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Abstract In this paper we investigate the efficacy of applying the coupled field
back-propagation algorithm as a post-compensation method for nonlinearity mit-
igation in a coherently detected fibre optic long-haul system using multi-band
orthogonal frequency division multiplexed signals. Specifically, we analyze the im-
pact of varying the band-spacing and the number of bands. We find that its efficacy
is higher for largely spaced bands and a small number of bands. Additionally, we
propose a method to include the Four Wave Mixing compensating term within
the coupled field method to provide simplified means of multichannel compensa-
tion. We conclude that this method is more efficient in improving the performance
especially for small band spacings. The coupled field method proves to be an in-
teresting choice for the implementation of receiver-based real-time digital signal
processing.

Keywords Multi-band OFDM · Back-propagation · Four wave mixing

1 Introduction

The interplay between fibre chromatic dispersion, intra-channel nonlinearities and
amplifier noise is determinant in limiting the maximum capacity of a fibre-optic
long haul transmission. However, when considering the transition from single chan-
nel to multichannel (Wavelength Division Multiplexed – WDM) systems, attention
must be paid also to nonlinear inter-channel effects, where the nonlinearity is no
longer stemming only from Self Phase Modulation (SPM) but also from Cross
Phase Modulation (XPM) and Four Wave Mixing (FWM) effects. Traditionally,
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the optical communications community has solved the problem of inter-channel
nonlinearities resorting to dispersion management and mid-span phase conjugation
techniques, as shown in Chowdhury and Essiambre (2004). More recently, increas-
ing attention has been put into electronic impairment compensation techniques,
either using pre or post compensation, as discussed in Lowery (2007); Roberts
et al. (2006), essentially due to the progress in coherent optical detection, analog-
to-digital – ADC (for post-compensation) and digital-to-analog – DAC (for pre-
compensation) devices, associated with digital signal processing techniques, which
are the building blocks for impairment compensation in the electronic domain. In
this context, the back-propagation (BP) algorithm, proposed independently by Li
et al. (2008) and Ip and Kahn (2008), has been gaining increasing interest. BP
consists in passing the received signal (in the case of post-compensation) or the
transmitted signal (in the case of pre-compensation), through a virtual fibre with
opposite signs of dispersion and nonlinearity, yielding an estimate of the originally
transmitted signal. In the absence of noise and limited computation power and
provided the characteristics of the transmission channel are known, this technique
can recover exactly the signal that was transmitted, as shown by Ip and Kahn
(2008). In fact, only approximate solutions can be attained due to practical noise
and computational complexity limits.

The present paper concentrates on post compensation techniques assuming
coherent detection, focusing on multichannel back-propagation using a single po-
larization transmission. Furthermore, we focus on point-to-point links, since the
dynamic nature of signal routing in mesh networks would not be compatible with
techniques exploring the inter-channel interaction. Therefore, although not fea-
sible in such mesh network scenarios, the presented multi-channel compensation
techniques (and possible improvements) are likely to become widely used in future
point-to-point long haul fiber-optic deployments, due to their reduced implemen-
tation complexity. The topic of multichannel back-propagation will be addressed
considering orthogonal frequency division multiplexed (OFDM) signals having
multiple bands. The computational complexity and performance of two differ-
ent BP implementations will be compared, namely the total field (TF) approach,
introduced by Ip and Kahn (2009); Li et al. (2008), and the coupled field (CF)
approach, which consists of a simplification introduced by Mateo et al. (2008).
While in the former, the full electric field of the multi-band signal is fed to the BP
algorithm, in the latter, each band is back-propagated separately while including
the contributions from other bands. We should also observe that while polarization
multiplexing is being considered in both current and future system deployments,
the current work focus only on single polarization systems for the sake of simplic-
ity. However, we have determined through computer simulation that the discussed
algorithms and techniques are also suitable for polarization multiplexed transmis-
sion. Such extended analysis can be performed by using the Manakov equation
described in Agrawal (2001), which takes into account the interactions between
the orthogonal polarizations. Furthermore, it should be noted that the Manakov
equation assumes that the relative orientations of polarizations among the sev-
eral channels remains unchanged during propagation, which can only be assumed
if the bandwidth of the total field in propagation is narrow enough to allow the
polarization mode dispersion to be negligible.

