
A Model-Based Approach for Product Testing and
Certification in Digital Ecosystems

Bruno Lima∗† and João Pascoal Faria∗†
∗INESC TEC,

FEUP campus, Rua Dr. Roberto Frias, s/n4200-465 Porto, Portugal
†Faculty of Engineering, University of Porto,

Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal

{bruno.lima, jpf}@fe.up.pt

Abstract—In a growing number of domains, such as ambient-
assisted living (AAL) and e-health, the provisioning of end-to-
end services to the users depends on the proper interoperation
of multiple products from different vendors, forming a digital
ecosystem. To ensure interoperability and the integrity of the
ecosystem, it is important that candidate products are inde-
pendently tested and certified against applicable interoperability
requirements. Based on the experience acquired in the AAL4ALL
project, we propose in this paper a model-based approach
to systematize, automate and increase the assurance of such
testing and certification activities. The approach encompasses
the construction of several models: a feature model, an interface
model, a product model, and unit and integration test models.
The abstract syntax and consistency rules of these models are
specified by means of metamodels written in UML and Alloy
and automatically checked with Alloy Analyzer. Using the model
finding capabilities of Alloy Analyzer, integration tests can be
automatically generated from the remaining models, through the
composition and instantiation of unit tests. Examples of concrete
models from the AAL4ALL project are also presented.

Index Terms—Certification; Metamodel; Test Models; Test
Generation; Integration Testing; Ambient-Assisted Living

I. INTRODUCTION

In a growing number of domains, the provisioning of end-to-
end services to the users depends on the proper interoperation
of multiple products (devices, applications, etc.) from different
vendors, forming a digital ecosystem. To ensure interoper-
ability and the integrity of the ecosystem, it is important
that candidate products are independently tested and certi-
fied against applicable interoperability requirements, usually
involving integration test scenarios.

An example is the e-health domain, where Ambient-
Assisted Living (AAL) technologies [1] are being increasingly
used in response to problems caused by the increasing age of
the population. Some of the first AAL solutions (e.g. [2]) were
monolithic, incompatible and thus expensive and potentially
not sustainable. The AAL4ALL project [3] tried to answer
those problems through the development of an ecosystem
of interoperable products for AAL, associated to a business
model and validated through a large scale trial. One goal of
this project was to ensure that any supplier of AAL products,
whether they are physical devices or software, can enter
the ecosystem easily and independently, whilst assuring their

interoperability with the rest of the ecosystem. To that end, the
AAL4ALL project encompassed the specification of a set of
reference models and requirements or standards, against which
candidate products can be certified and subsequently integrated
as components of the ecosystem. The project also encom-
passed the definition of a testing and certification methodology
for candidate components [4]. However, there was a lack of
formalization of reference models, requirements and test cases,
and a lack of tool support for test generation, test execution and
overall traceability and consistency checking between artifacts.

Recently the use of Model-Driven Engineering (MDE)
techniques as a response to deal with complex problems (like
the previously described), has been increasing [5]. One of the
MDE technologies are the Domain-Specific Modeling Lan-
guages (DSMLs) [5]. These languages allow the formalization
of the application structure, behavior, and requirements within
particular domains, such as software-defined radios, avionics
mission computing, online financial services, warehouse man-
agement, or even the domain of middleware platforms. The
abstract syntax of DSMLs may be described through meta-
models, which define the relationships among concepts in a
domain and precisely specify the key semantics and constraints
associated with these domain concepts. Another key MDE
technology are model transformation languages (MTLs) and
engines [6]. Model-to-model transformations can be specified
declaratively as relations or mappings [7] between source
and target metamodels. Both DSMLs and MTLs are enabling
technologies for model-based testing purposes (MBT) [8],
namely for automatic test generation from models.

In this article, we take advantage of the aforementioned
techniques, to formalize, improve and generalize for digital
ecosystems the testing and certification approach that was
implemented in the AAL4ALL project, and enable automatic
test generation. In summary, the main contributions of this
paper are:

• an overall modeling and testing approach for organizing
and deriving (whenever possible) the relevant models
needed for product testing and certification in digital
ecosystems;

• detailed metamodels, formally specified in Alloy [9] and
documented with UML [10], defining the abstract syntax,



consistency rules and semantics of DSMLs that can be
used for constructing and checking the previous models;

• model transformation rules, embedded in the previous
metamodels, that allow the automatic derivation of in-
tegration test models for candidate products, through the
instantiation and composition of generic unit test models
defined at the domain level, taking advantage of the
model finding capabilities of Alloy Analyzer;

• application examples (models) from the AAL4ALL
ecosystem, formally specified in Alloy and represented
visually in a concrete notation, for illustrating and par-
tially validating the approach.

