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Abstract. Localization and mapping of autonomous robots in a hard
and unstable environment (Steep Slope Vineyards) is a challenging re-
search topic. Typically, the commonly used dead reckoning systems can
fail due to the harsh conditions of the terrain and the Global Position
System (GPS) accuracy can be considerably noisy or not always avail-
able. One solution is to use wireless sensors in a network as landmarks.
This paper evaluates a ultra-wideband time-of-flight based technology
(Pozyx), which can be used as cost-effective solution for application in
agricultural robots that works in harsh environment. Moreover, this pa-
per implements a Localization Extended Kalman Filter (EKF) that fuses
odometry with the Pozyx Range measurements to increase the default
Pozyx Algorithm accuracy.

1 Introduction

Localization and mapping is one of the key features of a truly autonomous robot
application, which must be aware of its environment in order to locate itself and
navigate through its surroundings. Although there are several accurate technolo-
gies for this purpose on regular stable conditions, the problem remains a complex
challenge when facing variant atmospheric conditions or complex environments.
Areas with dense vegetation for instance can be affected by signal blockage and
multi-path interference reducing the efficiency of the widely used Global Position
System (GPS) and not even the usually reliable dead reckoning systems can give
an accurate localization since they also suffer from harsh terrain shape.

A range-based Localization system is then proposed to deal with this condi-
tions. In our previous work [[7]] a redundant localization solution for mountain
vineyards based on the identification of natural features by Laser Range Finder
(LRF) measurements is presented which can cope with the lack of access to
Global Navigation Satellite System (GNSS). Despite being a slight improvement,
natural feature detection is still highly dependent on environmental conditions
and was also proved to be less reliable on the row transitions of the vineyards
since it has no vine masts or trunks (the identified natural landmarks) on sight.
Additionally, in [[2]], an artificial landmarking mapping procedure is proposed,
called Beacons Mapping Procedure (BMC). BMC can map automatically each
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Radio Frequency Identification (RFID) tags that can be placed in the begin/end
of each vineyard row. These artificial beacons are an input for our hybrid SLAM
approach (VineSLAM) [[7]] and a redundant localization information for the
agricultural robots.

In this paper, Pozyx, a low-cost time-of-flight technology with ultra-wideband
(UWB) based communication is deeply characterized as a complementary al-
ternative tool to the previous works. A further implementation based on the
fusion of the sensor’s range measurements with dead reckoning by the Extended
Kalman Filter (EKF) algorithm is proposed and compared against its own local-
ization algorithm. The obtained results are presented and discussed and allow
to present formulations for better results of accurate and reliable localization
systems.

2 Background

Nowadays, the main approaches to the Robot Localization problem include:

— GPS (Global Position System): gives a precise localization and it’s the
most commonly used since the service is globally available, precise and not
too expensive. It is however limited to an outdoor environment without any
obstruction in the line of sight and a good satellite coverage so in some cases
it is not a viable option.

— Dead Reckoning: uses Odometry and the Inertial Measurement Unit (IMU)
to integrate the position of the robot from encoders and/or inertial sensors
such as accelerometers and gyroscopes. Its error is cumulative therefore it
can lead to divergency after some time.

— Range-Based: measure angle and/or distances to natural or artificial land-
marks. It can calculate the position with different technologies such as Ra-
dio Frequency (RF) beacons, Radio Frequency Identification (RFID) tags or
Laser Rangefinder (LRF) sensors.

— Visual Odometery: localize the robot by sensing its surroundings with
a single camera or stereo vision system. It’s not so commonly used as the
other approaches but the growing popularity of evolutionary and learning
algorithms have given this technique a lot of research attention lately.

Although these technologies can be used independently, proper fusion of them
in a multi-sensor environment give greater accuracy and more robust systems.
They are usually filtered and combined with algorithms highly developed for
non-linear systems such as Particle Filters, the Extended Kalman Filter(EKF)
or the Unscented Kalman Filter (UKF) [[9]]. A Particle Filter is more flexible
and appropriate when the noise doesn’t follow a Gaussian distribution, which
isn’t an issue for this specific case. The EKF was then chosen because it’s less
complex and more computationally efficient.