Although previous works have generically compared the CF and TF approaches,
such as Mateo and Li (2009); Mateo et al. (2008), the efficacy of applying these
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simplified techniques to multi-band OFDM signals remains unknown. Further-
more, in order to fully understand the circumstances under which the efficacy of
this simplification techniques might be beneficial, we also investigate their perfor-
mance for variable band spacing and number of bands, which further justifies the
significance of the present research. Considering the transmission of multi-band
OFDM signals, we propose for the first time a method to include the FWM com-
pensating term within the coupled field method to provide simplified means of
multichannel compensation. This method is suitable for a small number of OFDM
bands, being able to provide an improvement in the performance while maintain-
ing its computational complexity. The remainder of this paper is organized as
follows: section 2 describes the simulation environment and introduces the CF and
TF back-propagation algorithms. In section 3, through the analysis of simulation
results, the computational complexity of both CF and TF approaches is compared
for both variable band-spacing and number of bands. Furthermore, in section 4,
the coupled field algorithm will be extended to include the effect of Four Wave
Mixing. Conclusions are given in section 5.

2 Specification of simulation environment

2.1 General Specification

The analysis presented in this paper considers a transmission setup composed
by a multi-band OFDM optical transmitter (considering an ideal electro-optic
converter), with a launched power of +4 dBm, in order to operate in a nonlinear
regime. This is followed by an optical fibre channel composed by 25 spans of 80 Km
SMF each, having a dispersion D of 17 ps/(nm-km), a nonlinear parameter γ of
0.0013 m−1W−1, an attenuation α of 0.2 dB/km and an amplifier with a noise
figure of 5 dB. At the receiver, we consider an ideal coherent optical receiver,
followed by an antialiasing filter before the sampling process, which occurs at
an oversampling rate of 3 samples per symbol. The antialiasing filter is set to a
lowpass 5th order Butterworth with a bandwidth of 40% of the oversampling rate.

2.2 Multi-band OFDM

One of the main challenges associated with the investigation of electronic com-
pensation of optical system distortions has been the fact that the bandwidth re-
quirements of state of the art research systems is always much higher than the
what the best capabilities of ADC/DAC can meet. Shieh et al. (2008) has demon-
strated that this electronics bottleneck can be overcome by using the concept of
orthogonal band multiplexing to divide the entire OFDM spectrum into multiple
orthogonal bands (orthogonal-band-multiplexed OFDM – OBM-OFDM). These
orthogonal bands can coexist with a small or even zero guard band between them,
since the orthogonality condition allows for band de/multiplexing without inter-
band interference. In the OBM-OFDM approach, the entire OFDM spectrum is
divided into N OFDM bands, each having a subcarrier spacing fd. Therefore, in
order to achieve orthogonality between bands, it is enough to use a guard band
that is an integer multiple of the subcarrier spacing fd. In this way, each OFDM
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band is an orthogonal extension of another band. In the receiver, the laser should
be tuned to the center of each band, and then the signal is filtered by an anti-alias
filter having a bandwidth slightly larger than the band itself.

The OBM-OFDM modulation scheme adopted in this work was implemented
in Matlab, having a total number of 128 subcarriers, QPSK encoding, a guard-
interval of 1/8 of the observation period, and the middle 88 subcarriers filled with
information. Each OFDM band carries a 5 GSymbols/s stream of useful data. The
total number of symbols considered in the simulation was set to 214. The anti-alias
filter used accommodates a bandwidth equivalent to the frequency spectrum occu-
pied by 138 subcarriers, which gives the equivalent to 10 subcarriers of tolerance,
since each band has 128 subcarriers.