The rest of the paper is organized as follows: section II
presents the overall modeling and test generation approach;
section III presents the proposed metamodels; in section IV
are presented application examples; related work is presented
in section V; conclusions an future work are presented in
section VI.

II. MODELING AND TEST GENERATION APPROACH

A. Modeling Approach
Our modeling approach is based on the traditional OMG

Modeling Infrastructure [11] that consists of a hierarchy of
model levels, each (except the top) being characterized as “an
instance” of the level above. The bottom level, also referred
to as M0 is said to hold the “user data”, i.e., the actual data
objects the software is designed to manipulate. The next level,
M1, is said to hold a “model” of the M0 user data. This is the
level at which user models reside. Level M2 is said to hold
a “model” of the information at M1. Since it is a model of a
(user) model, it is often referred to as a metamodel. Finally,
level M3 is said to hold a model of the information at M2,
and hence is often characterized as the meta-metamodel. For
historical reasons it is also referred to as the Meta Object
Facility (MOF) [12]. Figure 1 shows the global perspective of
the models proposed.

Our modeling approach is also sought to support an in-
cremental process, starting with domain modeling, followed
by the modeling of specific products (certified or candidate
for certification), and the manual or automatic generation of
integration tests for candidate products.

Hence, in M2 we propose a set of metamodels divided in
two different levels, Domain Level and Product Level. The
Domain Level contains generic definitions related with a given
domain, needed to support the testing and certification of
candidate products, but without reference to actual products:
product categories allowed in the domain (for certification
purposes); product features permitted in each category; generic
interfaces and allowed message types associated with the
product categories; and generic unit tests associated with the
product features, defining required behaviors associated with
those features. Hence, inside this level we propose three
different metamodels, FeatureMetamodel (related with
product categories and features), InterfaceMetamodel
and UnitTestMetamodel. Whenever possible, concepts
from UML are reused.

Fig. 1. Proposed Models and Metamodels

The Product Level contains specific definitions related
with actual products: candidate and certified products (in-
dicating their categories, supported features and possible
message specializations); integration test scenarios used for
the certification of candidate products, possibly involving
other already certified products; and mappings (composi-
tion and instantiation) between integration tests and unit
tests. Hence, inside this level we propose three metamodels,
ProductMetamodel, IntegrationTestMetamodel,
and TestMappingMetamodel. All the metamodels are
presented in section III by means of UML class diagrams
and associated constraints. The constraints and data types
are written in Alloy to support the automated analysis and
validation of the metamodels with Alloy Analyzer, as well as
the automatic derivation of integration test models.

Level M1 contains models that are instances of the meta-
models above, also divided in two different levels. The Domain



Level contains FeatureModel, InterfaceModel
and UnitTestModel. The Product Level contains
ProductModel, IntegrationTestModel, and
TestMappingModel. Example models for the AAL
domain are presented in section IV in diagrammatic notation.
Those models are also formally specified in Alloy, using
singleton signatures that extend the metamodel signatures.

B. Test Generation Approach
Figure 2 shows a data flow view of the integration test

generation process.

Fig. 2. Integration Test Generation as a Model Transformation Process

The outer packages and components represent the usual
participants in a model transformation process: source meta-
models, source models (conforming to the source metamod-
els), target metamodels, transformation rules (from source
models to target models), a transformation engine, a trans-
formation command, and generated models (conforming to
the target metamodels). In our approach, integration tests
for specific products are created by instantiating and com-
posing generic unit tests previously defined for the domain
features, according to a set of mappings and constraints
formalized in the TestMappingMetamodel. Hence, this
metamodel defines the transformation rules. Besides the
IntegrationTestModel, the generation process also
generates the corresponding TestMappingModel with the
actual mappings. Alloy Analyzer plays the role of a trans-
formation engine, thanks to its model finding capabilities.

The transformation command is a model finding (run)
command written in Alloy, specifying the test generation
criteria and the search scope (maximum number of in-
stances to explore of each signature). The relevant outputs
(IntegrationTestModel and TestMappingModel)
are displayed in different formats by Alloy Analyzer (tree,
graph, XML), but can easily be converted to Alloy.

