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Abstract. In a single-target regression context, some important sys-
tems based on data streaming produce huge quantities of unlabeled data
(without output value), of which label assignment may be impossible,
time consuming or expensive. Semi-supervised methods, that include the
co-training approach, were proposed to use the input information of the
unlabeled examples in the improvement of models and predictions. In
the literature, the co-training methods are essentially applied to classifi-
cation and operate in batch mode.
Due to these facts, this work proposes a co-training online algorithm for
single-target regression to perform model improvement with unlabeled
data. This work is also the first-step for the development of online multi-
target regressor that create models for multiple outputs simultaneously.
The experimental framework compared the performance of this method,
when it rejects unalabeled data and when it uses unlabeled data with
different parametrization in the training.
The results suggest that the co-training method regressor predicts better
when a portion of unlabeled examples is used. However, the prediction
improvements are relatively small.

Keywords: Single−Target Regression ·Semi−Supervised Learning ·Co−
training ·Data Streams

1 Introduction

The importance of prediction has increased in online data streams context [1, 2].
In fact, several domains (where data is obtained through data streams) rely on
the ability of making accurate predictions for decision making, planning, strategy
development and reserve determination which depend on models produced by
data analysis [3].

In this context, data streams produce massive quantities of data of which
label assignment may be impossible, time consuming or expensive. Unlabeled
data (without output values) is usually present in sensor malfunction or database



failure. In addition, labels may be omitted when data is sensitive (e.g, privacy
preservation) or may be not obtained due to labeling cost [4]. Unlabeled data
usually appear in a wide range of contexts such as Engineering Systems ( video
object detection ) [5], Physics (weather forecasting and ecological models) [6],
Biology (model of cellular processes) [7] and Economy/Finance (stock price fore-
casting) [3]. In most of these areas, data from streams are obtained and processed
in real time [4].

Semi-supervised Learning (SSL) methodology has been developed to utilize
the input information for accuracy improvement of the regression model by arti-
ficial labeling [4]. These methodologies become useful when the unlabeled data is
significantly more abundant than labeled data [8]. However, these methodologies
may introduce errors by propagating the inaccurate artificial labels [8].

Formally, let S = {..., (x1, y1), (x2, y2), ..., (xi, yi), ...} denote an unlimited
stream of data examples, where xi = [xi,1 · · ·xi,j · · ·xi,M ] is a vector of de-
scriptive variables and yi is a scalar output variable (label) of the ith example
(considering one example with the index of reference). The unlabeled example
is represented with an empty label yi = ∅. The aim of SSL consists of using ex-
amples (xi, ∅) to improve the regression model yi ← f(x) and reduce the mean
error of prediction for both labeled and unlabeled examples. Most of existent SSL
methodologies are performed in batch mode with large amount of computational
resources [2]. Moreover, these methodologies are often applied to classification
and cannot be directly applied to regression [8].

Co-training has been showing promising results, among the SSL methods [4].
This method consists of creating two or more diversified models by using dif-
ferent input variables, different regressors or the same regressors with different
parametrization. In the training stage, the regressors yield predictions that are
processed (e.g., mean of all predictions or selection of the best prediction ac-
cording to a criterion) to produce an artificial label in order to be used in the
training of models. In the prediction stage, the regressors also yield predictions
that are combined (e.g., weighted mean)to produce a final prediction.

The main propose of this paper is to apply and adapt the co-training method
to online single-target regression context. This work also prospects the exten-
sion to online multi-target regression using the (Adaptive Model Rules)AMRules
algorithm [2].

This paper is organized as follows. Section 2 presents a brief review on the
principles of SSL and methods of co-training. Section 3 describes the adaptation
of the co-training to online learning and regression. Section 4 explains in detail
the evaluation method. Finally, the results are presented and discussed in Section
5 and the main conclusions are summarised in Section 6.

2 Related work

In this section, the main principles of co-training and some existent co-training
methods are briefly reviewed. Since no online version of co-training methods were
found in the literature, the most prominent co-training batch mode methods



are presented. Despite these facts, the methods are fair starting points for the
development of online regression methods since they exhibit promising principles
and results.

Co-training basically consists of two or more models training but with differ-
ent aspects that allows to create diversity (different inputs, different regressors,
different parametrization, ...). The common trait is that a regressor algorithm is
trained with examples (previously unlabeled) artificially labeled by other com-
plementary regressors. These regressors are assumed to predict reliably which
makes the co-training confidence driven. This method relies on several assump-
tions such as consensus, complementary, sufficiency, compatibility and condi-
tional independence.

