
Detection of Anonymised Traffic: Tor as Case Study

Bruno Dantas1, Paulo Carvalho1, Solange Rito Lima1, and João Marco C. Silva2

1 Centro Algoritmi, Universidade do Minho, 4710 057 Braga, Portugal
a74207@alunos.uminho.pt, {pmc, solange@di.uminho.pt

2 HASLab, INESC TEC, Universidade do Minho, Braga, Portugal
joao.marco@inesctec.pt

Abstract. This work studies Tor, an anonymous overlay network used to browse the
Internet. Apart from its main purpose, this open-source project has gained popularity
mainly because it does not hide its implementation. In this way, researchers and security
experts can fully examine and confirm its security requirements. Its ease of use has at-
tracted all kinds of people, including ordinary citizens who want to avoid being profiled
for targeted advertisements or circumvent censorship, corporations who do not want to
reveal information to their competitors, and government intelligence agencies who need
to do operations on the Internet without being noticed. In opposition, an anonymous sys-
tem like this represents a good testbed for attackers, because their actions are naturally
untraceable. In this work, the characteristics of Tor traffic are studied in detail in order
to devise an inspection methodology able to improve Tor detection. In particular, this
methodology considers as new inputs the observer position in the network, the portion of
traffic it can monitor, and particularities of the Tor browser for helping in the detection
process. In addition, a set of Snort rules were developed as a proof-of-concept for the
proposed Tor detection approach.

1 Introduction

Privacy is a human right and online privacy should be no different. While communi-
cations and data need firm online protections, bureaucracy has been slow to respond
to the pace of technological changes. The lack of trust in the Information Technology
(IT) domain has led individuals to discover different ways of hiding their online identi-
ties (online anonymity). The main argument against online anonymity by governments
is about users having a lack of accountability. In other words, anonymity can harbour
criminal activity by making the tracing of online activities more difficult [1]. Further,
anonymous traffic hardens the management and monitoring of network infrastructures
because the traffic cannot be easily associated with its original sources and/or destina-
tions. Nevertheless, detecting and blocking anonymous traffic may, in some cases, be
crucial for the good operation of the network.

This work studies Tor, a tool that allows its users to achieve online anonymity. By
using Tor, users can access the public Internet without worrying about censors, gov-
ernments, service providers, and so on. The motivation of this work is to take the area
of anonymous traffic detection one step further in its continuous research. In particular,
this paper starts by dissecting the main Tor architectural components and operation in
order to establish an encompassing methodology for its detection. This involves a sys-
tematic coverage of relevant aspects to consider in the traffic inspection strategy, such
as the observer’s position in the network, the portion of traffic under analysis and Tor
traffic characteristics at distinct network layers. As proof-of-concept, after exploring
and identifying Tor behaviour and particularities, a set of Snort rules was created to
detect Tor traffic.

This paper is organised as follows: a discussion on traffic characterisation, an-
onymity systems and other related works is carried out in Section 2; in Section 3,
the methodology for detecting Tor traffic is discussed from different perspectives and
protocolar levels. As proof-of-concept, the definition of Snort rules for Tor detection
and the experimental results are provided and discussed in Section 4. Finally, the main
conclusions of the study are included in Section 5.

2 State-of-the-art

2.1 Traffic Classification

The discipline of traffic classification tries to associate traffic flows or packets with
the applications, or application types, that generated them. In the context of com-
puter networks, the five tuple (destination/source Internet Protocol (IP) address, des-
tination/source port number, protocol field) is commonly used to (uniquely) identify
different flows, and is used since the first-generation firewalls [2].

While in the early days of the Internet port-based approaches (checking packets’
port numbers) was enough to achieve high accuracy classification results [3], over
the last two decades, some developments make it difficult for operators and service
providers to classify traffic flows: applications that have no IANA registered ports; the
use of well-known ports to circumvent filtering; physical servers may offer services
through the same public address but on different ports.