2.3 Back-propagation

The propagation of a pulse E(z, t) through a single mode optical fibre, for sin-
gle polarization transmission, is governed by the nonlinear Schrödinger equation
(NLSE) as shown in Agrawal (2001). The NLSE can be written in the following
simplified manner:

∂E

∂z
= (D̂ + N̂)E (1)

where D̂ is a differential operator accounting for dispersion and attenuation, and
N̂ = jγ|E|2 is the nonlinear operator governing nonlinear effects in the propagat-
ing signal, with γ representing the nonlinearity parameter of the optical fibre. The
NLSE is typically solved numerically by the split-step Fourier (SSF) method intro-
duced by Hasegawa and Tappert (1973). The numerical solution given by the SSF
method involves dividing the optical fibre into small segments of length h, wherein
the effects of dispersion and nonlinearity are considered independently, which is an
approximation. Back-propagation is also implemented through the SSF method,
while using inverse signs for the D̂ and N̂ operators. In this work we consider back-
propagation using the asymmetric approximation for the SSF method, discussed
in Hayee (2008); Ip and Kahn (2008), which consists in dividing the propagation
from z to z + h into two steps, one for nonlinearity and another for dispersion.
However, forward propagation simulations are performed using the more precise
symmetric approximation proposed by Agrawal (2001). This is achieved using a
small adaptive step size h in order to minimize the error, by satisfying the step
size requirements indicated by Hayee (2008).

2.3.1 Total field Back-propagation

When considering a generic WDM multichannel signal, its bandwidth is generally
much larger than the electrical bandwidth of a single photo-receiver. Additionally,
not only the photodiode is a restriction factor but also the analogue to digital
converter, whose sample rate is not enough to accommodate the whole bandwidth
of a WDM signal. Therefore a structure composed by a bank of local oscillators
tuned to the center frequencies of each of the channels of the WDM signal, is
required in order to translate each of those channels to baseband. Then, the full
electric field of the WDM signal (E) might be reconstructed through a coherent
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sum of each baseband signal (Êm) such that E =
∑N

m=1 Êmexp(jm∆ωt), where
N represents the number of channels and ∆ω represents the angular frequency
of channel separation. The reconstructed optical field can be used as an input
to the back-propagation algorithm in order to compensate for the transmission
impairments, as shown in Fig. 1(a), which has been named the total field algorithm,
as described in Ip and Kahn (2009); Li et al. (2008). Since the full electric field is
taken into account, it compensates for all SPM, XPM and FWM effects.

(a) Total Field BP (b) Coupled Field BP

Fig. 1 Diagram of (a) total field back-propagation and (b) coupled field back-propagation. N
represents the total number of channels, and ∆ω = 2π∆f represents the channel spacing.

2.3.2 Coupled field Back-propagation

The coupled field back-propagation method consists in considering the electric
field backward evolution of each band separately. Furthermore, for each back-
propagation step all bands are back-propagated in simultaneous, while accounting
in the nonlinear phase de-rotation of each band not only the SPM contribution
from each band but especially the XPM terms between bands. The mathematical
derivation of the cross phase modulation terms is achieved firstly by substituting
the expression of the full reconstructed electric field into the NLSE expression
given by (1). Secondly, it requires changing the sign of the D̂ and N̂ operators to
reflect the propagation in the backward direction and expanding the |E|2 term,
while neglecting FWM terms. As demonstrated by Mateo et al. (2008) the resulting
expression can be written as:

−∂Em

∂z
− D̂ = jγ

(
2

N∑
i=1

|Ei|2 − |Em|2
)
Em (2)
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where Em represents the electric field of m channel. The right end side of equation
(2) represents the nonlinear phase compensation term, which is proportional to
twice the instantaneous power summation of the electric fields from all channels,
PSum, as shown in Fig. 1(b). Therefore, due to this simplification, CF BP should
be an interesting approach to mitigate SPM and XPM effects, but not FWM.

