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Abstract—This paper presents a modified negative selection 
algorithm for the diagnosis of disturbance in distribution 
electrical systems. This study analyzes voltage disturbances and 
high-impedance faults, based on three phase current and voltage 
electric measures, which are obtained at the substations. The 
principal application is to support operation decision aid during 
faults, as well as to supervise the protection system. To evaluate 
the performance of the proposed method, simulations were 
executed using the EMTP software for a distribution test system 
containing 134 bus. The results obtained were compared with 
the specialized literature. 

 Index Terms—Electrical Distribution Systems, Voltage 
Disturbance, High-Impedance Fault, Modified Negative 
Selection Algorithm, Artificial Immune Systems. 

I. INTRODUCTION 
Nowadays the electrical power systems are continuously 

expanding due to the increasing of the population and 
industrial groups. Thus, the electrical energy providers began 
to invest in distributions systems to modernize and automate 
the operation and consequently increase the profits [1]. These 
investments seek satisfy the requirements of the regulator 
agencies, as well as to improve the reliability, security and the 
efficiency of the energy providing. Digital technology and 
information technology have been pointed out lately. 

Therefore, it is necessary to develop integrated systems 
that combine several techniques, as acquisition, processing 
and analysis of data to aim providing the adequate assistance 
to provide automation, control and decision making. 

The traditional methods of fault diagnosis are based on 
visual inspection of oscillation graphs and depend on the 
operator experience to analyze and decision making. It is 
emphasized that not all faults can be identified by the 
operators, and thus the process can be inefficient and 

unsecure. Therefore, the use of artificial intelligence is a 
plausible solution to the diagnosis problem. Several 
techniques have been used to aid the operators to execute 
routines providing security, velocity and efficiency in 
corrective planning actions.  

According to this, some techniques are emphasized in the 
specialized literature in the last years for performing diagnosis 
of the disturbances in distribution electrical systems.  

Reference [2] uses artificial neural networks. In [3] the 
methodology is fuzzy logic. Metha-heuristics as Genetic 
algorithm and Tabu Search are used in [4]. In [5], Petri nets 
are used. These works are some of the references as aid tools 
for decision and failure diagnosis in electrical distribution 
systems using artificial intelligence. However, the works more 
relevant to realize analysis and diagnosis of current and 
voltage electric disturbances in distribution systems are 
presented in the following paragraphs. 

Reference [6] presents a study to evaluation of the low 
frequency spectrum in the diagnosis of high-impedance fault 
arcing on sandy soil in 15 kV distribution feeders. Reference 
[7] proposes a voltage disturbance classification using wavelet 
and neural networks. In [8] the authors use neural networks, 
fuzzy logic and wavelet to voltage disturbance diagnosis. 
Reference [9] presents a methodology based on wavelet, 
entropy norm and multi layer perceptron (MLP) neural 
network trained by backpropagation to classify the voltage 
disturbance. This method estimates the detail coefficients 
approaching by wavelet, and these coefficients are aggregated 
by entropy norm. Thus, a MLP neural network trained by 
backpropagation is used to classify the disturbances. 

A hybrid system based on discrete wavelet to detection 
process and a set of neural networks to classify the events is 
proposed in [10] realizing the detection, localization and 
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classification of quality energy disturbances. The wavelet to 
extract the characteristics of the voltage oscilographs is used 
in [11], with a fuzzy ARTMAP neural network that classify 
the disturbances where the inputs are aggregated by entropy 
concept. Reference [12] presents an algorithm for detecting 
high-impedance faults using gradient multiresolution 
morphological in feature extraction in the time domain and 
multi-layer perceptron networks. 

Paper [12] proposes a new approach to the problem to 
diagnosis of voltage disturbances using artificial immune 
systems. In this work, authors used the negative selection 
algorithm to perform the proper/non-proper discrimination. 
The proper signals indicate normal operation and the non-
proper signals indicate where there is the presence of 
abnormality, which is classified by the algorithm. Reference 
[14] presents an abnormalities filter detector using artificial 
immune systems in Smart Grids systems for the storage 
occurrence of abnormalities in real electrical systems. This 
system is also effective for generating actual database for 
training, validation and testing of new intelligent 
methodologies.  