III. METAMODELS

A. Feature Metamodel

In some ecosystems, such as in the AAL field, there is a
wide variety of products with a great features variability. It is
therefore very important to limit the scope of the certification
of such product types within a ecosystem. For this, based on
the formalism of feature models [13], we propose a metamodel
that allows representing the variability of products and their
features within an ecosystem.

Firstly, in the upper layer of Figure 3, we define the
structure and semantics of general purpose feature models.
A feature model is a hierarchically arranged set of features
where relationships between a parent (or compound) feature
and its child features (or subfeatures) are categorized as:

• And − all subfeatures must be selected
• Xor − only one subfeature can be selected
• Or − one or more subfeature can be selected
• Mandatory − subfeatures that are required
• Optional − subfeatures that are optional
The semantics of these constructs is formalized by the

auxiliary predicate isValidConfiguration in Figure 3,
which checks if a configuration (a particular selection of
features in the feature model) is valid. Some well formedeness
rules of feature models are specified in Figure 3 by constraints
(facts) written in Alloy.

An excerpt of the corresponding definition in Alloy is shown
in Figure 4. A class in UML is represented by a signature
in Alloy, with a number of fields (representing attributes or
associations in UML) and constraints.

The lower layer of Figure 3 contains specialized def-
initions for our purpose. The feature model is parti-
tioned intro three layers, with the root node represent-
ing a domain (ProductDomain) and child nodes repre-
senting allowed product (sub)categories within the domain
(ProductCategory) and allowed product (sub)features
within each category (ProductFeature). This layering is
ensured by several constraints on the values of the parent
and child fields. Categories represent different types of
products within the domain, sharing similar characteristics
(namely, the interfaces used or implemented). Each product
is certified in a specific category, so categories are mutually
exclusive (constraint C2 in ProductCategory). The actual
functionalities and properties that are the subject of testing
and certification are the (sub)features defined within each
(sub)category. Constraint C4 in ProductCategory ensures
that at least one (sub)feature must be selected within each
(sub)category.



Fig. 3. Feature Metamodel

B. Interface Metamodel

To ensure interoperability, the ecosystem products have
to communicate by exchanging standardized messages via
standardized interfaces. To that end, we propose the
InterfaceMetamodel shown in Figure 5, containing the
set of rules necessary to message specification for a particular
domain. As represented in Figure 5, an Interface defines

Fig. 4. Excerpt of the Feature Metamodel in Alloy

Fig. 5. Interface Metamodel



the types of messages that can be sent or received through
it, by product categories that use or implement the interface,
respectively. In the case of user interfaces, the associated actors
are also represented in the metamodel.

A message body is a composite data structure (Record)
containing a number of fields. Hence, a message type is
defined by a RecordType. Each field may in turn hold
another Record, a Literal or a Variable. Variables are
used in message specifications (namely in test specifications)
to represent placeholders for more concrete expressions to be
defined later by a refinement process, according to the con-
straints set by the predicate isValidRecordRefinment.

C. Unit Test Metamodel

Our proposal is based on the principle that the features of
the Feature Model (see subsection III-A) have one or more
associated unit tests; these tests allow the verification if a
product implements this feature according to the ecosystem
rules. To describe the unit tests we propose the Unit Test
Metamodel shown in Figure 6.

Fig. 6. Unit Test Metamodel

A unit test specifies a required behavior related with a
target product category and a target feature or group of

interdependent features (within a specific domain), as ob-
served through the product interfaces (without knowledge of
internal state). A unit test refers to a sequence of messages
sent (output) or received (input) by a product that matches
the target of the unit test (in the sense formalized by the
predicate isApplicableToProduct in Figure 6), through
interfaces it uses or implements, respectively. At this level,
messages are usually specified in a generic way, using vari-
ables for the message fields. The metamodel includes some
self-explanatory consistency constraints.

D. Product Metamodel

The Product Metamodel proposed (see Figure 7) allows the
description of concrete products, already certified or candidate
for certification. In this context a product belongs to a domain
and a specific (sub)category and can have multiple features.
The product also has a name and a flag indicating if it is a
certified product or not. For each product, it is possible to
restrict the admissible values for message parameters’ data
types (productSpecializations).

Fig. 7. Product Metamodel

E. Integration Test Metamodel

To obtain certification, candidate products are submitted
to end-to-end integration tests in scenarios that may include
other products (already certified), in order to ensure that
they are able to communicate according to the ecosystem
specifications.