2.1 Range-Based Localization

Range-based Localization is widely used in Wireless Sensors Network Local-
ization. It typically uses reference points (anchors) and its distances to one or
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more Nodes of Interest (NOI) in order to estimate the required positions. These
reference points are usually static either mapped a priori or with an unknown
position which is dynamically determined. The distances and angles between the
nodes and landmarks in the network can be measured with different technologies
such as Radio Frequency (RF), Laser or UWB. The methods used to perform
the calculations are preferably Time Of Flight (TOF), Time Difference of Ar-
rival (TDOA), Angle of Arrival (AOA) and Received Signal Strength Indicator
(RSSI).

2.2 UWB based Localization by Pozyx

The Ultra-Wideband is a wireless radio technology mostly used in communica-
tions which has been lately receiving more attention in positioning applications.
In [[3]] Gonzélez combines UWB range measurements with the vehicle odometry
with a Particle Filter approach in an indoor environment. Further characteriza-
tion for both indoor and outdoor is done in [[4]]. Due to its increased bandwidth
it not only avoids interference with other types of RF signals but also deals with
obstacles and walls since the signal can go through them. Therefore, it is seen as
an emergent ranging technology being robust to multipath and Non-Line-of-sight
situations. Apart from that, each tag of a UWB system is uniquely identified
and aware of every other tag so the data association problem is automatically
solved. Its principle is based essentially on sending radio signals, which travel at
the speed of light, from a mobile transceiver (tag) to a set of known anchors,
measuring the Time of Flight (ToF) and consequently the distances to this set
of points. For this work, we selected Pozyx System [[5]], which is a hardware
solution for accurate position and motion sensing based UWB system. One can
set its UWB configuration settings according to four different parameters which
can impact the whole performance of the system:

— Channel: The communication between devices can be made in 6 indepen-
dent UWB channels. Generally, lower channel numbers have lower frequen-
cies which increase the communication range.

— Bitrate: The bitrate choice is either 110kbit /sec, 850kbit /sec or 6.81Mbit /sec.
A higher value will result in faster communication but reduced range sensi-
tivity.

— Pulse Repetition Frequency (PRF): the increase or decrease of the rates
have the same impact on the system network as the bitrate setting although
in a much lower scale.

— Preamble Length: This setting has 8 different options: 4096, 2048, 1536,
1024, 512 , 256 , 128 , or 64 symbol. Smaller values and therefore shorter
messages come with faster communication but reduced operating range.

Two localization approaches will be taken into consideration: one using only
the raw measurements of the sensor filtered with an EKF algorithm; the other
based on the Pozyx Localization feature given by its firmware. The later can use
different dimensions (2D, 2.5D, 3D) and different algorithms.
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3 Problem Formulation

Generally the classical Robot Range-Based Localization problem can be defined
as estimating the robot pose X = [m Y 9] 4 given a set of distances measurements
Zpi(k) = {rpi,i € {1...Ng} to a given number of beacons Ng mapped in Mp =
[Biypi],i € {1...Np} both X and Mp defined in a global reference frame GzGly.

In this particular case the following assumptions are made:

— The beacons position in Mg is static and known a prior;

— At time step k; the Odometry values are available for k € {k;_1...k;}. This
will be used to provide the input u(k) = [Axodom AYodom A@odom]Tto the
system in which each u(k) refers to the variation of the odometry between
times k and k — 1 relative to the robot reference frame RxRy;

— Due to the uniquely identification of every node in the UWB system,the
data association between each beacon i and the measurement {rpg;} is clearly
defined at all moments.

3.1 Pozyx Range-Only + EKF

The raw range measurements of the anchors themselves can’t return any robot
location, hence a localization algorithm has to be chosen. The trilateration solu-
tion yields good results theoretically but practically it generates a region solution
because of the associated measurement noise. Furthermore, it requires at least
3 anchors to outcome a position and although we’re working with 4, they are
not always available (due to timeout in the communication). Thus, the well-
known EKF Localization was chosen as a good approach to the problem given
the conditions.

3.2 Extended Kalman Filter (EKF) Localization

The Extended Kalman Filter is the version of the Kalman Filter that overcomes
the non-linearity of some system dynamics. It proceeds by continually updat-
ing a linearization around the previous state estimation and by approximating
the state densities by Gaussian densities. The EKF algorithm used for the
Localization is based on ” EKF Localization with Known Correspondences” pre-
sented in [9). It can fuse an Odometry model with the Sensor measurements
going through essentially two steps: the Prediction phase which estimates the
actual pose by the defined State Transition Model and the Correction phase
which corrects the predicted state inputting the Range Measurements in the
Observation Model.

