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Abstract. Bin picking is a challenging problem common to many in-
dustries, whose automation will lead to great economic benefits. This
paper presents a method for estimating the pose of a set of randomly
arranged bent tubes, highly subject to occlusions and entanglement. The
approach involves using a depth sensor to obtain a point cloud of the bin.
The algorithm begins by filtering the point cloud to remove noise and
segmenting it using the surface normals. Tube sections are then modeled
as cylinders that are fitted into each segment using RANSAC. Finally,
the sections are combined into complete tubes by adopting a greedy
heuristic based on the distance between their endpoints. Experimental
results with a dataset created with a Zivid sensor show that this method
is able to provide estimates with high accuracy for bins with up to ten
tubes. Therefore, this solution has the potential of being integrated into
fully automated bin picking systems.

Keywords: bin picking, industrial robots, linear objects, pose estima-
tion, robot vision

1 Introduction

Bin picking corresponds to the task of taking an object out of a box with an
open lid for subsequent manipulation [I]. It is usually decomposed into a set of
sub-tasks, including object recognition, pose estimation and computation of an
appropriate grasping position for a robot gripper to pick up a piece.

Since this task is present in many industrial processes, its automation will
lead to substantial increases in productivity in a wide array of businesses. How-
ever, this problem is quite challenging as the items are often arranged in a
random fashion, and are thus subject to occlusion and entanglement. One ex-
ample of an item that is highly prone to entanglement are the wire-harnesses
in the automotive industry. Due to its complexity, currently, there is no general
solution to this problem.

This paper focuses on tubes and on the bin picking sub-task of pose estima-
tion. The tubes are placed randomly in a bin, making them especially vulnerable
to entanglement. The goal is to develop a computationally efficient algorithm to
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process point clouds from a depth sensor, with the assumption that all the tubes
have a common well-known radius, with a small variability. In most industrial
scenarios, this assumption is realistic and acceptable. The algorithm makes no
other assumptions regarding the tubes’ geometric properties, namely their cur-
vature, so that the solution can be applied to a varied set of industrial contexts.

Section 2] consists of a brief review of the literature regarding pose estimation
for bin picking. Section 3| presents the approach to determine the tubes’ geom-
etry, detailing the experimental setup, the algorithm and how the solution was
evaluated. Some results are also reported regarding the algorithm’s computa-
tional efficiency and accuracy. Lastly, section [4] concludes with some discussions
of the contributions and lines for future work.

2 Literature Review

Research for bin picking dates back 50 years, but much of the work that was
published was not dedicated to bin picking itself but rather to one or more
of its sub-tasks. The emergence of new technologies for depth sensing, namely
active stereo, led to the creation of many vision-based techniques with increased
accuracy and robustness.

Many approaches for pose estimation resorted to 3D models of the objects
to be perceived. Bolles and Horaud [2] presented one of the earliest approaches
to locate objects in bins using 3D sensors. They used the edges from the depth
image to extract local features, such as circular arcs, and followed a hypothesize-
and-verify paradigm to find matches between the image and the object model.

One recent project on object localization is DoraPicker [3], which participated
in the 2015 Amazon Picking Challenge. This system begins by filtering its input
cloud by downsampling with a voxel grid and a statistics-based outlier removal.
It then computes an initial estimate of the object’s pose using LINEMOD and
refines it using the well-known Iterative Closest Point (ICP) algorithm.

Kita and Kawai [4] proposed a method to estimate the pose of twisted tubes
for bin picking by applying a region growing-based segmentation using the sur-
face normals and then determining the tube’s principal axis by examining cross-
sections of the segmented region. The estimate is then improved by using the
tube’s model and a modified version of ICP that uses a skeleton of the tube.

The model-less approaches have the advantage of handling intra-class shape
variations, such as tubes with varying curvatures. However, this also requires
a clean segmentation of the target objects. One very common method used to
obtain the pose of a bin’s objects without having a model apriori is by matching
with shape primitives.