To describe integration tests, we propose the metamodel
shown in Figure 8. An IntegrationTest refers to a
sequence of messages exchanged between a set of participants,
including the product under test (not yet certified), zero or
more products already certified, and actors. Each Message
flows from a source product or actor to a destination product or
actor through a well defined interface. The body of a message
is a composite data structure, i.e., a record. The metamodel
includes some self-explanatory consistency constraints.

The actual mechanisms of test execution are not specified
in the models, but it is assumed that the actors’ behavior
(send messages to the system and monitor and check messages



Fig. 8. Integration Test Metamodel

received from the system) will be simulated by a tester or a test
script. Messages exchanged between products in the system
may or may not be monitored and checked. In case of variables
used in the specification of message bodies (as placeholders
for actual values), it is assumed that each variable must take
the same value in all occurrences of the variable.

F. Test Mapping Metamodel

Integration tests for concrete products are generated by
instantiating and composing generic unit tests associated with
features of the feature model (supported by the products under
test). The instantiation and composition are defined by three
mappings: a mandatory mapping from unit tests (targeting
a feature or group of features) to actual target products in
the integration test (targetMapping); a mandatory map-
ping from unit test messages to integration test messages
(messageMapping); and an optional mapping from vari-
ables used in the specification of the unit test message fields
to more specific expressions (variableMapping). To en-
sure proper composition and instantiation, several consistency
constraints apply for these mappings, as described in Figure 9.
Constraints C1 to C4 restrict the domains and ranges of the
three mappings. Constraints C7 and C8 check the consistency
between different mappings. Of particular importance are
constraints C10 and C11, because they control how the unit
test messages are composed. Constraint C10 ensures that the
ordering of messages of each unit test is preserved. Coupling

Fig. 9. Test Mapping Metamodel

between unit tests is achieved by mapping a pair of unit test
messages - a message sent in the scope of one unit test and
a message received in the scope of another unit test - to the
same integration test message (constraint C11).

The fullyTested predicate is useful to define the goal
of model finding commands, namely, for integration test
generation purposes. It defines a test coverage criteria for any
candidate product, by requiring two conditions: (i) all defined
unit tests that are applicable for the product at hand (i.e., that
refer to features supported by the product at hand) should be
applied to that product in integration tests; (ii) there exist at
least one unit test defined for each feature supported by the
product at hand. Test minimization is achieved by controlling



3

Sensores

AAAL4ALL

Hosting	DeviceLocal	System Service Center External System

Sensor

ReadingMode

User	Triggered	ReadingPeriodic	Reading

Local	Application

Actor

Care	Receiver

Care	Taker

Visualize	Realtime	Data

Visualize	Historical	
Data

Publish	 DataRead	Data

Manual	Reading Sensor	Reading

Visualize	Data

Data	Handling

AALGateway

Manifestation

Hardware Software

Data	Handling

Read	Sensors

Publish	 Data

AAL	MQ

Persistency	
Service

Trasformation	ServiceAAL	Adapter

Communication	
Manager

Data	Manager

Actor

Care	ReceiverCare	Taker

Visualize	
Realtime	Data

Visualize	
Historical	Data

Publish
Configuration

Visualize	Data

Data	Handling

(Sub)Feature

(Sub)Category

Domain
Xor

Or

Mandatory

Optional

Message
Queueing

Message
Adapting

Fig. 10. Feature Model of the AAL4ALL Ecosystem

the scope (maximum number of instances to generate of each
signature) of the model finding commands. The latter condition
implicitly defines a necessary coverage criteria for unit tests
themselves.

Thanks to the model finding capabilities of Alloy
Analyzer, the consistency constraints defined in the
TestMappingMetamodel are useful in three different
ways: given user-defined unit test models, they can be used to
generate integration test models (and associated test mapping
models), as explained in Section II and illustrated in the next
section; given user-defined unit test models and integration
test models, they can be used to generate corresponding test
mapping models and hence check the consistency between
unit and integration test models (in case test mapping models
cannot be generated, the unit and integration test models are
inconsistent); given user-defined unit test models, integration
test models, and test mapping models, they can be used to
check the consistency of the overall specification.