State Transition Model An Odometry Model based on the one introduced
by [eliazar’learning’2004] was chosen ((2) )also considering the fact that the
platform we’ll be working on, AGROB, is a unidirectional traction robot.

Xk+1 = f(kauk+1) + N(07 Q) (1>
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Azodom (k + 1)cos(0 + %)
J( Xk, uks1) = X + | Axodom (k + 1)sin(0 + %) )
Aeodom

Apart from the transition function f, the model noise N is represented by a
Gaussian distribution with zero mean and ) covariance, assumed constant. In
order to linearize the process, EKF uses the Taylor expansion which inputs the
uncertainty by computing both the Jacobian of f with respect to Xi (G
and to ug (Gug .
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Observation Model In what concerns the sensor measurements, the expected
ranges are determined by the Euclidean Distance between the predicted position
and the known anchor localization . Once again the measurements are affected
by an additive Gaussian noise with zero mean and covariance constant R = [¢2],
a parameter related to the sensor error characterization.

Zpi = h(Xy, Mp;) + N(0, R) (5)

WXy, Mp;) = sqrt((zpi — T5)% + (ypi — G)°) (6)

As well as for the state transition model, EKF algorithm also needs the
Jacobian of h related to Xy (Hzy; |7).

_ TBi—Tk
sqrt((zpi—7k)>+(yBi—Ur)?)

YBi— Uk
7sqrt((ac31;—iB\k)2+k(yBi—ﬂ)2) (7>

Hzpy =

Detection of Outliers Generally, a network of sensors is always prone to noisy
measurements. For a proper use of the observations of Pozyx Ranges, the process
needs to be able to detect and to cope with this unreliable data whose charac-
teristics deviate from the normal pattern. This phase is called Outlier Detection.
There are several ways to approach the problem. In presence of a multivariate
data, one of the common methods is using the Mahalanobis’ distance (MD) (8]
as a statistical measure of the probability of some observation belonging to a
certain data set. This method as used in [[10] [8]], consists of computing the
normalized distance between one point and all the population. One could simply
use the Euclidean Distance but MD takes into account not only the distance to
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Algorithm 1 EKF Localization Algorithm with Known Measurement corre-
spondences

Input: Xx_1,ug, Pr—1, R, Q, ZBx
Output: Xy, Py

E\REDICTION
Xk = f(Xk—1, uk)

G.’Ek:%

Guk:g—i

P, = GmkPk71GCE£ + GquGuf

CORRECTION

forl'<\— 1to Np do
Zii = h( Xk, MBi) =/(xBi — 7%)2) + (YBi — )
Hzp = 9%
Swi = [Hzwi PeHz], + R)

9: if ! Outliﬂ,Detected then

10: Ki=PBHz; 5™

11: Xk = Xk + Ki[Zki — Zxi]

12: Pe = [I — K;Hzi| Py

13: X = X
14: P, =P,

the mean but also the direction, i.e covariance. As a matter of fact, MD is equal
to the Euclidean distance only when the covariance matrix is the identity (all
the variables are independent and with the same variance).

Md(v) =/ (v~ p)TS=1 (v — 1) (8)

Since there is only one sensor measurement at a time we will assume that
the current estimated range calculated by the state estimation at the prediction
step is the ”statistical population”. In order words, Z; will be the mean p of the
population and S will be a factor representing a combination of the uncertainty
of the state and the actual sensor measurement (line 8|in algorithm .

Algorithm 2 Outlier Detection for EKF

Input: Ski,z, Zii
Output: isOutlier
Md(Zi) =) (Zi — Zia) TS5 (Zus — Zo)
if Md(Zy;) > threshold then
return true
else
return false
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Choosing the threshold can be done by simply analyzing the data or by
determining some probabilistic statistical parameter. Here the threshold was set
accordingly to the x? probability table so that the observations with less than
2.5% of probability were cut out.

4 Methodology

The work methodology consisted of a previous Range Error Characterization
Test to define the Pozyx Range behavior that would be helpful for further im-
plementing other algorithms. Then the two localization approaches were tested
simultaneously in the same outdoor environment as the previous test. Finally,
all the data acquired was post-processed with MATLAB as well as the testing
and tuning of the EKF algorithm.

