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Abstract—In this paper, we propose a rhythmically informed
method for onset detection in polyphonic music. Music is highly
structured in terms of the temporal regularity underlying onset
occurrences and this rhythmic structure can be used to locate
sound events. Using a probabilistic formulation, the method inte-
grates information extracted from the audio signal and rhythmic
knowledge derived from tempo estimates in order to exploit the
temporal expectations associated with rhythm and make musically
meaningful event detections. To do so, the system explicitly models
note events in terms of the elapsed time between consecutive
events and decodes the most likely sequence of onsets that led to
the observed audio signal. In this way, the proposed method is
able to identify likely time instants for onsets and to successfully
exploit the temporal regularity of music. The goal of this work
is to define a general framework to be used in combination with
any onset detection function and tempo estimator. The method is
evaluated using a dataset of music that contains multiple instru-
ments playing at the same time, including singing and different
music genres. Results show that the use of rhythmic information
improves the commonly used adaptive thresholding onset detec-
tion method which only considers local information. It is also
shown that the proposed probabilistic framework successfully
exploits rhythmic information using different detection functions
and tempo estimation algorithms.

Index Terms—Music signal processing, onset detection, rhythm,
tempo.

I. INTRODUCTION

HE task of recovering the start times of events in an
T audio signal is known as onset detection. Onset detection
is an important task in areas such as speech processing or
audio coding. The successful extraction of onset times enables
the temporal segmentation and an adaptive time—frequency
representation of a signal at a meaningful time—scale [1].
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Music is one of the most important sources of information on
the Internet and the development of algorithms for searching,
navigating, retrieving, and organizing music has become a
major challenge. This field of research is known as Music
Information Retrieval (MIR) and it has significantly gained in
interest in recent years. In this domain, music onset detection
forms the basis of many higher level processing tasks, including
polyphonic transcription [2], beat tracking [3], and interactive
musical accompaniment [4].

A. Related Work

Automatic onset detection constitutes a difficult process due
to the complexity and diversity of music. Many approaches
exist and several reviews can be found in the literature. For
example, Bello ef al. [S] categorize detection techniques into
methods based on the use of predefined signal features and
methods based on probabilistic models. Dixon [6] examines
onset detection methods based on spectral features and Collins
[7] places emphasis on psycho-acoustically motivated onset
detection algorithms. Finally, Lacoste and Eck [8] review pre-
vious work on machine learning algorithms for onset detection.
The best performing method in the Music Information Retrieval
Evaluation eXchange (MIREX) 2010 was that presented by
Eyben et al. in [9] and followed a machine learning approach.
The algorithm is based on auditory spectral features and rel-
ative spectral differences processed by a bidirectional long
short-term memory recurrent neural network.

The standard approach for finding onset positions is a two
stage process. First, a mid-level representation, often referred
to as an onset detection function, is extracted from the audio
signal. The aim of this detection function is to exhibit peaks at
likely onset locations by measuring changes in the short term
properties of the audio signal such as energy, frequency con-
tent, or phase information. Once the onset detection function
has been generated, the temporal locations of these peaks are
recovered by picking the local maxima. Then, standard onset
detection methods apply a threshold that is used to decide if a
peak is likely to be an onset based on its height [5], [6]. Each
peak is therefore evaluated individually and the potential tem-
poral relations with other peaks are not considered.

Musical information is usually encoded into multiple re-
lationships between sound events. As a result, music signals
are highly structured in terms of temporal regularity, largely
defining the rhythmic characteristics of a musical piece [10],
[11]. The underlying periodicities can be perceived at different
time levels and the most salient of these metrical levels is the
beat, also known as foot-tapping rate or factus. In general, the
time between consecutive onsets corresponds to multiples and
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fractions of the beat period, with small deviations in timing and
tempo [3]. In the following, rhythmic structure refers to the
statistical distribution of times between onsets that largely char-
acterizes the temporal nature of a music signal. This rhythmic
structure defines a temporal context that can be used to predict
the expected location of note events from signal observations.

Recently, several researchers have introduced the use of local
periodicity information for onset detection. In [8], Lacoste et al.
introduce a supervised learning algorithm for onset detection. A
neural network is trained on a set of spectrogram features and
a tempo trace using a large dataset for training. Hazan et al.
[12] present a method that predicts onsets based on temporal
patterns learned from past events in monophonic audio signals.
Also, Grosche and Miiller [13], [14] have recently proposed a
new mid-level representation that captures the local periodicity
of an onset detection function. At each time instant, the pre-
dominant tempo and a sinusoidal kernel that best explains the
local periodic structure of the onset signal are estimated from
a tempogram. Then, these kernels are accumulated along time
resulting in a function that reveals tempo and beat information.
When applied to onset detection, this representation shows that
the number of missed detections, false negatives, is reduced at
the expense of increasing the number of false onset detections,
i.e., false positives. In previous work [15], we proposed a rhyth-
mically aware onset detection algorithm. The system uses a dy-
namic programming algorithm to favour event locations that are
rhythmically related. However, it uses an ad-hoc penalty term
that is not explicitly related to any probability distribution.