Operators were then forced to use another approach, commonly called Deep Packet
Inspection (DPI), by looking at packets’ content to discover the application being used
[4]. This approach has two downsides. The use of pattern matching can become easily
slow because each incoming packet has to be compared with thousands of different
signatures. Also, end-to-end encryption is becoming ubiquitous, which makes DPI
less effective [5]. Nevertheless, relevant information can be extracted from encrypted
connections, typically from the session’s initiation. The reason for this is that security
protocols usually have an initialisation phase that is not encrypted.

With the increasing complexity of networks, the classification methods are usu-
ally supported with the help of protocols knowledge [5], coupling traffic classification
with other approaches, such as machine learning, deep learning, and specific heuris-
tics [3][5]. These approaches are mainly applied to specific network metrics depending
on each application characteristics, at different granularity levels, being also referred
as host behaviour and statistical classification. Despite this, if operators’ techniques
are publicly known, developers intentionally change the application’s network metrics
(e.g. packets’ inter-arrival times, packets’ length, using dynamic ports). By modifying
them, it is possible to obfuscate the application generating the traffic.

2.2 Online Anonymity Systems

The main goal of anonymity systems is to avoid traffic analysis and network surveil-
lance, and to block any tracking of users’ identities in the Internet [6]. Why is it
needed, if almost all applications’ data is encrypted? First, service providers usually
have logging systems to monitor their infrastructure. The recorded logs can have in-
formation that can be used to keep track of users’ identities or activities. Secondly,

secure communication protocols can reveal information or have implementation flaws.
For example, the Client Hello message in the Transport Layer Security (TLS) hand-
shake can carry the Server Name Indication in plain text (SNI extension). Thirdly, as
already mentioned, traffic classification techniques are currently adopting statistical
approaches to classify encrypted traffic, based on network and transport layers infor-
mation, communication metrics and user behaviour. In other words, it is still possible
to guess, with some level of certainty, what kind of services users are accessing, even
if the communications are encrypted. These discussed points are the reasons why most
of the anonymity systems use techniques in network or transport layers. The goal is to
separate the application data from the lower level layers as a way to obfuscate who is
accessing the service. Typically, this is achieved by bouncing the traffic to an interme-
diate entity before accessing the final service. That entity then uses some strategy to
obfuscate the traffic (discussed next).

Depending on the architecture, anonymity systems can be used to circumvent ge-
ographically blocked content, dodge targeted marketing or test network attacks. Also,
they are a troublesome for governments in censorship countries, as they allow citizens
to access censored websites without being discovered. As a consequence, those coun-
tries’ government agencies and particular service providers block traffic generated or
sent to those tools. When an anonymity system starts to become more famous, the
simplest approach is to block their public IP addresses [7]. In this way, citizens are
forced to access the service without an anonymity system or to find other system less
famous and not blocked yet. Without directly blocking anonymity systems, these agen-
cies would have to apply other traffic classification techniques already discussed. If the
traffic is classified as belonging to some anonymity system and is blocked, citizens are
unable to access whatever they like through that system (even if, the content is legal).

Currently, there is no anonymity system capable of leaving all parties satisfied.
These systems use techniques such as proxies, mix networks, tunnelling and overlay
networks. Each one has its own design, which means that each one has its specific
use case, advantages and disadvantages. This paper will focus on Tor, an anonymity
system that uses an overlay network to provide anonymous browsing to its users.

2.3 Tor Project

Tor (or Tor Project) is a continuously growing open-source project that provides ano-
nymity at network/transport layers over the TCP/IP protocol stack. Its first release was
in 2002 with the name The Onion Router (hence its actual abbreviated name). More
specifically, Tor is a circuit-based low-latency anonymous communication service that
provides perfect forward secrecy, congestion control, directory authorities, integrity
checking, configurable exit policies, and a practical design for location-hidden services
via rendezvous points [8].