3 Computational complexity comparison - coupled field vs total field

In the context of this paper, it is of relevance to understand the differences in terms
of computational complexity between the CF and the TF methods. Mateo et al.
(2008) has derived an expression that relates the step size requirements for accu-
rately describing the XPM (for CF) and FWM effects (for TF). He demonstrated
that the step size requirements for XPM scale inversely with ∆fRs while those for
FWM scale inversely with ∆f2. Therefore, their ratio scales with ∆f/Rs. In fact,
this ratio can be related with the number of computations of both approaches,
considering that it is inversely proportional to the step size:

Ctotal

Ccoupled
=
hcoupled

Nhtotal
=
πk

2

(N − 1)∆f

NRs
(3)

where C represents the total number of computations of the algorithm, Rs repre-
sents the symbol-rate, and k is a constant that depends on the type of algorithm
selected. One should note that while hcoupled is inversely proportional to the num-
ber of computations per channel, htotal is inversely proportional to the number
of computations for all channels, which justifies the introduction of a factor N in
equation (3), the total number of channels.

As a means of comparing the performance/complexity of the BP algorithm
for both CF and TF algorithms, a simulation was performed using the previously
shown setup. The average Q factor among all bands was obtained as a function of
the number of BP sections, for different band spacings in the transmitted signal,
considering 5 transmitted bands. Although we take the average Q factor among
all bands, the FWM impact leads to a different performance being achieved in
each band, which is generally worse for the middle bands, as will be explained in
section 4. It should be noted that the number of BP sections represents the fixed
length of the fiber span (80 Km) divided by the variable step size, such that for 1
section the step size is equal to the length of the fiber span, while for 10 sections
the step size is equal to 8 Km of fiber length. The results are shown in Fig. 2.

The number of sections varied from 1 up to 10 for the CF and from 5 to 50 for
the TF algorithm, since that equal complexity is achieved for both algorithms when
hcoupled = Nhtotal as seen in equation (3). We firstly discuss the results of the total
field BP, represented in solid lines, while considering a fixed number of sections. It
can be found that the performance decreases with increasing channel spacing, since
the TF step size requirements (htotal) are inversely proportional to ∆f2. Therefore,
the higher the channel spacing, the higher the required number of sections in order
to maintain the same performance, although above 25 sections the difference is
negligible. Differently, the CF results show a general improvement tendency with
increasing band spacing (for a fixed number of sections). This can be attributed
to the higher FWM phenomenon impact for very shortly spaced bands, namely,
the impact due to the generation of beating products falling in the neighboring
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Fig. 2 Q factor versus band spacing, comparing the performance/complexity of the BP algo-
rithm for both CF and TF algorithms, considering 5 transmitted bands. Results with equal
complexity are depicted with equal markers.

bands. The FWM impact for closely spaced bands can be analyzed in Fig. 3, where
the spectra of three distinct signals are shown after forward propagation. It can
be concluded that the higher the band-spacing, the lower the amplitude of the
distortion products, which can be observed by noting the power spectral density
decrease above the noise level, around the spectrum edges.
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Fig. 3 Power spectral density comparison of three distinct transmitted signals, for a band-
spacing of {8fd,100fd,175fd}, represented in solid, dash-dot and dashed lines, respectively.

Additionally, the reduction of the FWM beating products as the band spac-
ing increases, allows the CF algorithm to show its effectiveness in compensating
SPM and XPM effects. Furthermore, the CF step size requirements (hcoupled) are
inversely proportional to ∆fRs, which justifies the need for a higher number of
sections as the band spacing increases. This explains the noticeable performance
improvement with increasing number of sections as the band spacing increases.
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When comparing both algorithms, one can graphically determine the band-spacing
for which both algorithms have equal performance, at the same complexity; this
can be found to be a band-spacing of {74, 168, 237} fd for a Q factor of {18,
19.5, 20.5}dB and for {1, 2, 3} sections in the CF algorithm, respectively. This
means that as we increase the accepted algorithm computational complexity, the
band-spacing above which the CF out-performs the TF algorithm also increases.
Another parameter of relevance is the required latency of the back-propagation al-
gorithm, since a real-time implementation is likely to be desired. The CF approach
is inherently parallelizable, which reduces the system latency compared to the TF
method. Mateo et al. (2008) demonstrated that the processing latency ratio be-
tween CF and TF is inversely proportional to the step size ratio. This means that
considering a band-spacing for which both CF and TF have the same performance
with similar complexity, the processing latency of the TF approach is N times
higher. Therefore, assuming that a low band-spacing is desired, although the CF
algorithm provides poorer performance than the TF algorithm, it might still be a
better alternative based on the allowed reduced processing latency requirements.