– Consensus assumption states that the error reduction of labeled examples
prediction and the increase of the unlabeled example prediction agreement
lead to more precise models [10].

– Complementarity assumption states that each input group contains in-
formation that the other groups do not contain. Hence, the use of multiple
input groups increase the amount of information to construct more accurate
models [10].

– Sufficiency assumption considers that each group of inputs is adequate to
build a model by proper training.

– Compatibility assumption implies that the output predictions from the
models are very similar with high probability for the simultaneous input
values of the respective groups.

– Conditional independence assumption allows the possibility of at least
one of the model to produce less errors and teach the other models the correct
prediction [11]. This assumption is essential for co-training, however it is very
strong. To overcome this problem, similar but less demanding assumptions
were consider. Weak dependence assumption, where some dependence
exists between inputs was proven to work [12]. Large diversity assumption
considers that independence can be achieved by using different algorithms
or the same algorithm with different parametrization [13].

The main drawbacks of co-training are related to the inaccuracy of the ar-
tificially labeled examples that convey error to the models. In addiction, the
artificially labeled examples may not carry the needed information to the re-
gressor [8]. The co-training variants may present different strategies to artifi-
cially label the unlabeled examples or may present a criterion to discard the
damaging artificially labeled examples. The prediction function generally com-
bines the predictions of the models according to a criterion to produce the final
prediction [8].

In this work the Co-training regression (COREG), Co-training by Committee
for Regression (CoBCReg) and Co-regularised least squares regression (coRLSR)
were studied. COREG uses two k-Nearest Neighbours (kNN) regressors [4]. Ini-
tially, the labeled and unlabeled examples are separated in two sets. For each
regressor, the (k-NN) is used to construct a set of labeled examples which input



vector is close to the input vector of the unlabeled example by using a distance
metric (user defined). Each regressor predicts a value to artificially label the ex-
ample and uses it to re-train the models with all labeled examples. Mean Squared
Error (MSE) variation is computed between the scenarios with and without the
artificially labeled examples. If MSE is reduced, the artificially labeled example
is joined to the labeled examples set. The process stops when none of unlabeled
examples is interchanged between labeled and unlabeled sets. The final predic-
tion is obtained by averaging the predictions of the two regressors. CoBCReg
is based on Radial Basis Functions regressors (with a Gaussian basis function
that uses the Minkowski distance) and Bagging. This algorithm implies that di-
versity must exist between the elements of the ensemble of regressors, which is
achieved by different input subsets random initialization. In this method, each
regressor selects the unlabeled examples that are more relevant for the respective
model [14]. coRLSR (Co-regularised least squares regression) formulates into a
regularised risk in Hilbert spaces minimisation problem [15]. It aims to find the
models that minimizes the error of all models and the disagreement on unlabeled
examples predictions.

3 Online Co-training regression

This section presents the proposed co-training method by showing the main
adaptations to the online and regression context. This section also presents a
small description of the underlying algorithm regressor AMRules.

The proposed co-training method, at the initialization stage, divides ran-
domly the input variables of the incoming example into two groups and produce
two example types with different input variables but with equal labels (labels
of the incoming example). In this step, weak dependence is assumed. The two
groups may overlap some inputs randomly selected by a pre-defined overlap per-
centage. Posteriorly, two AMRules complementary regressors yield predictions
for each examples. The initial models are obtained previously in a training stage
using a small dataset. Considering an incoming unlabeled example, a score is
computed in order to evaluate the benefit/confidence of the prediction to be
used in the artificial labeling for models training. The score is the relative er-
ror compared to maximum absolute value of the output found in the stream.
If the score is lower than a pre-defined threshold, the predictions are used to
train the complementary regressor. Otherwise, the artificially labeled example
is discarded. The consensus assumption is used in this step. If the example is
labeled, the mean error is computed for each regressor and the example is used
for both regressor training. Algorithm 1 explains the training procedure of the
proposed method.

For prediction, combination of the regressors are made by using weights.
These weights are inversely proportional to the error produced by labeled exam-
ples previously used in the training stage. This strategy gives more credit to the
regressor that produces less errors. Algorithm 2 explains the procedure of label
prediction.