The service is circuit-based because before sending any data, it creates a route of
nodes through which the data will pass. Depending on the position in the circuit, each
node can be called entry/guard, middle or exit node. Instead of nodes, these can also
be called onion routers or relays. Tor provides a low-latency service because it was
deployed to be used in interactive or non-linear environments, such as web browsing.
Perfect forward secrecy means that once the session keys are deleted, subsequently
compromised nodes cannot decrypt old traffic (unique session keys are created for

different sessions). Tor uses an incremental path-building design, where the initiator
negotiates session keys with each successive hop in the circuit, used for encrypting the
message. Each onion router in the path then strips off a layer of encryption, until the
exit node decrypts the last layer and becomes able to redirect the original message’s
request. Figure 1 illustrates this process with only two onion routers (in real operation
there are at least three).

Fig. 1. Example of Tor encryption layers.

Congestion control is also implemented to prevent onion routers from getting con-
gested. Directory authorities are trustworthy servers responsible for retrieving control
information to clients (e.g., list of onion routers that will make up the circuit). Integrity
checking is performed in two stages. First, onion routers use the TLS protocol to com-
municate with each other (see details in Section 3.1). Second, specific Tor messages
called relay cells contain an end-to-end checksum for integrity checking. Configurable
exit policies, as the name suggests, is a feature that enables users to circumvent prob-
lems with service usage (e.g., selecting the country of the last onion router in the
circuit). Location-hidden services provide anonymous services to other users (users
remain anonymous too), such as e-commerce, news or illegal activities [9].

A typical architecture of Tor is depicted in Figure 2. At its core, Tor is simply a tool
that can build paths given a set of routers [7]. One relay is chosen more frequently, the
guard node, which is highlighted in the figure. On the one hand, this relay is a special
trustworthy node that always acts as the entry relay, as long as it is not compromised
or (periodically) rotated. On the other hand, middle relays and exit relays are chosen
proportionally to their available bandwidth3. There are fewer exit relays than middle
relays because Tor allows volunteers to run either as middle or exit relays. The reason
is that exit relays do not know what websites are being accessed by users, and so they
are more vulnerable to attacks if the websites are (intentionally) compromised [8].

The directory authorities are responsible for distributing control information across
the (overlay) network. Basically, they agree on a consensus, a compressed document,
so that each relay can check its validity. Communications within Tor use their own
defined encryption techniques(over a TLS layer).

2.4 Related Work

In [11], machine learning techniques are used for traffic classification in three differ-
ent anonymity tools: Tor, JonDonym and I2P. Using the Anon17 dataset4, the authors

3 The bandwidth is constantly tested by directory authorities to prevent attacks where relays claim to
have more bandwidth than they really have (to be more frequently chosen) [10][8]

4 https://web.cs.dal.ca/ shahbar/data.html

Fig. 2. Tor architecture review and related terminology.

measure three different levels of granularity to distinguish between the anonymity
tool, traffic type and application. The results showed high accuracy, progressively re-
duced for each granularity level, evaluated after receiving the flows’ eighth packet (as
the beginning of a flow contains the negotiation of parameters and requests between
client/server or peers, with protocol-specific headers and message sequences [3]). De-
spite this, the authors show the maximum achieved accuracy and F-measure, along
with the number of packets needed to sustain those results. The effects of feature im-
portance (up to 74) and temporal-related features to the network are also investigated.

The work reported in [12] demonstrates the presence of hot exit points in Tor.
These are exit-nodes agglomerations, controlled by some Internet Service Providers
(ISPs), that are almost always used, despite the existence of other exit-nodes options.
The results are based on 1.5 years of recorded data, being a threat to anonymity (as
ISP can correlate traffic more easily).

A different Tor design is proposed in [13]. By introducing group signatures, a
cryptographic technique, it is possible to distinguish between legitimate and illegiti-
mate users. When some malicious action is performed by a user, it is possible to block
or denounce him. This approach is not perfect. Although relay volunteers and ISPs
increase trust in the overlay network, benign users have to trust the entity in charge of
blocking or denouncing them (basically the same problem of mixing proxies).