3.1 Analysis for a variable number of bands

Although in the previous section the CF and TF algorithms were compared for
similar computational complexity levels, the number of OFDM bands was fixed.
However, a higher number of bands could lead to decreased requirements of the
receiver analog to digital conversion circuits, while allowing for an increased par-
allelization of the CF compensation algorithm, which could be desirable. In this
sense, it is interesting to understand how the performance of both algorithms is
affected due to a higher number of bands. With this objective, we analyze the
difference in performance between the CF and TF implementations while using
the same computational complexity in both algorithms. We conducted a simula-
tion where the number of bands is varied from 5 up to 25, while the total symbol
rate is kept constant at 25 GSymbols/s, while considering a band spacing of 8fd
as shown in Fig. 4 (a) and 100fd as shown in Fig. 4 (b). The solid lines represent
a result of similar complexity between both algorithms, since the CF compensa-
tion is performed with 1 section per span while the TF is carried with a number
of sections equal to the number of bands (N). The results in dash lines show an
indication of the performance bound of both algorithms, considering 10 sections
for the CF method and 50 sections, for the TF approach. For the CF method,
the performance degradation with increasing number of bands is the result of the
numerical error increase with the number of bands. An increased error in the es-
timate of the electric field for each BP step, results from the higher uncertainty
achieved in the calculation (summation) of the total instantaneous power, when
more bands are considered. The TF method provides improving performance with
an increasing number of bands due to the increase of the number of sections used
in the algorithm, equal to N . It can be concluded that for a small band spacing
(8fd) the TF approach is better performing for any number of bands. For a higher
band spacing (100fd in this case) the CF approach is outperforming only for 5
bands, while the over-performance is not higher than 4 dB up to 17 bands.

Therefore, from the previous analysis it can be concluded that the CF algorithm
is an interesting option in terms of performance/computational complexity, if the
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Fig. 4 Average Q factor versus number of bands for a constant symbol-rate of 25 GSymbols/s,
having a band spacing of (a) 8fd and (b) 100fd. Solid lines represent a similar computational
complexity between both algorithms. Dashed lines represent an approximate performance limit
of both algorithms.

system is allowed to have a relatively large band spacing and a reduced number
of bands.

4 Coupled field back-propagation including FWM

The previous analysis in the expansion of the CF BP equation (2) has not consid-
ered the FWM terms. However, if the FWM terms are neglected, there are beating
products that are not taken into account in the backward propagation, which leads
to a performance degradation for closely spaced bands as seen previously in Fig. 2.

Additionally, the field fluctuations induced from FWM distortion should vary
faster than those caused by XPM, which would require a smaller step size to take
them into account. Mateo et al. (2008) demonstrated the mathematical derivation
of the FWM terms in the nonlinear propagation equation by rewriting the total
optical field as:

E =

N∑
m=1

Emexp(jkmz) (4)

where km is the linear propagation constant of the m-th channel. Again, by substi-
tuting in the electric field E in equation (1) with the expression for the electric field
given by (4), and proceeding in a similar manner as in the derivation of equation
(2), Mateo et al. (2008) showed that one can write the nonlinear term, including
the FWM part, as follows:

jγ

(
2

N∑
i=1

|Ei|2 − |Em|2
)
Em + jγ

 ∑
[rslm]∈I

ErEsE
∗
l exp(jδkrslmz)