IV. EXAMPLE MODELS FOR THE AAL DOMAIN AND
CONCRETE NOTATIONS

A. Feature Model

The certification process defined in the AAL4ALL project
comprises four main categories of products for which can-
didate products could be certified. Within some of these main
categories it were defined product subcategories. Taking into
account the rules described in the Feature Metamodel proposed
in section III-A the feature model for the AAL4ALL domain
containing the categories, subcategories and features can be
observed in Figure 10.

The FeatureMetamodel proposed in section III-A de-
fines the abstract syntax and semantics of a DSML for
modeling the categories and features of products within a

Fig. 11. Excerpt of the AAL4ALL Feature Model in Alloy

domain; such metamodel is formally specified in Alloy and is
documented visually in UML. Regarding the concrete syntax
(concrete notation) for the DSML, we propose to use a ’front-
end’ visual notation based on general purpose feature models,
as illustrated in Figure 10, and a corresponding ’back-end’
formal notation in Alloy. It will the subject of future work to
provide tool support for the construction of the visual model
and translation to the formal notation. An excerpt of the Alloy
formal specification for this example is shown in Figure 11.
Each model element is defined in Alloy as a singleton sig-
nature that extends the corresponding metamodel signature,
with appropriate constraints on the field values. Constraints
need not be defined for fields that can be derived from other
information (such as the kind of product categories, because
it is already constrained to Xor in the metamodel).



B. Interface Model and Unit Test Model

The categorization process previously described allowed the
definition of generic unit tests associated with the product cat-
egories and features, independently of actual products. These
unit tests are later instantiated for the candidate products.

Some of the unit tests defined for some of the categories
and features shown in Figure 10 are presented in Figure 12.
In this case, we propose to use a concrete ’front-end’ no-
tation based on UML communication diagrams. Each box
represents a product category with an icon and a name, as
indicated by the stereotype �ProductCategory�. The
target features for the unit test being represented are indicated
by a property string, such as {PeriodicReading}. The
used and implemented interfaces relevant for the unit test
at hand are represented using the usual UML notation. The
sequence of messages sent or received through such interfaces
are represented using the usual UML notation. Variables are
normally used for the message fields.

We omit the presentation of the underlying interface model
because it is not essential to understand the unit test model.

«ProductCategory»

Sensor
{PeriodicReading} ILocalSystem

2:	*careRcvData(sensorId,	timestamp,	
measurementType,	value)

ICareReceiver

«ProductCategory»

AAL	MQ
{MenssageQueueing}IServiceCenterPublisher IServiceCenterSubscriber

1:	publish(topic,	msg) 2:	notify(topic,	msg)

«ProductCategory»

LocalApplication
{SensorReading,	PublishData} IServiceCenterPublisher

2:	publish(makeTopic(careReceiverId,	
measurementType),	
careRcvData(careReceiverId,	
sensorId,	timestamp,	
measurementType,	value))

ILocalSystem

1:	sensorData(sensorId,	
timestamp,	measurementType,	
value)

«ProductCategory»

ExternalSystem
{CareTaker,	

VisualizeRealtimeData}
ICareTaker

2:	*careRcvData(careReceiverId,	
sensorId,	timestamp,	
measurementType,	value)

IServiceCenterSubscriber

1:	*notify(	makeTopic(careReceiverId,	
measurementType),	
careRcvData(careReceiverId,	
sensorId, timestamp,	
measurementType,	value))

1:	physicalData(	
measurementType,	value)

Fig. 12. Example of Unit Test Model for some Categories and Features

C. Product Model and Generated Integration Test Model

Suppose that a manufacturer is interested in getting
AAL4ALL certification for a new sensor (Chestband). To
obtain certification, the sensor will be submitted to a se-
ries of integration tests in end-to-end scenarios that must
includes other products (already certified), in order to ensure
that it is able to communicate according to the message
specification defined by the ecosystem. For this specific ex-
ample, assume that there are available and already certified,
among other products, a Local Application (MobileWare), a
AALMQ application (AALMQ.PT), and an External System
(CaretakerPortal), as described by the boxes in Figure 13.
Each box models a concrete product of a specific category

IService
Center

Subscriber

Chestband

{PeriodicReading}

{MeasurementType =	HeartRate} ILocal
System

2:	sensorData(…)

ICare
Receiver

IService
Center

Publisher
3:	publish(…)

ICare
Taker

5:	careRcvData(…) 4:	notify(…)