The identification of TLS abnormalities in Tor is provided in [14]. The work be-
gins by identifying TLS characteristics in Tor (e.g., certificate extensions). Then, Snort
rules are created according to those characteristics, which could effectively identify the
presence of Tor traffic. However, at the time of writing, Tor only supported TLS 1.0,
resulting in outdated rules when considering the latest TLS 1.3 and 1.2 versions.

The work in [15] begins by identifying the most known attacks that could be used
to deanonymise Tor circuits. The two outlined categories of attacks are traffic correla-
tion and webpage fingerprinting. The vulnerable identified areas are the guard-node se-
lection and rotation algorithm, the intercell transmission timings and other traffic met-
rics (cell order, amount, interval, size and direction). Then, the authors have focused
on these areas to collect the proposed and already-implemented countermeasures that
could enhance Tor resistance as regards the three mentioned vulnerabilities. Finally,

the process of evaluation is accomplished by comparing each countermeasure with a
set of (security) requirements previously defined (following the MoSCoW method).

A longitudinal study of Tor network is presented in [16]. The work is based on a
passive analysis of TLS traffic over more than three years in four large universities.
The results show that it is possible to identify Tor, specifically through some infor-
mation present in X.509 certificates and other exchanged parameters within the TLS
handshake. Despite this, it is assumed that Tor’s detection will remain an arms race.

Although the mentioned studies address the problematic of Tor traffic classifica-
tion and/or detection of malicious behaviours at some extend, important aspects of
an encompassing methodology for Tor inspection and subsequent detection are not ad-
dressed as a whole. This motivates the present study and the methodological discussion
presented below.

3 Inspecting Tor traffic

This section is dedicated to discuss important Tor inspection methodology aspects
namely, the observer’s position in the network, the portion of traffic it can monitor,
protocol layer issues and related metrics, and particularities of Tor browser.

3.1 Observer position

As regards the observer position in the network, a Tor detector might be placed at three
distinct points, i.e., between: (i) an onion proxy and a guard node; (ii) two onion routers
(or a guard node and an onion router); and (iii) an exit node and the final destination.

(i) Onion proxy and guard node - an external observer monitoring any link between
the onion proxy (or a Tor browser) and the guard node can infer relevant information.
First, the (partial) location can be exposed through the inspection of the guard node’s
IP addresses involved in the connection. Second, it is possible to identify whether
the client is using Tor. This detection is performed by inspecting the IP address and
comparing it to known guard nodes5, or inspecting the TLS handshake (assuming that
the connection was not already established).

(ii) Two onion relays - this case and the previous one follow different traffic patterns.
Although the TLS handshakes are slightly different, an external observer cannot distin-
guish them. In fact, one might think that it is easy to distinguish the two handshakes as
in case (i) only one party authenticates himself (the guard node) and, in this case, both
parties need to authenticate (to prevent impersonation attacks). As shown in Fig. 3, Tor
handles this by performing a TLS handshake first, always as a server-only authentica-
tion handshake, and then performs an inner handshake to complete the authentication.
To better illustrate this, consider two onion relays willing to communicate. At start, a
normal client/server TLS handshake is performed, and only one of them (the next in
the circuit) will authenticate itself using a local certificate. Only after this, inside the
TLS session just created, the authentication will be completed in an inner handshake,
specified by Tor (not a TLS handshake). In this inner handshake, the parties will agree

5 Tor Bridges. In that case, the onion proxy connects to a bridge before the guard node and can obfuscate
itself from his regional ISP, i.e., the regional provider can only conclude that the onion proxy was
communicating with another peer.

in a common version, exchange certificates, and other parameters. To an external ob-
server, the outer handshake is the same for those two cases.