Algorithm 1 Co-training algorithm training

1: Initialization:
2: α−Overlap percentage s− Score Threshold
3: Random input allocation and overlapping into the two groups using α
4: Input: Example (xi, yi) ∈ S
5: Output: Updated Models
6: Divide xi into x1

i and x2
i

7: ŷ1i = PredictModel1(x1
i ); ŷ2i = PredictModel2(x2

i )
8: if (yi = ∅) then
9: if (|ŷ1i − ŷ2i |/|ymax| < s) then

10: TrainModel1((x1
i , ŷ

2
i )); TrainModel2((x2

i , ŷ
1
i ));

11: else
12: ē1 = Update the mean error of Model1(ŷ1i , yi)
13: ē2 = Update the mean error of Model2(ŷ2i , yi)
14: TrainModel1((x1

i , ŷ
2
i )); TrainModel2((x2

i , ŷ
1
i ))

Algorithm 2 Co-training algorithm prediction

1: Input: Example (xi, yi) ∈ S
2: Output: Example prediction ŷi
3: Divide xi into x1

i and x2
i

4: ŷ1i = PredictModel1(x1
i ); ŷ2i = PredictModel2(x2

i )
5: w1 = ē2/(ē1 + ē2); w2 = ē1/(ē1 + ē2);
6: ŷi = w1 ∗ ŷ1i + w2 ∗ ŷ2i

The AMRules regressor was used as the underlying algorithm in the training
of the models and for output prediction of the unlabeled examples. The AM-
Rules is a multi-target algorithm (predicts several outputs) that is based on rule
learning[2]. AMRules partionates the input space and creates local models for
each partition. The local models are trained using a single layer perceptron. Its
main advantages are models simplicity, low computational cost and low error
rates [2]. This algorithm presents convenient properties such as the modularity
property that allows the construction of models for particular input variables
regions (defined by the rule). It uses anomaly and change detection to increase
resilience to data outliers and data changes on the stream. AMRules algorithm
benefits from unlabeled examples since it prunes the input partitions.

4 The evaluation method

The proposed co-training algorithm was evaluated by simulating a data stream
with artificial and real datasets. A percentage of 30 % of each dataset first
examples (30 % of the first examples of the stream) were used to create an
initial consistent model and the remaining examples were used in the testing
stage.

In the testing stage, a binary Bernoulli random process with a probability
p was applied to assign an example as labeled or unlabeled. If the example is



assigned as unlabeled, the true output value is omitted from the algorithm. The p
probabilities of being unlabeled were 50%, 80%, 90%, 95% and 99%. Considering
the algorithm parametrization, the score threshold values were 1×10−4,, 5×10−4

0.001, 0.005, 0.01, 0.05, 0.1, 0.5 and 1. The diversity of these values allow to
observe the behaviour of the algorithm in different scales. The overlap percentage
values were 0%, 10%, 30%, 50%, 70% and 90%. Prequential mode was used in
evaluation. This mode first predicts the label and then train the model for both
labeled and artificially labeled examples [16].

Five real world and four artificial datasets were used. The real world datasets
were House8L (Housing Data Set), House16L (Housing Data Set), CASP (
Physicochemical Properties of Protein Tertiary Structure Data Set), Califor-
nia, blogDataTrain and the artificial datasets were 2dplanes, fried, elevators
and ailerons. These datasets contain a single-target regression problem and are
available at UCI repository [17]. Table 1 shows the features of the real world and
artificial data sets used in the method evaluation.

Table 1. Real world datasets description

Dataset # Examples # Inputs

House8L 22784 8
House16H 22784 16
calHousing 20640 7
CASP 45730 9
blogDataTrain 52472 281
2dplanes 40768 10
fried 40768 10
ailerons 13750 41
elevators 8752 18

As performance measures, the mean relative error (MRE) and the mean per-
centage of accepted unlabeled examples (MPAUE) in the training were used.
Finally, the error reduction was measured by using the relative error (in per-
centage) between the reference scenario (no unlabeled examples used) E0 and
the case with the parametrization that lead to the lowest error Elowest (includes
the reference case E0). Equation 1 defines the Error Reduction.

Error Reduction =
|E0 − Elowest|

E0
(1)

If the reference case yields the lowest error, then the Error Reduction is zero,
which means that the algorithm is not useful for that particular scenario.

The algorithm was developed in the Massive Online Analysis (MOA) plat-
form where the AMRules was developed [18]. Its an open source platform of
Machine Learning and Data Mining algorithms applied to data streams. This
platform was implemented in JAVA programming language.