This paper presents a new method to detect and classify 
voltage disturbances in distribution electrical system using an 
modified negative selection algorithm (MNSA). The 
modification in the negative selection algorithm was 
performed in the censor process (learning), which evaluates 
the similarity of the candidates for detectors. This evaluation 
computes the value of population combination (VPC), that 
will be used as a metric to choose the detectors in the censor 
process. The VPC is the degree of combination of the 
candidate with all other candidates for detectors. The bigger 
the candidate's VPC, the greater the power to identify and 
classify a similar pattern in the monitoring process. 

This strategy provides greater efficiency in the learning 
process of the MNSA, and consequently, greater efficiency 
and accuracy in the diagnosis of disturbances. 

To evaluate the performance this algorithm, tests were 
effectuated with two systems, one with 84 buses and a real 
system with 134 buses. 

The present article is organized as follows. Section II 
presents MNSA. Section III describes the modelling and 
simulations. The section IV presents the methodology 
proposed. The following section presents some illustrative 
results. Section VI summarizes the main conclusions of this 
work.     

II. MODIFIED NEGATIVE SELECTION ALGORITHM 
The MNSA algorithm proposed in this paper is an efficient 

technique for pattern recognition problem. The MNSA is 
based on the activity of the organic immunological system, 
and it was implemented as a computational model. The 
original technique was proposed in [15] for the detection of 
changes in computer systems, mimicking the negative 
selection process of T lymphocytes, responsible for 
discriminating between the body’s own cells and foreign 
antigens.  

This paper proposes a modification in the negative 
selection algorithm, in the censor process (learning), where an 

evaluation of similarity of the candidates for detectors is 
performed. The evaluation will calculate the value of 
population combination (VPC) that will be used as a metric to 
choose the detectors in the censor process. The bigger the 
candidate's VPC, the greater the power to identify and classify 
a similar pattern in the monitoring process. The MNSA 
algorithm is explained next: 
1. Censor (Learning) 

a) Define the proper chain set (S). This set represents the 
proper condition of the problem; 
b) For each pattern type, perform the evaluation similarity 
process, obtaining the VPC for all detectors candidates for 
the pattern in analysis; 
c) Generate a list with VPC of the candidates in decreasing 
order, where the maximum VPC is the first in the list; 
d) Using the list, choose the candidates and evaluate the 
affinity (match) with each one and the proper chains. If the 
affinity is superior to a pre-defined value, the chain is 
rejected. Otherwise, it must be filed in a set of detectors 
(R); 

2. Monitoring 
a) Given a chain set that is desired to protect (protected 
chains), evaluate the affinity with each one and the 
detector set. If the affinity is superior to a pre-defined 
value, then the non-proper element is identified. 
In the censor phase of MNSA the detectors are initially 

defined, which represent a normal condition of the body, 
known as proper chains (S). The objective of this phase is to 
generate a set of detector patterns (R), with the ability to 
recognize any non-proper pattern, in the data monitoring 
stage.  

So, for each pattern type an analysis of the similarity is 
performed, where is obtained the VPC of each detector 
candidate. After this process, is created a list in decreasing 
order with the VPC of the candidates. The list is used for 
choose the candidates. This strategy provides efficient 
candidates, with major chance identification and classification 
in the monitoring process. In the original algorithm, this 
choice is performed randomly. 

In the monitoring phase, the data is monitored in order to 
identify changes in the behavior of the samples and then 
classify these changes using the set of detectors created during 
the censor phase. Thus, by analyzing the protected chains (S) 
and comparing them with the set of detectors (R) the affinity 
between each of the chains is evaluated. If the affinity exceeds 
a certain threshold, then the non-self element is detected and 
classified. It should be noted that the censor and monitoring 
phases are performed offline and in real-time, respectively. 

It should be noted that the MNSA is very similar to the 
negative selection algorithm. However, it presents a much 
more efficient learning strategy, which allows greater 
precision in final diagnosis. 