Fig. 3. Tor relays authentication

After the handshake phase, traffic patterns can be slightly different. Only the first
case (onion proxy and guard node) uses connection-level padding. Any other connec-
tion does not use it (a connection to a bridge is treated as the first case6). There are
proposals for changing the circuit-level padding between onion relays, however, they
are not yet implemented. In connection-level padding, cells carry the same value as al-
ways, but new dummy cells are introduced to obfuscate traffic from external observers.
Therefore, in theory, case (ii) leads to different traffic patterns from case (i).
(iii) Exit node and destination - from the exit node to the final destination, despite
being a traditional HTTP/HTTPS connection, traffic can be analysed to possibly detect
Tor presence. One way is to inspect the IP addresses involved in the connection and
compare them to a list of known Tor (exit) nodes. Other possible way is to measure
network metrics and infer that it is a Tor exit node if the delay of packets is higher than
the normal. In this case, the packets’ length is not fixed. In fact, the size of messages
follows the normal operation of the HTTP protocol, but the exit node readjusts them
to fit within the fixed required size (512 bytes) in the Tor network.

This knowledge might be helpful, for example, if a website administrator does not
want Tor users to access his website. One possible reason for an administrator to want
to block Tor under these conditions is that the information collected is no longer related
to the original client’s IP address, being now related to the exit node. Worse than that,
a different client may use the same exit node, but they look the same to the website as
both requests stem from the same IP address.

3.2 Observer traffic portion

In normal conditions, a passive observer can only monitor one link. However, moni-
toring more than one (overlay) link in Tor can be only achieved if that observer spans

6 https://gitweb.torproject.org/torspec.git/tree/padding-spec.txt

different countries. In fact, Tor assumes that does not have a defence against a global
adversary [8]. By global adversary is meant a passive observer that can monitor more
than one link, thus correlating flows and inferring the circuit that an onion proxy is
using. Of course, one global adversary can be made of smaller adversaries working
together. Either in real-time or from recorded logs, it is possible to aggregate that data
and correlate it to know what website a client was accessing through Tor.

3.3 Traffic characteristics

An external observer may inspect packets payload, however their encryption do not
allow retrieving useful information (at least individually). Because of that, inspection
can only occur at lower protocolar levels, such as network, transport and session lay-
ers. In addition, measuring network parameters can help detecting Tor traffic, where
the most important metrics are the length and the delay of packets. The former is useful
because Tor uses fixed-size messages of 512 bytes (connection establishment cells are
variable-sized). The latter can suggest the presence of Tor because delay values will
typically be higher than normal (packets have to traverse onion relays across different
countries). If possible, these metrics should be used in conjunction with other indica-
tors or rules for completeness (e.g., network congestion may produce a false positive).

At network layer, IP is the first protocol worth to be inspected. It is known that
some ISPs are already blocking static IP addresses used by directory authorities, onion
relays or guard nodes (fact that led to the introduction of Tor Bridges). In addition, the
websites providing information regarding current active onion relays, their associated
IP addresses, geographical location, and sometimes the volunteer’s personal informa-
tion (Twitter profile) are plentiful. Even with the introduction of bridges, it is assumed
that there is no magic bullet for their discovery. Although it is more difficult to enu-
merate all the bridges IP addresses, their discovery is indeed possible [17].

At transport layer, the Tor Browser currently uses random ports to communicate
with the guard node, while onion proxies use the port determined by guard nodes. The
same applies to fetch network information through other relays (up to three connec-
tions). Each relay can optionally act as a directory authority to help in the distribution
of the consensus document, but the ports are randomly chosen as well. Note that the
randomness of ports at transport layer is useless from a signature-based Intrusion De-
tection System (IDS) point of view. However, an anomaly-based IDS could probably
deduce information if some ports were used more than others.

At session layer, in the case of TLS, the followed approach is simple. The objective
is trying to detect fields and parameters that are different from other TLS flows (web
browsers). By comparing the Tor browser with other browsers, one can start ruling
out other TLS sources until only the Tor browser is left. According to [16], there are
several fields within TLS that can be used to detect Tor. The present work takes that
list as a starting point to discuss which TLS fields are useful for creating Tor detection
rules. In this context, the TLS messages Client Hello and Server Hellowere
identified as relevant elements for sensing Tor.

3.4 Tor browser particularities

As mentioned, Tor traffic characteristics can be derived from the Tor browser TLS
handshaking phase.