Pozyx Tag

b)

Anchors Orientation

Fig.1: Tests Environment on the left. Different antenna orientation for Range
Test on the Right: a - Vertical Front, b- Vertical Back, c- Horizontal

For all the tests it was used the Pozyx Library for Arduino @ combined with
a ROS publisher node. The transmission of data was done by serial port using the
Termios library El the Arduino to the ROS node which after validation published
the information received with a rate of 10Hz in a native ROS Pose message [
and a message created for publishing an array of ranges. A ROS message filter
was also used to synchronize all the acquired data.

4.1 Range Error Characterization Test

To get a full characterization of the Pozyx system and its error a first experi-
mental analysis was made by measuring the ranges from a static anchor to the
moving sensor in increasingly discrete distances (1-10,15,20,25,30,40,50,60 me-
ters). The Range test was made with both sensor and anchor about 20 ¢cm from
the floor and with 3 different antenna orientations (Fig. To yield better re-
sults in the future the antenna and the tag should be positioned higher so it can
prevent some unwanted reflections/multipaths from the floor.

! Library to deal with I/O interfaces http://pubs.opengroup.org/onlinepubs/
7908799/xsh/termios.h.html

ZROS PoseStamped message: http://docs.ros.org/api/geometry_msgs/html/msg/
PoseStamped.html


http://pubs.opengroup.org/onlinepubs/7908799/xsh/termios.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/termios.h.html
http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html
http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html
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4.2 Localization Tests

The Localization System was tested with AGROB v.16, a cost effective outdoor
robot for application on steep slope vineyard monitoring tasks [|1]] The previous
environment was used again, spreading this time all the 4 Pozyx anchors in the
corners of a square with 20 meters of size. The tested trajectory consisted in a
squared shape going through all the corners and then into the inside (results in
Fig. [3] To analyze the results a Laser Scan (computed by the Hector Slam ROS
package) was considered as the ground truth since the GPS data acquired was
not reliable and precise.

4.3 Pozyx Configuration

The Pozyx System needs to be configured before the tests. As previously ex-
plained the UWB configuration settings can be set according to four different
parameters which may impact the whole performance of the system. In this case
the following configuration was used: Channel 2 (Center frequency 3993.6MHz
and bandwidth 499.2 MHz) - the channel with the better antenna gain as in-
formed by the manufacturers; Bitrate 110kBit/s - in this first pre-eliminary
study we were interested in having a good range performance and the rate of
transmission was not so important since most of the algorithm run offline; PRF:
64MHz - the default setting was used because its value is not said to influence
the performance drastically. Preamble length: 1024 symbols - the default was
also chose in order to have a mid-term value. Regarding the Positioning sys-
tem, this preliminary work on Pozyx will only analyze 2D dimensions with the
UWB-only algorithm especially used in Non-Line of Sight measurements and
that does not require continuous positioning accuracy.

5 Experimental Results and Discussion

5.1 Pozyx Error Characterization

When characterizing the performance of a system it is important to be aware
that an error can have different sources and can be of different types. We’ll focus
on both accuracy and precision analysis, which are usually linked to systematic
and random errors respectively. Although both are important, in this particular
test, characterizing the precision of the sensor is of particular importance since
it will be used to tune the EKF. Hence, more than the actual accuracy values
we’ll be looking for patterns in the standard deviations.

As we can deduce from Table[T] and Fig. 2] the error characterization highly
depends on the antenna orientation and the distance to the sensor. Histogram
(c) of Fig2] shows that the error follows approximately a normal distribution
under 30m when in its best orientation (Vertical Up). On the other hand, when
the sensor’s antenna is facing back the tag (Histogram (d) of Fig there are
more outliers so the error distribution doesn’t seem so perfect. The same applies
for distances higher than 30m in which the error metrics tend to be worse.
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Table 1: Refers to the performance results for different antenna orientations.
Under 10 meters the results don’t follow any specific pattern and are always
around the same values so only their average is presented.

. Vertical Front Vertical Back Horizontal Up
Distance
(m) Error  Std Timeouts Error Std  Timeouts Error  Std Timeouts
(mm) (mm) (%) (mm) (mm) (%) (mm) (mm) (%)
<=10 77.56  33.15 0.56 180.13 116.89  2.01 183.31 82.93 0.67
15 62.603 36.12 7.093 425.92 1060.23  30.08 196.90 318.79  60.91
20 147.05 37.64 18.20 1204.65 2105.25 51.90 2794.25 5245.79  98.86
25 192.33 35.31 25.36 90.51 78.54  40.45 157.11 179.69  94.61
30 164.00 43.06 5.371 624.21 1482.76  0.57 920.40 1463.53  71.40
40 1008.17 918.99  14.73 4905.02 732.32  38.67
50 119.6  49.49 10.06

60 2432.03 1094.83  6.49

Regarding the Pozyx orientation, it is known that an antenna has not the
same gain/distance models for different orientations so it comes as no surprise
that error values are slightly different too. The performance of the antenna when
facing the tag in a vertical front position is clearly better than for the other
two orientations whose timeout communication errors are way higher and data
received after 30/40 m is close to zero.