1:		physicalData(HearthRate,	value)
2:		sensorData(sensorId,	timestamp,	HeartRate,	value)
3:	publish(makeTopic(careRcvId,	measureType),	careRcvData(careRcvId,	sensorId,	timestamp,	HearthRate,	value))
4:	notify(makeTopic(careRcvId,	measureType),	careRcvData(careRcvId,	sensorId,	timestamp,	HearthRate,	value))
5:	careRcvData(careRcvId,	sensorId,	timestamp,	HearthRate,	value)

Care
Taker

Care
Receiver

MobileWare

{CareReceiver,	
SensorReading,	PublishData}

AALMQ.PT

{MenssageQueueing}

Caretaker Portal
{CareTaker,	

VisualizeRealtimeData,	
PublishConfiguration}

1:	physicalData(…)

CertifiedProduct

Product under testing

Fig. 13. Example of Integration Test Model Generated Automatically

(indicated by the icon), with a specific name, set of fea-
tures, product specialization, and status (certified or candi-
date). In this example, the Chestband sensor has the product
specialization MeasurementType = HeartRate, where
MeasurementType is a DataType and HeartRate is a
literal, meaning that the Chestband measures heart rate values.

From the description of the existent products in
Alloy (i.e., from the product model), an integration
test model can be automatically generated with Alloy
Analyzer and an appropriate model finding command
(run { fullyTested[Chestband] } for
someSearchScope). An excerpt of the output obtained
with Alloy Analyzer, in tree view mode, showing parts of
the IntegrationTest instance generated, is displayed in
Figure 14 (left). A more user friendly representation of the
integration test model generated is shown in Figure 13. It
will be the subject of future work to generate the friendly
representation from the representation obtained with Alloy
Analyzer. After fine tunning the search scope (maximum or
exact number of instances to explore for each signature),
the execution time of the model finding command was
approximately 64 seconds in a computer with an Intel(R)
Core(TM) i5-4210U CPU @ 1.7 GHz - 2.4 GHz and 8 GB
RAM, running the 64 bits Windows 7 operating system. It
will be the subject of future work to automatically tune the
search bounds; to cope with the scalability issues inherent
to Alloy Analyzer, more specialized search algorithms and
engines may also be needed to handle very complex systems.

Another excerpt of the output obtained with Alloy
Analyzer, in tree view mode, showing parts of the
UnitToIntegrationTestMapping instance generated,
is displayed in Figure 14 (right). Of particular relevance are
the mappings of some variables used in the specification of
unit test messages (measurementType, msg and topic)
to more specialized expressions. It can also be seen that, except
for user interaction messages, pairs of unit test messages are
mapped to the same integration test message, thus coupling



Fig. 14. Excerpt of Integration Test and Test Mapping Instances Generated
with Alloy Analyzer

the unit tests together as explained previously.
The complete Alloy specification of the metamodels and

models for our example and some Alloy Themes for better
visualization in Alloy Analyzer are available at https://goo.gl/
Y9Vzd7.

V. RELATED WORK

Integration testing aims to discover faults that are due to in-
correct interactions between different software based products.
Even if each product is correct and delivers the specified func-
tionality, when integrated into a larger system, the interactions
between products can lead to incorrect results, for example
because different products interpret data processed by other
products incorrectly, or do not follow the same interaction
protocol [14]. The purpose of integration testing is to find such
faults that are difficult if not impossible to find when testing
products independently. However, and despite unit test case
generation been explored extensively in the literature, there is
still little work on the generation of integration test cases [15].
One approach to generate integration test cases from simple
unit test cases can be found in [15]. The approach requires
the system source code and a set of test cases as input, and
works in three main phases: (1) identify class dependencies

within the system in the form of an object relation diagram,
(2) compute the data flow information within the input test
cases, and use this information to segment the test cases into
useful blocks (initialization and execution), and (3) generate
new, more complex test cases from the blocks extracted from
unit test cases using the class dependence and data flow
information. Although there are some similarities with our
work (unit tests composition for the generation of integration
tests), there are significant differences: they work at the level
of objects and source code, whilst we work at the level of
products (or components) and models; in our approach, we
have not only the composition but also the instantiation of
generic unit tests.

Testing for feature models and SPLs is widely studied in
literature. Surveys [16] and [17] present a large selection
of papers about feature models testing and how tests are
generated respectively. However, the problem of test selection
is considered still an open problem [18]. These works are
complementary to our work, providing strategies that might
be used in our work, namely for selecting and minimizing
the tests needed for adequately testing products supporting
multiple interrelated features.