Starting with the Client Hello message, the first parameter to inspect is the
TLS version. As most browsers already support TLS 1.3, every website connection
within the browser will use an extensive list of TLS extensions in Client Hello
messages, when compared with the previous version. Although this extensions list may
be useful, inspecting the TLS version field is useless as both versions (v1.2 and
v1.3) use the value Ox0303 for backward compatibility. As regards the Session
ID field, it can be helpful as Tor nodes do not resume sessions, conversely to common
services. Regarding cipher suites information, a major differentiating parameter is the
Cipher Suites Length. Despite this, if this value is the same for Tor and other
browsers, a comparison can be established based on Cipher Suites List con-
tents. Table 1 compares two of the discussed fields in the Client Hello message
for Tor and the most used browsers according to w3schools 7.

Table 1. Client-side TLS parameters

Browser Cipher Suites Extensions

Tor 14 6

Chrome 17 17

Safari 23 8

Edge 19 10

Firefox 18 14

Opera 17 17

The Server Hello handshake message also carries useful information, how-
ever, its scope is broader than in the client. Therefore, this message should only be
inspected to complement the Client Hello, as the number of different servers is
very large, and each server has to follow the client behaviour. Note that considering
Server Hello messages implies a stateful detection system [2] due to a potentially
high number of sessions being handled concurrently (which may affect the trade-off
between accuracy and performance). The extensions field can be a major field in
the detection process, as Tor nodes use shorter extension lists than common servers
(usually with a length of 13 or 18).

4 Experimental Evaluation

Based on the specific characteristics of Tor traffic presented above, Snort rules were
defined and evaluated under distinct test scenarios. These rules allow to introduce sim-
ple and effective detection in existing network systems, e.g., IDS or firewalls. The
configuration details and the obtained results are discussed in the following sections.

7 https://www.w3schools.com/browsers/default.asp

4.1 Snort Rules

To explore the detection of Tor traffic, Snort rules were created targeting specific char-
acteristics of TLS messages as explained in Section 3.4. To do so, a first rule (presented
as Listing 1) triggers for every TLS packet sent from the internal network $HOME_NET
to any external network having the Cipher Suites Length field with the value
28 (14 cipher suites supported).

Listing 1: Snort rule: setting initial state

Note that an alert will not be generated for each packet matching this rule. Instead,
the tor_browser variable will be set with the flowbits:set rule option. The
alert is only generated if the response packet matches one of the two rules following
this one (which is the purpose of the rule option flowbits:isset). These two rules
are illustrated in Listing 2.

Listing 2: Snort rules: detecting Tor

Basically, these rules will match response (Server Hello) packets which have
the Extension Length field with the values 13 or 18. Within the rules, these
values are represented in hexadecimal. Note that, the assumption that only Client
Hello or Server Hello messages can match the rules can be violated as the pro-
tocol over TCP can be other than TLS. However, it is unlikely that a different protocol
exactly matches the content rule options specified.

For the specific case of Snort, these rules might be enhanced by resorting to the
SSL preprocessor, which allows the IDS to recognise a TLS session using the built-in
ssl_state rule which matches every packet with ssl_state: client_hello
or ssl_state: server_hello values.

4.2 Test scenarios

In order to assess the proposed rules, background traffic was generated along with
Tor connections following two test approaches: a simpler one, based on control traf-
fic generated from non-anonymous browsers; and a more realistic test, in which Tor
connections were introduced in real traffic captured in a campus network.

Tor connections were generated resorting to a script executing multiple instances
of the Tor Browser Bundle, and connecting them to the Tor network, each time to a dif-
ferent guard node. To prevent from always connecting with the same guard node, each
Tor Browser instance was set with a different list of wanted EntryNodes. Such node
variability provides a more relevant test scenario, as it can detect guard nodes using
different handshake protocols. Both background traffic and Tor specific traffic were
merged using tcpdump and then processed by Snort, which applied both the commu-
nity and the proposed rules. Mixing the general rules with Tor detection specific rules

allow to address eventual collision with intrusion detection processes in operational
networks. Details regarding the two test scenarios are:

(i) Browsers traffic: In this first scenario, through a Python script, multiple con-
nections to the fifty more accessed websites in Portugal8 were established, using five
commercial non-anonymous browsers (mentioned in Table 1) in a local network. The
purpose of using different browsers is to have Client Hello messages varying the
cryptographic parameters. In this way, at least 250 handshakes are performed (some
websites perform more than one).