Cylinders are sometimes employed for the pose estimation of tubes. Taylor
and Kleeman [5] describe a split-and-merge segmentation algorithm that begins
by identifying smoothly connected regions with the surface normals. Surface
elements, such as ridges and valleys, are then found to check if a given region’s
shape is consistent with a cylinder. If so, fitting is performed with a least squares
solver, and regions are merged iteratively when the model for the combined
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region has a lower residue. If the region is not consistent, it is split into smaller
parts and the algorithm is applied recursively.

Qiu et al. [6] focused on reconstructing industrial site pipe-runs and per-
formed a statistical analysis of the surface normals for global similarity acquisi-
tion, which they claim is more robust to noise than local features. This analysis
involves using Random Sample Consensus (RANSAC) to obtain the cylinders’
principal direction. Cylinder positions are then extracted via mean-shift cluster-
ing to detect circle centers on the orthogonal plane that contains the projection
of the points belonging to cylinders with a given direction. Finally, pipe sections
are joined using several criteria such as the distance and skew between cylinders.

An alternative to cylinders is to fit splines to model curved tubes. Bauer and
Polthier [7] used a moving least squares technique to compute a spine curve,
using a partial 3D view of the tube. The spine is then approximated to an arc-
line spline using heuristics.

3 Algorithm and experimental validation

3.1 Experimental Setup

A Zivid One Plus L depth sensor (Figure was chosen due to its high accuracy,
having a spatial resolution of 0.45 mm (on the plane that is perpendicular to
the sensor’s optical axis) and a depth precision of 0.3 mm at 1.2 m. This high-
end commercial device uses active stereo with structured light to acquire depth
information and is also able to capture color, which was not used to show that
this method is agnostic to the object’s color.

The depth sensor was positioned looking downwards towards a bin filled with
tubes for electric installations, with a vertical distance of 85 cm relative to the
bin’s bottom (Figure . They were made out of Polyvinyl chloride (PVC), with
a diameter of 2.5 cm and a length of 50 cm. The tubes were bent with arbitrary
angles (Figure [Ld). The bin’s dimensions are 55 cm (length) x 37 cm (width) x
20 cm (height).

(a) Overview (b) Zivid sensor (c) Bin with bent PVC tubes

Fig. 1. Experimental setup
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3.2 Point Cloud Processing

The program responsible for obtaining a model for the tubes from the sensor’s
point cloud was developed using Point Cloud Library (PCL), which contains a
wide array of useful algorithms for point cloud processing.

The solution is divided into four main steps: filtering, segmentation, cylinder
fitting and tube joining. Algorithm [I] presents an overview of the solution. Figure
[3] shows an example of the proposed steps.

Algorithm 1 Overview of the tube perception algorithm

Input: Cloud - Point cloud
Output: Tubes - Set of tubes

Cloud + applyFilters(Cloud)
Segments < regionGrowingSegmentation(Cloud)
Tubes <
for each segment € Segments do
tube, inliers, outliers < fitCylinder(segment)
while size(inliers) >= min;niiers do
Tubes < Tubes U tube
tube, inliers, outliers < fitCylinder(outliers)

9: EndPointPairs < ()

10: for each pair € EndPoints(Tubes) x EndPoints(Tubes) do

11: if isNearby(pair) and areDif ferentTubes(pair) then

12: EndPointPairs < EndPoint Pairs U pair

13: EndPointPairs < sortByDistance( EndPoint Pairs)

14: for each (endPointl,endPoint2) € EndPointPairs do

15: if areCompatible(endPointl, endPoint2) then

16: (tubel, tube2) < (tubeO f(endPointl), tubeO f(end Point2))
17: Tubes < Tubes U unite(tubel, tube2) \ {tubel, tube2}

Filtering The first phase (line 1 in algorithm 1)) filters the point cloud received
from the sensor so that only points corresponding to the tubes remain.

Filtering begins with a pass-through filter to remove points whose depth lies
outside a reasonable range. A random sampler reduces the number of points to
a fixed amount by removing points with a uniform probability. A radius outlier
filter erase points which do not have enough neighbors within a sphere of a given
radius. These filters are efficient at removing noise since the regions of interest
tend to form denser regions on the point cloud, comparatively to points due to
noise.