Regarding the usage of metamodels for describing test
related concepts, the UML Testing Profile (UTP) [19] is a
prominent example. Although some concepts in our approach
can be mapped to UTP concepts (such as SUT, TestComponent
and TestCase), the UTP specifies more detailed concepts (at
a lower level of abstraction) relavant for test implementation
(such as Verdict, Arbiter and TestLog).

With regard to the use of Alloy for software testing there
are some approaches [20] where Alloy is used to enable
writing specifications at an intuitive abstract level (such as
method pre/post conditions and class invariants), and the
automatic generation of test cases (including test inputs, and
expected outputs) by constraint solving with Alloy Analyzer.
There exist also some approaches where Alloy is used for
composing UML class diagrams [21] or UML sequence
diagrams [22], using metamodels and composition constraints
written in Alloy. There are some similarities between the latter
work and ours, because both communication diagrams (used in
our work as a basis for representing unit and integration tests)
and sequence diagrams represent interactions. However, we
don’t have complete interactions in the unit tests and we have
the additional problem of instantiation, besides composition.

In the area of health, models are often used in standard-
ization initiatives. For example, Eggebraaten [23] proposed
a health-care data model based on the HL7 Reference In-
formation Model [24] to ensure the integration of medical
information from various sources, and enable the health-care
industry to perform analytical studies that can help discover
new treatments and improve patient care. In our work these
medical data structures models could be harnessed and used as
mandatory message structures exchanged between the various
components of the ecosystem. Other similar work for ensuring
the proper integration between medical devices is based on
ISO/IEEE 11073 standard [25]. In that standard, an object



oriented data model, the domain information model (DIM),
defined in ISO 1173-10201, is used to specify objects, at-
tributes, attribute groups, event reports, and communication
services, that may be used to communicate device data and
to configure medical devices and functionalities. The stan-
dardized nomenclature (ISO 11073-10101) comprises a set
of numeric codes that identify every item that is communi-
cated between systems. Related to the general DIM, there
exist device specializations for several medical devices, which
provide guidelines for how the DIM should be constrained for
application to specific devices. These standards were adopted
by the Continua Health Alliance [26], a industry consortium
that aims at enabling end-to-end system interoperability in
the personal telehealth market by leveraging and integrating
existing standards for all layers of the communications stack
and for all parts of the overall system ranging from the
patients-end to the service providers-end.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this article we presented a set of metamodels and
associated consistency rules for the description of certification
requirements and products within a specific domain, so that
integration tests can be automatically generated for the certifi-
cation of candidate products. For a better understanding of the
models, it were presented application examples based on the
nationwide AAL4ALL project. The proposed (meta)model-
based approach, allows systematizing, partially automate and
increase the assurance on testing and certification activities in
digital ecosystems.

As future work we intend to develop a tool set, applicable in
different application domains, to facilitate: (i) the construction
of the relevant visual models, (ii) their automatic translation to
the formal notation (Alloy), (iii) the automatic determination
of search bounds to be used in the derivation of integration
tests with Alloy Analyzer (or more specialized algorithms
and engines to cope with scalability issues), (iv) the auto-
matic translation of the generated integration test models to
the visual notation, and (v) the integration with frameworks
for the test concretization and execution in distributed and
heterogeneous environments.

ACKNOWLEDGMENT

This work is financed by the ERDF − European Regional
Development Fund through the Operational Programme for
Competitiveness and Internationalisation - COMPETE 2020
Programme within project «POCI-01-0145-FEDER-006961»,
and by National Funds through the FCT − Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) as part of project UID/EEA/50014/2013.

REFERENCES

[1] C. Hill, R. Grant, and I. Yeung, “Ambient assisted living technology,”
An interactive qualifying project report submitted to the Faculty of
Worcester Polytechnic Institute, 2013.

[2] tcare. (2015, November) tcare - Conhecimento e saÃžde SA. [Online].
Available: http://www.tcare.pt/

[3] AAL4ALL. (2015) AAL4ALL - Official Website. [Online]. Available:
http://www.aal4all.org/

[4] J. P. Faria, B. Lima, T. B. Sousa, and A. Martins, “A testing and cer-
tification methodology for an open ambient-assisted living ecosystem,”
International Journal of E-Health and Medical Communications, vol. 5,
no. 4, pp. 90–107, 2014.