(ii) Real traffic: In this scenario, a Sophos XG 105 Firewall was deployed
for sniffing all traffic generated by multiple users sharing a LAN during one hour.
The traffic passing through the firewall does only include each user’s laptop in that
LAN. The corresponding network traffic trace includes various applications, such as
OpenVPN, CiscoVPN, Microsoft OneDrive, Microsoft Teams, Skype, Slack, Spotify,
EMC Avamar, Tortoise SVN, NetBeans or Maven, resulting from a normal user activity.

Although performed in an offline environment (to prevent connection variations
or instabilities across multiples sessions), all tests assume a monitoring point placed
between the onion proxy and guard node (see Section 3.1).

4.3 Evaluation results

The accuracy of the rules created is measured evaluating whether the number of Snort
alerts triggered by Tor traffic is equal to the number of connections established through
the script. False positives and false negatives are identified by comparing all processed
packets with the trace containing only the Tor traffic.

For test scenario (i), with traffic generated by five different non-anonymous brows-
ers, the detection rules led to 100% accuracy. In fact, some alerts were triggered only
by executing the Tor browser, which demonstrates their effectiveness in identifying
Tor activity even before the user request any resource. This is possible as the Directory
authority activity (see Section 2.3) follows the same TLS pattern as the relay nodes.

Considering the second and more realistic scenario, the proposed rules were also
able to identify all connections originated from a Tor browser. However, in this case, it
was also identified a significant number of false positives, 25%. Although being high,
all the false positives were related to the same traffic type, namely Microsoft Teams
desktop application.

A deeper inspection of false positives revealed they were caused by the way Snort
processes packets. Basically, the proposed rules have a specific offset because when
analysing Tor traffic, no session identifiers were present. Without session identifier,
the Client Hello message has only one field in this context, the Session ID
Length with the value zero. When this identifier is present, the Client Hello
message also includes the length field with the corresponding value. Hence, when
creating the rules, the field following the Session ID Length was not its actual
value, but the next field, i.e., the Cipher Suites Length. All connections erro-
neously classified as Tor traffic had a session identifier which was causing a no alert
triggering. However, the alerts were generated, so it is assumed that Snort can ignore
the identifier value or shift the offset accordingly. A strategy that might prevent this

8 https://www.similarweb.com/top-websites/portugal

type of false positive is the introduction of additional parameters into the rules. For
instance, the SNI extension in the Client Hello might be analysed and compared
either to a list of trusted server names or to a list of previously enumerated services.

Figure 4 (left) illustrates the total number of packets of test scenarios (i) and (ii),
and the number of packets that Snort analysed. Although the analysis was not per-
formed in real-time, processing the real traffic scenario efficiently required significant
resources (it was analysed in less than 3 seconds, which corresponds to approximately
8 Gbps). This ratifies the importance of establishing simple detection rules, as adding
new fields to be matched and/or more chained rules applied to all packets might be
computationally prohibitive. In Figure 4 (right), the number of Tor alerts and logs are
expressed. As shown, Snort could correctly log all the generated alerts, however, the
network trace with real traffic lead to 25% of false positives in detecting Tor traffic.

Fig. 4. Number of packets per test (left); Number of Tor alerts per test (right)
.

5 Conclusions

Within anonymisation systems, Tor has gained popularity as an anonymous overlay
network used to browse the Internet. The present work has provided a comprehensive
study exploring particular characteristics of Tor traffic in order to allow a simple and
effective detection in production networks. The proposed Tor inspecting methodology
considers new aspects to be considered for helping in the detection process, as the ob-
server position in the network, the portion of traffic it can monitor, and the session-level
particularities of the Tor browser. The proof-of-concept has involved the definition of
a set of Snort rules tested in distinct traffic scenarios for Tor detection. In both scenar-
ios, the results show the effectiveness of simple rules in detecting Tor traffic with high
accuracy.