The chains at the MNSA algorithm represent the patterns 
through the data structures (vectors). These chains can be 
classified in two types at the MNSA algorithm, the antigens 
(Ag) and the antibodies (Ab). The Ag is the signal to be 
analysed in the process and can be represented by expression 
(1). The detectors represent the antibodies Ab and are 
expressed according to expression (2) [16, 17]: 

],...,,,,[ 4321 LAgAgAgAgAgAg =  (1) 

],...,,,,[ 4321 LAbAbAbAbAbAb =  (2) 

where L is the dimension of the space of the antigen and the 
antibody. 

A. Affinity and match criterium 
In order to evaluate the affinity between samples and to 

check his similarity, a match criterion is commonly used. 
Match may be considered perfect or partial. A perfect match 
occurs when both samples are identical. In the partial match 
case the similarity is compared to a predefined threshold. This 
threshold is designated as affinity rate, and represents the 
minimum correspondence accepted between two matched 
samples [18]. 

The approach developed in this work adopts the concept of 
partial match proposed in [18], where the affinity rate is 
defined according to the following equation: 
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where:  
TAf   : affinity rate; 
An  : number of normal samples; 
At   : total number of samples. 

Equation (3) allows the precise calculation of the affinity 
rate for the proposed problem and represents the statistical 
analysis of the samples of the problem. Expression (4) 
represents the method to quantify the total affinity with the 
analyzed patterns [18, 19]: 
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where: 
AfT    : % of affinity with the patterns analysed;  
L       : Total quantity of positions;  
PCi     : matched position; 

∑
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  : sum of the matched position. 

Thus, if AfT is greater than TAf, the combination/matching 
with the patterns occurs, i.e., the patterns are considered equal 
(similar). Otherwise, there is no matching with the patterns. 

B. Similarity evaluation process 
The similarity evaluation process is performed to obtaining 

the VPC for the detectors candidates. 

For this process, it is used the matching and affinity 
concept presented in the previous section, where an evaluation 
is performed with each pattern type, in order to obtain the 
VPC of the each candidate. 

VPC represents the degree of candidate combination with 
all the other candidates, namely, the identification and 
classification capability. The VPC is defined according to the 
following equation: 
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where: 
VPC      : % of similarity of the candidate with all candidates;  
N           : quantity of candidates analysed;  
Mthi          : quantity of matching with all candidates; 

∑
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 : sum of the matching. 

The Mth value of each candidate is obtained by 
comparison, analysis and verification of the matching 
criterium and affinity, between the candidate and the other 
patterns. For each combination/matching, Mth is incremented. 
And so, calculate the value of VPC. 

Thus, the higher the candidate's VPC, the greater its ability 
to identify and classify an abnormal pattern in the monitoring 
process. 

III. MODELING AND SIMULATIONS 
The electrical distribution systems are vulnerable to 

problems and failures during the operation. These failures can 
be produced by problems in equipments, grass burning, animal 
touches in energized line parts, natural phenomena. These 
events can cause interruptions in energy providing, or modify 
the energy quality introducing harmonics and lowering the 
quality indexes of the distribution companies, and then 
increase the operational costs. 

Three principal disturbances can be emphasized in 
electrical distribution systems: short circuit, high-impedance 
fault and voltage disturbances.  The short circuit and the high-
impedance fault are related to electrical current problems, 
whereas the voltage disturbances, also known as power quality 
disturbances, are related to electrical voltage problems [14]. 

In this work are considered the voltage disturbances and the 
high-impedance fault. The voltage disturbances have the 
characteristics to present short time variations in voltage 
magnitude since a predefined nominal value. Depending on 
the magnitude variation, the disturbances are classified as 
interruptions, elevations and sinking, and depending on the 
duration can be instantaneous, transitory or temporary [11]. A 
high-impedance fault is characterized by the contact with an 
energized conductor and high-impedance surfaces, such as 
asphalt, sidewalks, and sand, or high-impedance objects, such 
as, branches and trees. These surfaces and objects limit the 
levels of the fault currents to values that are less than to those 
detected by the protection equipment [12]. 

The difficulties in effectuating researches in this area 
(distribution systems) are the data set under perturbations. 
Therefore, it is necessary to model the test systems, simulating 
events (voltage disturbances, short circuit, among others) 



providing data to use in the proposed method and contributing 
to the automation of the substations. 