 (5)

with l = r + s−m, in order to neglect fast time oscillating terms, and respecting
{r, s,m} ∈ {...,−2,−1, 0, 1, 2, ...} the index of each channel, so that the newly gen-
erated waves stay within the WDM band and finally r 6= s 6= m so that SPM and
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XPM terms are not considered twice. The phase mismatch parameter δkrslm, in-
fluences the efficiency of the FWM, whose maximum intensity is contributed from
the edge channels over the central channel. By taking advantage of FWM terms,
Mateo and Li (2009) proposed the partial compensation of FWM through the CF
method. This consists in using additional terms that reflect the FWM interaction
leading to nonlinear mixing between neighboring channels, which are highly phase
matched, therefore having the potential to improve the results without compro-
mising the computational complexity. In this way, the FWM terms including the
interaction between 2 and 4 neighbors can be found to be, respectively:

F2m = 2Em+1Em−1E
∗
m (6)

F4m = E2
m+1E

∗
m+2 + E2

m−1E
∗
m−2 + 2Em−1Em+2E

∗
m+1

+ 2Em+1Em−2E
∗
m−1 + 2Em+2Em−2E

∗
m

(7)

Here, the phase mismatch exponential has been omitted for simplicity. Therefore,
the nonlinear term in the BP equation can be written in the following simplified
manner:

jγ
(
2Psum − |Em|2

)
Em + jγ(F2m + F4m) (8)

Additionally, Mateo and Li (2009) suggests a perturbative implementation to
solve equation (8), such that the nonlinear operator for step i is approximated as:

Ei+1
m = Ei

mexp
[
jγh(2Psum − |Em|2)

]
+ γh(F i

2m + F i
4m) (9)

where h represents the BP step size. However, this approximation is only valid
if the number of neighboring channels considered for FWM compensation is a
small fraction (below 20 %) of the total number of channels interacting through
XPM. This is required so that the phase mismatch length becomes larger than the
walk-off length, implying that field variations due to FWM are slower than the
variations due to XPM. However, this could preclude the usage of this algorithm
when the number of transmitted bands is small, therefore we propose a solution
in the next section.

4.1 Partial FWM compensation method for multi-band OFDM signals

In this work, a novel strategy of implementing a partial FWM compensation
scheme is proposed. Instead of performing the perturbative compensation as sug-
gested in Mateo and Li (2009), which is suitable for WDM transmission with a
large number of channels, equation (9) is modified in order to reduce the numeri-
cal error, due to a small number of bands being considered. We propose to compute
the BP step as follows:

Ei+1
m = Ei

mexp
[
−jζγLeff(2Psum − |Ei

m|2)
]

+ ξγLeff(F i
2m + F i

4m) (10)

where Leff represents the fibre effective length (smaller than L due to fibre losses –
Agrawal (2001)), ζ represents the nonlinear phase rotation parameter (as proposed
in Ip and Kahn (2008)) and ξ represents an empirical parameter proposed here.
This parameter is intended to control the amount of FWM compensation, its
optimum value, between 0 and 1, being found through numerical optimization.
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The average Q factor performance using the new partial FWM compensation
method with the coupled field approach for a signal with 5 bands is shown in Fig. 5,
for two different band spacings. Specifically, Fig. 5(a) is obtained for a band spacing
of 30 fd and Fig. 5(b) for a band spacing of 50 fd, considering the interaction of
both 2 and 4 neighbor bands.
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Fig. 5 Q factor versus ξ, for bands spaced at (a) 30fd and (b) 50fd, compensating the FWM
interaction of 2 neighbors (dashed lines) and 4 neighbors (solid lines).