This first set of three filters is intended to reduce the number of points
where the surface normals will be computed. The normals are estimated using
a least-square method to fit a tangent plane to each point using the covariance
matrix formed by the neighboring points from the raw point cloud [§]. The
curvature of each point is estimated by using the eigenvalues of this matrix.
The unfiltered point cloud was used for the search surface so that there are
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more points available around each neighborhood, thus increasing this operation’s
accuracy. Noisy points are not considered to have a significant impact in these
estimates as they are greatly outnumbered by the relevant data.

The points from the plane belonging to the bin’s bottom are then removed
with RANSAC, an iterative, non-deterministic method that determines a model’s
coefficients by finding a sufficiently large subset of points (inliers) which are
within a given distance from it. The distances from the points to the plane take
into account both the point’s coordinates and its normal vector. The minimum
distance for a point to be considered as a inlier must be carefully chosen since if
it is too small, the filter will not be able to remove points from the bin’s bottom,
and if it is too large, points belonging to the tubes may also be removed (the
points whose normals are facing upwards are quite vulnerable to this problem),
which will degrade the performance of the following steps of the algorithm. The
advantages of using RANSAC include its simplicity and its robustness to outliers,
even when in high proportion. The biggest drawback is that, due to its stochastic
nature, it has no upper bound for the number of iterations needed to find a model
that fits well the data. This leads to a trade-off between the execution time and
the probability of computing an accurate model.

A second random sampler and radius outlier filter are applied to reduce the
size of the resulting cloud to make the following processing steps more compu-
tationally efficient and remove points that may have remained from the bin’s
bottom.

The filtering process ends with a statistical outlier filter. This filter begins
by computing the average p and standard deviation o of the distances of all the
points to their k nearest neighbors [9]. The cloud’s points are then scanned a
second time and a point is considered as an outlier (and thus removed) if the
average distance d follows inequality , where mult is a multiplier that helps
to regulate how restrictive the filter is. In this case, k and mult were set to 100
and 3.0, respectively.

d > p+multxo (1)

Segmentation The second phase (line 2 in algorithm (1)) aims to divide the fil-
tered point cloud (which should only contain points from the tubes) into regions
where the surface normal’s direction varies smoothly. Each region corresponds
to a continuous and non-occluded portion of a tube. Therefore, the points should
be clustered so that each visible or partially visible tube is associated with at
least one segment, and each segment pertains to exactly one tube.

To perform this segmentation, a region-growing algorithm is used where each
region starts with a seed point assigned to it and is progressively expanded by
adding nearby points for which the angle between their normal and the one for
the seed point is below the smoothness threshold [10]. Additional points may be
added as seeds for the same region if their curvature is sufficiently low. When
there are no more seed points to grow a given region, the algorithm creates a new
cluster and sets as the initial seed the unlabeled point with the lowest curvature.
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The thresholds used by this algorithm must be properly defined to achieve a
balance between over and under-segmentation.

Cylinder Fitting The third phase (lines 3-8 in algorithm [1)) processes each
segment independently. For each segment, the RANSAC algorithm repeatedly
constructs cylinders, with the outliers of each cylinder serving as input for the
next instance of RANSAC, until the number of remaining points is too low
(below 100) for a new cylinder to be fit. Each call to the RANSAC algorithm
runs up to 1000 iterations and attempts to find a cylinder with a radius between
0.7 cm and 1.5 cm. Associating multiple cylinders to each segment allows the
algorithm to model curved tube sections.

The seven parameters for the cylinders’ model are the 3D coordinates of
a point and the three components of a unit vector to describe the axis, and
its radius. The cylinder’s length is not used as a parameter for RANSAC to
reduce the number of iterations needed to produce good estimates for the other
parameters. Instead, the length is computed after each run of the RANSAC
algorithm by applying a rotation to the model’s inliers so that the cylinder’s axis
is aligned with the z axis, and finding the inliers with minimum and maximum
z coordinate. This method also allows the computation of both of the cylinder’s
endpoints, at center of the bases, which are used on the tube joining phase.