In this context, a real distribution system with 134 buses 
was modeled using the EMTP software [20]. The sample 
frequency used in the simulations was 15.36 kHz, which 
corresponds to 256 samples per cycle. The simulation time 
was 200 ms, which corresponds to 12 cycles.   

In total, 968 simulations were performed. The simulations 
consider the phase where the disturbance occurred, the 
loadings from 50% to 120% and the parameters of the 
theoretical model. Table I presents the simulation quantity for 
each type of disturbance simulated to evaluate the proposed 
methodology. 

Table I – Quantify of simulations. 

Disturbance Number of simulations  
Normal operation 200 

Voltage 672 
High-impedance fault 96 

Total 968 
 

The electrical system is simulated 968 times, where 200 
simulations were done without perturbations and 768 
simulations containing and at least some electrical disturbance 
(high impedance fault and voltage disturbance). To uniform 
the test set, 96 simulations were chosen for each kind of 
disturbance executed at the simulations, therefore, every 
disturbance has the same quantity of signals. 

A. Voltage disturbances 
The theoretical model proposed by [21] was used for the 

voltage disturbance simulations. In this theoretical model is 
presented equations and parameters to reproduce faults 
referring to outage, harmonic, swell, sag, swell with harmonic, 
sag with harmonic, oscillatory transient disturbances. This 
type of faults is introduced on EMTP simulator [20]. In this 
case, using the routine models [22] of the EMTP software 
[20], the sources were modelled for each type of voltage 
disturbances in the theoretical model.  

A total of 672 voltage disturbance simulations were 
executed as shown in Table 2. 

Table II – Voltage disturbance simulations. 

Disturbance type Number of simulations  
Voltage Swell 96 
Voltage Sag 96 

Outage 96 
Harmonics 96 

Swell with Harmonics 96 
Sag with Harmonics 96 
Oscillatory transients 96 

Total 672 

B. High-impedance faults 
An approximated model proposed by [6] and shown in 

Figure 1 was used for the high-fault simulations.  This model 
has two DC sources, which are connected by two diodes in 
anti-parallel manner. The magnitude of the current arch is 
controlled by the series impedance (R and X).   

A total of 96 simulations were executed for the high-
impedance fault while considering the variations of the 
parameters R, X, Vp and Vn, and the location bus. 

 
Figure 1: Model of High-impedance faults simulations. 

IV. METHODOLOGY 
The diagnosis system based on the MNSA has two phases, 

the censor (learning) and monitoring, that are presented 
follows: 

A. Censor Phase 
The detectors are generated in this phase and the MNSA 

uses in the monitoring process. Figure 2 shows the flow chart 
of this process. This phase is executed offline and separated by 
phase, where each phase (three phase system) has the proper 
detectors.  

 
Figure 2: Flowchart of MNSA censor phase 

Firstly the proper set is defined. The proper signals for the 
electrical distribution systems are the normal operation state. 
Then, window samples (256 points) of the signals representing 
the normal operation are filed as proper detectors. Afterwards, 
the censor module is executed to generate the disturbance 
detectors, emphasizing that this process is executed for each 
kind of disturbance. In this phase, the candidate detectors are 
evaluated for the obtaining the VPC, then, is generated a list in 
decreasing order. The list is used for choose the candidates. 
This process is repeated until a predefined quantity of 
detectors is obtained for each disturbance.  

Thus, this process generates the detector patterns for each 



type of disturbance and files in the memory to realize the 
classification of the monitoring process.  

B. Monitoring phase 
The monitoring phase is divided in three modules, which 

realizes the data acquisition, the proper/non proper 
discrimination, and classifies the disturbances.  

The data acquisition module reads the electrical current and 
voltage oscillographs measured at the substations for the three 
phases (by SCADA acquisition system). The sample rate used 
is 15.36 kHz, corresponding to 256 samples per cycle with 
200 ms, or 12 execution cycles, i.e. 12 windows. 

Afterwards the detection proper/non proper module is 
executed. In this module the proper detectors and the signals 
under analysis are compared to identify a match according to 
the Affinity Rate. The generated diagnosis is a classification 
of the analyzed signals (proper and non-proper), being the 
proper signals considered the normal operation and the non-
proper the identification of an anomaly. Figure 3 illustrates the 
proper/non proper detection process.  