[5] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 0025–31, 2006.

[6] F. Jouault and I. Kurtev, “Transforming models with atl,” in
Satellite Events at the MoDELS 2005 Conference, ser. Lecture
Notes in Computer Science, J.-M. Bruel, Ed. Springer Berlin
Heidelberg, 2006, vol. 3844, pp. 128–138. [Online]. Available:
http://dx.doi.org/10.1007/11663430_14

[7] L. Gammaitoni and P. Kelsen, “F-alloy: An alloy based
model transformation language,” in Theory and Practice of
Model Transformations, ser. Lecture Notes in Computer Science,
D. Kolovos and M. Wimmer, Eds. Springer International
Publishing, 2015, vol. 9152, pp. 166–180. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-21155-8_13

[8] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[9] D. Jackson, Software Abstractions: logic, language, and analysis. MIT
press, 2012.

[10] OMG, “OMG Unified Modeling Language TM (OMG UML) Super-
structure,” Object Management Group, Tech. Rep., 2011.

[11] C. Atkinson and T. Kühne, “Model-driven development: a metamodeling
foundation,” Software, IEEE, vol. 20, no. 5, pp. 36–41, 2003.

[12] OMG, “Meta Object Facility (MOF) Specification,” Object Management
Group, Tech. Rep., 2005.

[13] D. Batory, Feature models, grammars, and propositional formulas.
Springer, 2005.

[14] M. Young, Software testing and analysis: process, principles, and
techniques. John Wiley & Sons, 2008.

[15] M. Pezze, K. Rubinov, and J. Wuttke, “Generating effective integration
test cases from unit ones,” in Software Testing, Verification and Vali-
dation (ICST), 2013 IEEE Sixth International Conference on. IEEE,
2013, pp. 11–20.

[16] P. A. D. M. S. Neto, I. do Carmo Machado, J. D. McGregor, E. S.
De Almeida, and S. R. de Lemos Meira, “A systematic mapping study
of software product lines testing,” Information and Software Technology,
vol. 53, no. 5, pp. 407–423, 2011.

[17] I. do Carmo Machado, J. D. McGregor, and E. Santana de Almeida,
“Strategies for testing products in software product lines,” ACM SIG-
SOFT Software Engineering Notes, vol. 37, no. 6, pp. 1–8, 2012.

[18] J. Lee, S. Kang, and D. Lee, “A survey on software product line
testing,” in Proceedings of the 16th International Software Product Line
Conference-Volume 1. ACM, 2012, pp. 31–40.

[19] OMG, “UML Testing Profile (UTP), v1.2,” Object Management Group,
Tech. Rep., 2013.

[20] S. A. Khalek, G. Yang, L. Zhang, D. Marinov, and S. Khurshid,
“Testera: A tool for testing java programs using alloy specifications,”
in Proceedings of the 2011 26th IEEE/ACM international conference
on automated software engineering. IEEE Computer Society, 2011,
pp. 608–611.

[21] J. Rubin, M. Chechik, and S. M. Easterbrook, “Declarative approach for
model composition,” in Proceedings of the 2008 international workshop
on Models in software engineering. ACM, 2008, pp. 7–14.

[22] M. Alwanain, B. Bordbar, and J. K. Bowles, “Automated composition
of sequence diagrams via alloy,” in Model-Driven Engineering and
Software Development (MODELSWARD), 2014 2nd International Con-
ference on. IEEE, 2014, pp. 384–391.

[23] T. J. Eggebraaten, J. W. Tenner, and J. C. Dubbels, “A health-care data
model based on the hl7 reference information model,” IBM Systems
Journal, vol. 46, no. 1, pp. 5–18, 2007.

[24] C. N. M. Gunther SCHADOW, “The hl7 reference information model
under scrutiny,” in Ubiquity: technologies for better health in aging
societies: proceedings of MIE2006, vol. 124. IOS Press, 2006, p. 151.

[25] L. Schmitt, T. Falck, F. Wartena, and D. Simons, “Novel iso/ieee
11073 standards for personal telehealth systems interoperability,” in
High Confidence Medical Devices, Software, and Systems and Medical
Device Plug-and-Play Interoperability, 2007. HCMDSS-MDPnP. Joint
Workshop on, June 2007, pp. 146–148.

[26] Continua. (2015, Dec.) Continua - Official Website. [Online]. Available:
http://www.continuaalliance.org/