Through the navigation, the sensor embedded to the robot will be having
different orientations towards the anchors. Thus, in future work, it will be inter-
esting to do a more intensive study of this differences and to include a bearing
measurement in the sensor observation model for the EKF. For now, we’ll be fo-
cusing on the results for the vertical front orientation to define the error variables
of the filter.

5.2 EKF Tuning

An important step in the post-processing step was the EKF tuning. Changing
its parameters affects the convergence of the algorithm as well as the smoothness
of the resulting trajectory estimation. Considering the previous noise character-
ization, R and Q were adjusted so that the estimation results presented weren’t
neither to noise sensitive neither too slow.

As it can be seen from (d) in Fig. 3] ranging measurement doesn’t result
in many outliers (except for the timeout ones which are instantly observed and
don’t need further calculations to be detected). Therefore, the effect of including
the Outlier Detection Filter is not a big improvement simply because there are
not many outliers to get rid of. To further test the effectiveness of the filter more
tests with wider areas should be done.

5.3 Pozyx Positioning vs Pozyx Range + EKF

Fig[3] shows that both the procedures yield reasonable results, especially when
compared to the Odometry localization that is clearly affected by some wheel
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Fig. 2: Error Statistics: (a) Standard Deviations for every orientation; (b) Error
and standard deviations of Vertical Front orientation under 30 m; (c) and (d)
Error Distribution Under 30m for Vertical Front and Vertical Back orientation
respectively

slippage in the curves. However, the native Pozyx Localization has a lot more
outliers than the EKF Localization.

Lastly, Fig[d] give some notes on the right positioning of the anchors relative
to the sensor. On the Pozyx Positioning algorithm there are a lot more outliers
than in the different trajectory test of Fig[3] not only because of the bigger
distance to some of the anchors (higher error and more timeouts) but also due
to its position relatively to the sensor. Since it only uses the UWB ranges in
a Trilateration process, if some of the references are in a straight line in the
direction of the sensor then there will be an amplification of the error just like
in the GPS principle of poor Geometric Dilution of Precision(GDOP). Thus,
one can conclude that the anchors should be spread out in different directions
around the robot’s trajectory area so it can cover different directions. Contrarily
to the Pozyx algorithm, the EKF Localization is not based on this method so it
doesn’t seem to be so affected by the poor GDOP.
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Fig.3: After the data acquisition the Pozyx Ranges were inputted in the EKF
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6 Conclusions and Future Work

The proposed EKF implementation presented much better results than the
UWB-only native Pozyx Algorithm leading to less noisy smoother trajectories,
however one needs to carefully tune it to assure the right convergence. This
tunning should also consider not only the system characterization but also the
environment. The Pozyx Algorithm, in turn, although with undesired outliers,
can still be a good alternative to the standalone Odometry whose errors are
cumulative and prone to fail at curves. Furthermore, the usual positioning error
of other range technologies is in the range of 1-5m for Bluetooth and WIFT and
6-10m for GPS [5]. Our results showed that not only the error is in the cm range
(and not meters) but also that working ranges go until at least 60 m.

In future work, it would be interesting to study more intensively the effect of
the different UWB parameters in the distance measurements as well as testing
the maximum ranges for each configuration. For a better characterization of
the system, the RSSI readings from the sensor should be used to analyze the
antenna orientation effects on the robot Localization. A better error and noise
modeling would probably permit to expand the localization to larger and harder
environments and higher working distances.

Regarding the Localization algorithms, further improvements can be made
by testing 2D, 2.5D and 3D dimensions and the other Pozyx Algorithms as well
as fuse them with the IMU data provided by the sensor.

Overall, this first work around Pozyx showed that it can be a good and
effective tool to improve the robot localization in an hard outdoor GPS-denied
environment given its good accuracy/cost trade-off. The still not so explored
tools of the system can still help to better characterize the UWB technology
and understand the effects of its configuration and the environment in the final
localization.
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