In order to avoid the overlapping of cylinders created from the same segment,
after each run of RANSAC, the outliers within a slightly wider and longer cylin-
der with the same axis and center as the newly-created cylinder are removed.
This bigger cylinder was set to be extended by 1 cm in length at both bases
and to have a radius of 2 cm, which will always be larger than any reasonable
cylinder fitted by RANSAC (since the tubes have a radius of 1.25 cm). The over-
lapping degrades significantly the performance of the tube joining phase since
the algorithm may be unable to recombine both tubes into one.

Tube Joining The fourth and final phase (lines 9-17 in algorithm consists in
combining the cylinders created in the previous phase to form complete tubes.
Each tube is modeled as a linked list of cylinders.

Initially, it is assumed that each cylinder corresponds to one and exactly
one tube, even for cylinders that were generated by the same segment. One
advantage of not considering all of the cylinders of the same segment to belong
to the same tube is that the algorithm becomes more robust to occurrences of
under-segmentation during the second phase.

This phase starts by considering all pairs of endpoints of distinct tubes and
computing two distance metrics: the euclidean distance that separates both end-
points, and an angular distance, which describes how curved a junction would
need to be to link both tubes. The angular distance, measured in degrees, is the
sum of two angles formed by the unit vectors of the cylinder axes associated with
each endpoint with a vector that links both endpoints, as depicted in Figure

The endpoint pairs with an euclidean distance above 10 cm or angular dis-
tance above 90° are discarded since they are unlikely to belong to the same
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a

Fig. 2. Visual representation of the angular distance, sum of the angles o and (8

tube. The remaining endpoint pairs are ordered using a distance metric that
combines the euclidean and angular distance, as presented in equation . A
coefficient was multiplied to the angular distance in an attempt to make both
distances comparable (since one is expressed in meters and the other in degrees).
The coefficient was set to 0.001 since the maximum acceptable distance for both
metrics (10 cm and 90°) was assumed to be ‘equivalent’ (with %3 ~ 0.001). In
the exceptional case where the euclidean distance is below 1.25 cm (the radius
of a tube), it is very likely that the cylinders belong to the same tube, so the an-
gular distance is set to 0 to increase the chances of the cylinders being combined
in case there are not perfectly aligned (due to RANSAC’s stochastic factors).

dist(A, B) = euclideanDist(A, B) + 0.001 * angular Dist(A, B) (2)

By adopting a greedy approach, the remaining endpoint pairs are processed in
ascending order of distance, based on the rationale that the closer the cylinders
are, the more likely they belong to the same tube. This is akin to the ‘Joint
Reconstruction’ stage proposed by Qiu et al. [6], which also joins tubes based
on their euclidean distance (which they call ‘gap distance’) and relative angles.

As each pair is processed, the endpoints’ respective tubes are combined into
a single tube that is modeled by the union of cylinders that belonged to both of
the original cylinders. The resulting tube’s length is estimated as the combined
length of its cylinders lengths in addition to the euclidean distance between
the endpoint connections. It should be noted that since it is common for the
junctions between cylinders to be curved, this estimate is slightly lower than the
actual length. If the cylinder overlapping problem was not solved in the previous
phase, then these estimates would overshoot the actual length.

When processing the pairs, three constraints are applied to reduce the proba-
bility of a wrong junction of tubes. Firstly, the endpoints must belong to different
tubes. Secondly, a ‘length constraint’ imposes that two tubes can only be joined
if their combined length does not exceed 60 cm (a margin of error of 10 cm was
added to the 50 cm tube length). This heuristic can be applied for other sorts of
tubes if an upper bound for the length is known. Finally, a ‘visibility constraint’
prevents the union of two endpoints when there is an empty gap between them.
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This was implemented by projecting both endpoints onto a 2D range image of
the point cloud that resulted from the filtering phase from the sensor’s point of
view. Afterwards, the midpoint between both endpoint projections is computed
and it is determined whether any pixel in a small neighborhood around this mid-
point has less depth (i.e. closer to the sensor) than the maximum depth among
both endpoints. If there is no such pixel, then the tubes cannot be combined.
To the best of the author’s knowledge, this is the first publication that presents
these last two constraints for the problem of tube reconstruction.