From the analysis of Fig. 5, it can be seen that the proposed algorithm effec-
tively provides some performance gain, compared to using only the coupled field
algorithm, which corresponds to the performance at the ξ = 0 point. Additionally,
the higher the number of sections used in the BP algorithm, the higher the per-
formance gain, although we observed that above 20 sections the improvement is
negligible. Additionally, the optimum ξ parameter depends on the type of FWM
compensation used (2 or 4 neighbors) and increases with the number of sections
used, becoming constant above 20 sections. In practice, the ξ parameter can be
adjusted after each BP step, therefore not compromising the latency of a desired
parallel real-time implementation.
The algorithm performance improvement relative to the simple CF method was
assessed as a function of the the band spacing, considering a variation from 8fd
up to 200fd. The results are shown in Fig. 6. The ξ parameter used in the simu-
lations corresponds to the optimum value found for each case. The results show
that the advantage of using the partial FWM compensation is more effective for
a band spacing around 30fd, gradually vanishing as the band spacing increases,
regardless of the number of sections used in the BP algorithm. The reason behind
this behavior is related with the effect of FWM impairment itself, whose strength
decreases as the channels are further separated from each other. However, for the
range of band spacings where FWM has an impact, Mateo et al. (2008) has pointed
out that the intensity of FWM induced field variations is essentially due to the
interaction of signals more distant in frequency. This is consistent with the fact
that the amplitude of the provided performance improvement considering the in-
teraction between 2 neighbors is more significant for a band spacing around 75fd,
whereas for the interaction between 4 neighbors it is more significant for a band
spacing around 30fd.



12 L. M. Pessoa et al.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

Band spacing (referred to fd)

Q
F
a
c
to

r
im

p
ro

v
e
m
e
n
t
(d

B
)

 

 

20 Sec.
5 Sec.

1 Sec.

2+4 Neighbors

2 Neighbors

4 Neighbors
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For the specific case of band spacing equal to 30fd, Fig. 7(a) shows the per-
formance improvement obtained for each band, comparing the case of using the
coupled field algorithm only with that of using the coupled field with FWM com-
pensation. The cases of including 2 neighbor bands, 4 neighbor bands and the
combination of both were considered, the Q factor improvement being 0.4 dB,
1.38 dB and 1.72 dB, respectively. Note that the 4 neighbor FWM result only
shows improvement for the central band, which is the only band having 4 inter-
acting neighboring bands.
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Fig. 7 Q factor versus band number comparing the performance of using only the coupled
field algorithm with that of using the coupled field algorithm in combination with the partial
FWM compensation, showing (a) impact of using {2, 4, 2+4} neighbors for the compensation
and (b) different number of sections.

The impact of varying the number of sections is shown in Fig. 7(b) for a band
spacing of 100fd, comparing the relative performance of using {1, 5, 20} sections
in the BP algorithm. The dashed lines represent the result of using the coupled
field method alone, while the solid lines represent the result of using the coupled
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field method combined with the FWM compensation of 2 neighbor channels. As
shown, the performance increase affects not only the central band but also the
two neighboring bands where the algorithm is also applied. The improvement
increases with the number of sections, improving from 0.6 dB up to 1.05 dB, for
an increase from 1 to 20 sections, which confirms that the FWM compensation
effectively becomes more precise due to the numerical error reduction when the
number of sections is increased. It should be noted that the performance of the
center bands tends to be worse than those bands in the edge, due to the fact
that the middle ones suffer from stronger FWM, since they have a higher number
of neighbors. Mateo and Li (2009) reported a performance gain up to 1.5 dB for
the center channels of a 24 WDM channel setup using 16-QAM. In the present
work, performance improvements above 2 dB were observed, depending on the
band spacing considered, for the case of five closely spaced OFDM bands.

5 Conclusions

We analyzed the back-propagation algorithm for OFDM multi-band transmission
focusing on the comparison between coupled field and total field back-propagation.
These algorithms have been compared based on computational complexity where
it was concluded that the coupled field algorithm is an interesting option, espe-
cially for large band spacings and a reduced number of bands, since for small
band-spacings the CF method is not able to compensate the degradation induced
by FWM. Additionally, a FWM compensating term was considered within the
coupled field method to provide simplified means of multichannel nonlinearity
compensation for multi-band OFDM signals. A compensation method was pro-
posed in this context, which allows for a considerable performance improvement
when using a relatively small band spacing. This is the case where FWM induced
field variations are more intense, making the CF method an interesting choice for
the implementation of receiver-based real-time digital signal processing of future
coherently detected long-haul optical links.
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