 10 FUs were reused for syntl, synt2 and synt3, respectively. This
does not account for pass-through components, of which 96, 170 and 216 were
reused between configurations for the 3 synthetic benchmarks. With respect to
the total FPGA resources, the LUT usage for the three synthetic benchmark
RPUs is 25 %, 40 % and 49 %; FF usage is 6 %, 12% and 17 %s.

Benchmarks synt! and synt3 achieve considerable speedups, incurring com-
munication overheads of 17.1 % and 5.7 %. Benchmark synt2 exhibits a slowdown
as expected, since the same occurs for the individual implementations. The over-
head for this case is 59.4 %. In the overhead-free scenario, the three synthetic
cases show good speedups. These benchmarks show that a good average speedup
can be achieved when Megablocks have similar CPLs and significant parallelism.

6 Conclusion

This paper presented a general-purpose computing architecture based on a Gen-
eral Purpose Processor (GPP) and a Reconfigurable Processing Unit (RPU)
automatically generated offline from instruction traces. In this architecture, a
multiplexer module transparently interfaces with standard memory buses, al-
lowing the RPUs to access the GPP’s data memory. We use a two-port data
memory to allow parallel memory accesses and to achieve the acceleration of
instruction traces with load/store operations. Data memory accesses are easily
handled by our RPU through the transparent bus multiplexer, allowing shared
access to the entire address space. The RPU can thus operate on any number

of data arrays at any address regardless of their size. This allows an efficient
memory access scheme that does not introduce costly data transfers between
the data memory and the RPU. Future work will focus on extensions to the
RPU execution model to enable both pipelining and multipath Megablock exe-
cution, and on developing efficient scheduling memory operations in the RPU,
including the handling of RAW and WAR, dependencies.

Acknowledgments. This work was funded by the European Regional Devel-
opment Fund through the COMPETE Programme (Operational Programme
for Competitiveness) and by national funds from the FCT-Fundacao para a
Ciéncia e a Tecnologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-022701, and by the European Commu-
nity’s Framework Programme 7 under contract No. 248976.

References

1. Wolf, W.: A decade of hardware/software codesign. Computer 36 (April 2003)
3843

2. Clark, N., Blome, J., Chu, M., Mahlke, S., Biles, S., Flautner, K.: An architecture
framework for transparent instruction set customization in embedded processors.
In: Proc. of the 32nd Annual Intl. Symposium on Computer Arch. (ISCA ’05),
Washington, DC, USA, IEEE Computer Society (May 2005) 272-283

3. Paek, J.K., Choi, K., Lee, J.: Binary acceleration using coarse-grained reconfig-
urable architecture. SSIGARCH Comput. Archit. News 38(4) (January 2011) 33-39

4. Lysecky, R.L., Vahid, F.: Design and implementation of a microblaze-based warp
processor. ACM Trans. Embedded Comput. Syst. 8(3) (April 2009) 22:1-22:22

5. Noori, H., Mehdipour, F., Murakami, K., Inoue, K., Saheb Zamani, M.: An ar-
chitecture framework for an adaptive extensible processor. J. Supercomput. 45(3)
(September 2008) 313-340

6. Kim, Y., Lee, J., Shrivastava, A., Paek, Y.: Memory access optimization in com-
pilation for coarse-grained reconfigurable architectures. ACM Trans. Des. Autom.
Electron. Syst. 16(4) (October 2011) 42:1-42:27

7. Beck, A.C.S., Rutzig, M.B., Gaydadjiev, G., Carro, L.: Transparent reconfigurable
acceleration for heterogeneous embedded applications. In: Proc. of the Conf. on
Design, Automation and Test in Europe (DATE ’08), ACM (2008) 1208-1213

8. Bispo, J., Paulino, N., Cardoso, J.M., Ferreira, J.C.: Transparent runtime mi-
gration of loop-based traces of processor instructions to reconfigurable processing
units. International Journal of Reconfigurable Computing (2012) (in press).

9. Bispo, J., Cardoso, J.M.P.: On identifying and optimizing instruction sequences
for dynamic compilation. In: Proc. Intl. Conf. Field-Programmable Technology
(FPT’10). (2010) 437-440

10. Seoul National University: SNU Real-Time Benchmarks.
http://www.cprover.org/goto-cc/examples/snu.html Accessed 23 Dec 2012.

11. Texas Instruments: TMS320C6000 Image Library (IMGLIB) - SPRC264.
http://www.ti.com/tool/sprc264 Accessed 23 Dec 2012.

12. Warren, H.S.: Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2002)