 
Figure 3: Module Detection proper/non proper. 

For each phase of the system there is an artificial 
immunological system and the respective detectors. If some 
non-proper signal is identified, the system presents a 
codification how answer. A codification is used to represent 
the non-proper signal associated to a predefined phase of the 
system. Table III presents the codification for the output of the 
detection phase.   

Table III – Proper/non proper output codification. 
Output Codification 
Phase A 10 
Phase B 01 
Phase C 11 

An abnormality being detected, the proper/non-proper 
detection module actions the classification module to classify 
the disturbance detected in the phase where is identified a non-
proper signal. The classification module identifies the kind of 
disturbance the anomaly is and classifies it among the 
disturbances known by the system. Figure 4 illustrates the 
classification module of the system.  

 
Figure 4: Module of Classification. 

The execution of the module is similar to the proper/non-
proper module. However, in this phase a comparison between 
the abnormal signal detected and the disturbances detectors is 
realized. In this work 8 disturbances are considered. Thus, in 
the final of this process the classification module gives a 
codified output for the 8 types of disturbances, i.e. the 
classification of the abnormal signal.  

V. RESULTS 
The results obtained for the proposed method for the 

electrical system is presented in this section. Every simulation 
is executed with a PC Intel Core 2 Duo 1.9 GHz, 2 GB of 
RAM memory and operational system Windows 7 Ultimate 
32 bits. The algorithm is developed in MATLAB [23]. 

A. Real system of 134-Bus 
This system is a real distribution system that has the 

following characteristics: aerial, three phase, several branches, 
composed of 134-bus, 13.8 kV, 7.065 MVA, mutually 
coupled, and the power factor is equal to 0.92 [24]. This 
electrical system represents part of the distribution system of 
the hydroelectric power plant Jupiá in Três Lagoas city, São 
Paulo, Brazil.  

The parameters used are the following: the affinity rate 
with a set value in 66.66% (calculated with equation (3)) and 
the number of the detector for each disturbance is 30% of the 
data. Table IV presents the results that were obtained with the 
MNSA for the 134-bus system [24]. 

Table IV – Results for the 134-Bus system. 
Disturbance Tested Patterns Match (%)  

Voltage Swell 96 100.00 
Voltage Sag 96 100.00 

Outage 96 100.00 
Harmonics 96 100.00 

Swell with Harmonics 96 100.00 
Sag with Harmonics 96 100.00 
Oscillatory transients 96 100.00 
High-impedance fault 96 100.00 

Normal operation 200 100.00 
Total 968 100.00 

The results show the correct percentage in identifying the 
electrical current and voltage disturbances in relation to the 
quantity of patterns used on the tests. The monitoring phase is 
executed with a computational time less that to 100 ms. 



B. Comparative study 
Table V presents a comparative study to the proposed 

method and the principal references that are available in the 
literature. 

Table V – Comparative study. 

Reference Type of Disturbance  Total 
Match (%)  

[9] Voltage 96.21 
[13] Voltage 99.11 
[10] Voltage 99.31 
[11] Voltage 99.66 
[6] High-impedance fault 97.85 
[12] High-impedance fault 99.20 

This work Voltage 100.00 
This work High-impedance fault 100.00 

Total  100.00 

The proposed method presents a matching index and a 
precision that is superior to other similar works that are 
available in the literature. It should be emphasized that the 
MNSA proposed in this work, is an efficient technic, because 
the modification implemented provides a better learning in the 
censor phase, improving the accuracy in diagnosis. 

VI. CONCLUSIONS 
This paper presents a new method for disturbance 

diagnosis in distribution electrical systems using the MNSA. 
The MNSA proposed presents good results with 100.00% 
matches in every sample simulated. The censor phase 
demands more computational time and thus it is executed 
offline. The monitoring phase is very fast (less that to 100 ms), 
allowing the algorithm to be used on line, once the decisions 
must be executed very quickly. Therefore, the MNSA is 
efficient, robust and exact for the disturbance diagnosis in 
distribution electrical system. 
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