3.3 Results

A datasetﬂ with 50 point clouds of the bin with different amounts of tubes
in various arrangements was constructed to evaluate the performance of the
solution. There are five different test cases for each value for the number of
tubes, ranging from 1 to 10. The tubes, bin and sensor properties are the same
as those described in section [3.1] Tables [1] and [2] present the average value of
different performance metrics with respect to the number of tubes.

The results in table [I] were obtained with an Intel Core i7-8750H processor,
with 2.20 GHz. Each test case was evaluated five times to ensure more reliable
execution times. The phase that takes the longest is the filtering, where the
slowest operation was the plane fitting, as a large number of iterations was used
for RANSAC. The increase of the filtering time with the number of tubes is
likely due to a shift between the proportions of the points belonging to the bin’s
bottom and to the tubes: as there are less points on the bin’s plane, RANSAC
needs more iterations to converge to an acceptable model. It can be speculated
that this increase in execution time should not increase indefinitely with the
number of tubes and will stabilize once the amount of tubes is high enough for
the bin’s bottom to not be visible. The tube joining phase has a remarkably low
execution time, with an order of magnitude of 1 ms.

Overall, the execution time of the perception algorithm has an order of mag-
nitude of 1 s, which is rather reasonable for industrial applications.

To evaluate the performance of the segmentation phase, two annotators
counted the number of visible continuous tube sections, using color images cap-
tured by the Zivid sensor for the 50 test cases. Ideally, there would be a one-to-
one mapping between clusters and tube sections. The ‘segmentation error’ metric
in table 2 is the relative error between the number of clusters produced by the
segmentation phase and the number of tube sections. This error is the greatest
for cases with one tube. This is likely caused by a moderate amount of leftover
noise, due to imperfect removal of the bin’s bottom plane. The increase of this
error in cases with more tubes is due to some tube sections being too small (as
a result of a growing number of occlusions), and thus not having enough points
for the region growing algorithm to be able to create clusters for them.

3 The ‘Entangled Tubes Bin Picking’ dataset is available at
https://github.com/GoncaloLeao/Entangled- Tubes- Bin-Picking-Dataset.
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Table 1. Average execution time for the algorithm’s four phases

No. of|Filtering|Segmentation| Fitting | Joining | Total
tubes | time (s) time (s) |[time (s)|time (s)|time (s)
1 0.49 0.08 0.13 0.0036 0.70
2 0.60 0.14 0.16 0.0043 0.90
3 0.60 0.14 0.17 0.0050 0.92
4 0.60 0.14 0.21 0.0056 0.95
5 0.63 0.15 0.19 0.0069 0.97
6 0.62 0.14 0.20 0.0083 0.97
7 0.64 0.14 0.19 0.0089 0.98
8 0.69 0.14 0.19 0.0094 1.03
9 0.83 0.14 0.19 0.0095 1.17
10 0.94 0.14 0.20 0.0098 1.28

One metric used to assess the performance of the tube joining phase in a
given test case are the average and standard deviation for the lengths of the
tubes. Ideally, the average length should be 50 cm and the standard deviation
should be minimal. According to table 2] the tube joining phase appears to have
a good performance overall. As the number of tubes increases, it is natural for
these metrics to worsen since the visible surface area of the tubes decrease, giving
less information about each individual tube for the algorithm to work with.

The tube length metrics are not sufficient to assess with great confidence
the performance of the perception algorithm since the lengths are estimates
and do not account for incorrect matchings between tube sections of similar
length. Ergo, along with the number of tubes produced by the solution (‘Number
of joint tubes’), the annotators counted how many tubes were correctly and
partially correctly modeled. A tube (in real-life) is considered to be ‘correct’ if
it is associated with one and exactly one virtual tube which has a ‘sufficient’
amount of cylinders to cover its visible sections and does not have cylinders in
sections of the bin where the tube is not present. A ‘partially correct’ tube only
differs in the fact that multiple virtual tubes can be assigned to it. As seen in
table [2| the algorithm performs well even in cases where the bin is fuller. It
should be noted that, in a bin picking system, the bin is scanned after removing
each tube, so it is acceptable if there are few partially correct tubes, as long
as at least a few tubes are correctly modeled. As more tubes are removed, the
remaining ones have more chances of having a correct model.