5 Results

In this section, the evaluation results are presented and discussed. Some sce-
narios examples plots of MRE and MPAUE for overlap percentage and score
threshold combination are presented. The reference curve (Ref) corresponds to
the scenario where no unlabeled example is used in the training. Since the in-
puts are selected randomly, 10 runs and respective averaging of the MRE and
MPAUE were performed in order to obtain more consistent values. This section
also presents the error reduction for each dataset and stream unlabeled examples
percentage simulation.

Figure 1 presents the plots of the MRE and MPAUE of a successful case
for 80% of unlabeled examples stream. The curves on the left reveals that there
exists some cases (combination of overlap percentage and score threshold) that
lead to beneficial use of unlabeled examples. For the case of overlap of 50%
and score threshold of 0.001, the use of 13.4% of the unlabeled examples in the
training lead to reduction of 5,3% of the MRE in average. In general, it also
observed that the overlapping decrease the MRE.
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Fig. 1. Mean relative error (a) and mean percentage of accepted unlabeled examples
(b) for a data stream with 80% of unlabeled examples. The examples are from the
House8L dataset.

Figure 2 shows a case where the algorithm does not present any combination
of overlap percentage and score thresholds that lead to model improvement. In
this case, most of unlabeled examples contributed to model damage and the
artificial labels conveyed significant errors (all curves are above the reference
curve). This fact suggests that the dataset characteristics (e.g, inputs variables
distributions) may influence the performance. The error propagation through
the model lead to worst predictions in the artificial labeling. This effect leads to
a cycle that reinforce the error on each unlabeled example processing. In fact,
the more unlabeled examples arrive the higher is the error.
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Fig. 2. Mean relative error (a) and mean percentage of accepted unlabeled examples
(b) for a data stream with 80% of unlabeled examples. The examples are from the
calHousing dataset.

Table 2 presents the error reduction of the experiments on real world datasets
for each chosen unlabeled examples probabilities. When the value is zero, it
means that there was not any combination of overlap percentage and score
threshold that improved the model and the reference scenario is the best.

Table 2. Error reduction (%) for real world datasets.

Datasets
Unlabeled examples probabilities
50% 80% 90% 95% 99%

House8L 2,33 5,31 0,26 0,00 0,00
House16H 1,01 0,01 0,01 0,90 0,00
calHousing 1,11 0,00 1,62 0,01 0,00
CASP 0,8 3,45 1,06 0,00 0,00
blogDataTrain 2,54 1,56 0,26 0,00 0,00

According to Table 2, the algorithm seems to benefit most part of the sce-
narios. However, the benefits are in general relatively small. As expected, the
more elevated the probability of unlabeled example is, the less is the relative
error reduction.

Table 3 presents the error reduction for real artificial datasets in a similar
way as the real world datasets presented in Table 2. The artificial datasets also
present the same trend of error reduction when the probability of unlabeled
example incoming increases. The error reduction is also frequently small.

In essence, the MRE curves and the error reduction tables support the view
that the algorithm leads to an error reduction (despite being small) by using
labeled examples in most cases. It was observed that none of the tested scenarios



Table 3. Error reduction (%) for artificial datasets.

Datasets
Unlabeled examples probabilities
50% 80% 90% 95% 99%

2dplanes 1,48 0,00 1,70 0,02 0,00
fried 4,64 3,21 1,04 0,70 0,00
ailerons 1,83 0,08 0,00 1,25 0,00
elevators 3,21 0,60 1,48 0,93 0,00

worked for simulated streams with 99% of unlabeled examples. In fact, this
scenario is an extreme case where the model is trained essentially with artificially
labeled examples and the error propagation can easily occur.

6 Conclusion

In this paper, an online semi-supervised single-target algorithm for regression
based on co-training is addressed. This work prospects the development of multi-
target regression algorithm that performs semi-supervised learning by co-training.

In general this co-training approach reduces the prediction error with the
proper parameters calibration. The mean relative error is reduced by using a por-
tion of unlabeled examples in most of evaluation experimental scenarios. How-
ever, the error reduction is relatively small and the parametrization depends on
the dataset. It can be also conclude that, in order to obtain model improvement,
only a small amount of unlabeled examples are used in the training.

As future work, this method will be extended to multi-target regression.
The fact that very few unlabeled examples can lead to some improvement may
suggest the study of the conditions that lead to this improvement. In order to
increase the algorithm validity, the evaluation tests will be performed using a
higher number of real world datasets with a significant amount of examples.
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