With respect to this area of research, it will remain a strong competition among
the entities in search for online anonymity and the ones that search for surveillance
and/or censorship. Currently, there is no one-fits-all solution to this problem. Different
strategies have arisen due to the increasing interest in this area, but those only solve
the problem to some extent. Most importantly, the anonymous systems research line
must continue to evolve to allow users online privacy while allowing means of service
providers and system administrators being able to control their infrastructures. This
study represents a step forward in this direction.

Acknowledgements This work has been funded by EU H2020 - The EU Framework
Programme for Research and Innovation 2014-2020, grant agreement No. 732505,

and by FCT – Fundação para a Ciência e Tecnologia – within the R&D Units Project
Scope: UIDB/00319/2020.

References

1. Winkler, S., Zeadally, S.: An analysis of Tools for Online Anonymity. International Journal of
Pervasive Computing and Communications 11(4) (2015) 436–453

2. Neupane, K., Haddad, R., Chen, L.: Next Generation Firewall for Network Security: A Survey.
Conference Proceedings - IEEE SOUTHEASTCON 2018-April (2018) 1–6

3. Finsterbusch, M., Richter, C., Rocha, E., Müller, J.A., Hänßgen, K.: A Survey of Payload-based
Traffic Classification Approaches. IEEE Communications Surveys and Tutorials 16(2) (2014) 1135–
1156

4. Dainotti, A., Pescapé, A., Claffy, K.C.: Issues and Future Directions in Traffic Classification. IEEE
Network 26(1) (2012) 35–40

5. Adibi, S.: Traffic Classification – Packet- , Flow- , and Application-based Approaches. 1 (2010)
6–15

6. Haraty, R.A., Zantout, B.: The TOR Data Communication System: A Survey. Proceedings - Inter-
national Symposium on Computers and Communications Workshops (2014) 1–6

7. Dingledine, R., Mathewson, N.: Design of a Blocking-resistant Anonymity System.
Svn.Torproject.Org (2006) 1–24

8. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In: Pro-
ceedings of the 13th Conference on USENIX Security Symposium - Volume 13. SSYM’04, USA,
USENIX Association (2004) 21

9. Pistunovich, V.I.: Tor: The Second-Generation Onion Router. Soviet Atomic Energy 46(4) (2005)
337–337

10. : Low-resource Routing Attacks Against Tor. (2007) 11
11. Montieri, A., Ciuonzo, D., Member, S., Aceto, G.: Anonymity Services Tor , I2P , JonDonym :

Classifying in the Dark (Web). (February) (2018)
12. Koch, R., Golling, M., Rodosek, G.D.: How Anonymous Is the Tor Network? A Long-Term Black-

Box Investigation. Computer 49(3) (2016) 42–49
13. Diaz, J., Arroyo, D., Rodriguez, F.B.: Fair and Accountable Anonymity for the Tor Network. 4(Icete)

(2017) 560–565
14. Granerud, A.O.: Identifying TLS Abnormalities in Tor. Information Security (2010)
15. Stone, J.A., Saxena, N., Dogan, H.: Systematic Analysis: Resistance to Traffic Analysis Attacks

in Tor System for Critical Infrastructures. Proceedings - 2018 IEEE International Conference on
Systems, Man, and Cybernetics, SMC 2018 (2019) 2832–2837

16. Amann, J., Sommer, R.: (Exploring Tor’s Activity Through Long-term Passive TLS Traffic Mea-
surement)

17. Ling, Z., Luo, J., Yu, W., Yang, M., Fu, X.: Tor bridge discovery: Extensive analysis and large-
scale empirical evaluation. IEEE Transactions on Parallel and Distributed Systems 26(7) (2015)
1887–1899