Figure |3| illustrates the full process for one of the test cases with ten tubes
(test case ‘10_bin_picking2’ from Figure [Ic)). The number of remaining points
after each filter is also shown. In this case, the algorithm performed quite well
since nine of the tubes are correctly modeled and the remaining one is partially
correct (the two tube models corresponding to the partially correct one are
marked with a red ellipse in Figure . It is interesting to notice that in Figure
there was an occurrence of under-segmentation (marked with a red ellipse)
that the cylinder fitting phase was able to recover from.
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(a) Raw point cloud (b) After the first random sampler

1412894 points 100000 points

(c) After the first radius filter (d) After the plane removal filter
99 347 points 71406 points

(e) After the second random sampler (f) After the second radius filter
25000 points 21373 points

(g) After the statistical outlier filter (h) After segmentation
21151 points

(i) After fitting cylinders (j) After joining tubes
Fig. 3. Results of the algorithm’s steps for the case shown in Figure
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Table 2. Accuracy metrics for the segmentation, fitting and joining phases

No. of|Segmentation Ave. Std. deviation 1\.10.' of| No. of NO'. of
tubes error length length (m) joint |correct| partially
(m) tubes | tubes |correct tubes

1 2.00 0.439 0.00105 1.2 0.8 0.2

2 0.83 0.439 0.08911 2.4 2 0

3 0.20 0.502 0.00824 3 3 0

4 0.00 0.468 0.03406 44 3.6 0.4

5 0.04 0.480 0.03661 5.2 4.8 0.2

6 0.00 0.481 0.03135 6.2 5.6 0.4

7 0.06 0.454 0.08529 7.6 6.4 0.6

8 0.06 0.414 0.12530 9.2 7 1

9 0.13 0.386 0.13101 10.6 6.6 2.2

10 0.12 0.347 0.15357 12.6 7 3

4 Conclusions and Future Work

The algorithm presented in this paper processes a point cloud from a depth sen-
sor and provides a model for a set of tubes of equal radius but varying curvatures
in a bin where they are arranged randomly. Using a primitive fitting approach
for pose estimation, rather than starting from an initial 3D model of the tubes,
allows the solution to handle intra-class variability. Some distance-based heuris-
tics presented by Qiu et al. [6] alongside some novel constraints, such as checking
for a gap between the cylinders, also enable it to deal with occlusions and en-
tanglement. This is proven by the experimental results, where the solution was
able to accurately describe the shape of most tubes in bins with up to ten tubes.

Using this solution’s output, many heuristics can be used to select which tube
to pick up next, such as choosing the one with the least occlusions. This solution
can thus be integrated into bin picking systems of a vast variety of industries.
Despite the tubes that were used in the experiments being rigid, this method
has the potential of being compatible with flexible tubes, for which there are
very few bin picking solutions.

Another relevant contribution is the ‘Entangled Tubes Bin Picking’ dataset,
which can be used by the robotics community to benchmark other solutions to
this challenging problem.

This work opens several lines for future research. Firstly, the solution’s per-
formance can be measured using different kinds of tubes, with other lengths and
radii, possibly made of a more flexible material. Tests can also be conducted us-
ing other sensors, ideally those with less precision. These experiments can lead
to an enrichment of the dataset. Secondly, the performance of the algorithm’s
fitting phase (execution time and accuracy) can be compared to an alternative
where a spline is fitted to each segment, as suggested by Bauer and Polthier [7].
Little to no modifications will need to be done to the other three phases of the
solution. Lastly, to decrease the algorithm’s execution time, a decision procedure
can be devised to decide if the plane filtering should be applied to the cloud.
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