A more formal probabilistic formulation could be adopted in
order to exploit the temporal structure of music in onset de-
tection. The integration of music knowledge into probabilistic
models is an important field where many researchers are con-
tributing. For example, Klapuri et al. [16] and Peeters [17], [18]
define a probabilistic framework in the context of meter analysis
and beat tracking. Raphael [19] uses a probabilistic approach
to audio to score alignment. Also, examples of using proba-
bilistic formulations for automatic transcription can be found
in the work of Mauch et al. [20] and Ryynénen et al. [21]. How-
ever, little work has been done in the probabilistic integration
of musical knowledge for onset detection. The inverse problem
is discussed in [22], where a sequence of onsets is assigned to
a corresponding rhythm and tempo process. The statistical ap-
proaches discussed in [5] and [23] assume that the signal can
be described in terms of a probabilistic model; however, only
local information is considered and no rhythmic information is
exploited. One related work in onset detection is that of Thorn-
burg et al. [24] where a Bayesian approach for joint melody
extraction and onset detection for monophonic audio signals
is proposed. The system models note events in terms of tran-
sient and steady-state-regions, however it does not model the
temporal expectations from the rhythmic structure of the audio
signal. This is proposed as a future development in a previous
work of Thornburg [25], where a dynamic Bayesian network is
suggested for the joint estimation of tempo, onset events, and
melody.

B. Motivation

Our aim in this paper is to present a rhythmically informed ap-
proach to onset detection in polyphonic music. To incorporate
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musical knowledge into onset detection we propose a simple
probabilistic framework for the problem. The rhythmic nature
of the music signal is statistically modeled and integrated with
the information extracted from the signal using a hidden Markov
model (HMM). In this way, our proposed method is able to ex-
ploit the temporal predictions derived from the rhythmic prop-
erties of the music signal and decode a sequence of rhythmi-
cally meaningful onsets. This differs from standard thresholding
methods for onset estimation where only individual peaks are
used to find onset locations. Another innovation of the proposed
model is the use of an optimality criterion to perform onset de-
tection. Applying a maximum a posteriori measure, the algo-
rithm decodes a sequence of onset events which best explain
the extracted information given the underlying rhythmic struc-
ture of the audio signal. In addition, a method to weight the in-
fluence of the rhythmic information in the onset estimation is
also discussed.

Previous onset detection research was mainly focused on
finding new representations that detect onsets more accurately
compared to other approaches, [5], [26]-[28]. On the contrary,
the goal of this work is not to present a new type of onset detec-
tion function, but to propose a novel strategy for exploiting the
temporal structure of music. We do this by presenting a general
probabilistic framework to be used in combination with any
onset detection function and tempo estimator.

C. Proposed Model

The block diagram of the proposed method is shown in Fig. 1
where the temporal expectations from the rhythmic structure
of an input signal are modeled using a hidden Markov model
(HMM) [29]. The audio signal is frame-wise processed and an
event detection function that reflects potential onset locations is
extracted. The onset detection function is then used to track the
tempo of the audio signal and to compute the transition prob-
abilities from a rhythmic model which defines the underlying
temporal structure of the musical events. As in beat tracking,
tempo information is estimated independently of the time events
to reduce the search space [16], [18], [30]. Next, the peaks of
the onset detection signal are extracted and the state-conditional
probability distributions of the observed peak values are esti-
mated. Finally, the Viterbi algorithm [31] is used to decode the
most likely sequence of events by looking through all possible
paths. In summary, the system integrates rhythmic information
and features extracted from the signal by modeling the obser-
vations and transitions using a probabilistic framework which
gives the optimal sequence of events for the onset detection
function. We refer to this process as onset rhythmic decoding
in order to make clear the difference with the traditional onset
detection approach.

The remainder of this paper is structured as follows. In
Section II, we describe the different elements of the onset
rhythmic decoding system shown in Fig. 1. Then, Section III
presents the dataset and the measures used to evaluate the
performance of the proposed system. Section IV discusses the
experimental results. Finally, the conclusions and future work
are presented in Section V.
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Fig. 1. Block diagram of the proposed probabilistic model for onset detection.

II. ONSET RHYTHMIC DECODING SYSTEM

This section describes the different parts of the onset rhythmic
decoding system illustrated in Fig. 1. Section II-A presents the
feature extraction process and the different elements of the prob-
abilistic model are described in Section II-B.

A. Feature Extraction

The front-end to our proposed method shown in Fig. 1 is an
onset detection function generated from the input audio signal
that shows peaks at likely onset locations. Within our proba-
bilistic approach we do not specify a particular onset detection
function and any such function could be used, provided it has
the appropriate temporal resolution.

As in [6], the temporal resolution of the onset detection func-
tion is 10 ms and the local mean is subtracted prior to peak-
picking to normalize the detection signal. Let f(¢) denote the
onset detection function at time frame ¢, then the normalized
detection function d(t) is calculated as

t+w
—
d(t) = f(t) — Ek=t=mw 1/ 1
(1) = (1) - =t 1)
A peak at time ¢ is selected if it is a local maximum
dit) > d(k), Vk:t—w<Ek<t+w (2)

where w = 3 is the size of the window used to calculate the
local maximum and m = 3 is a multiplier used to calculate the
mean over a larger range before the peak, which is useful to em-
phasize onsets rather than offsets. This normalization accounts
for changes in the local mean of the onset detection function so
that small peaks in the vicinity of a large peak are not selected
[6]. Note that a threshold value of O is implicitly used in the
peak-picking process defined in (2) so every peak is considered
as an onset candidate by the proposed rhythmic decoding algo-
rithm.

As an example, Fig. 2 shows the normalized complex domain
detection function, as defined in [6], of a musical excerpt. Peaks
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Fig. 2. Example of a normalized complex domain detection function [6] of an
excerpt of the rock song “Can’t Stand It” by Wilco.

are marked with circles and ground truth onsets with vertical
lines. The peaks of the detection function correspond with po-
tential locations of onset events. However, peak time instants do
not always agree with the exact location of the onset. In addition,
there are spurious peaks which do not correspond to note onsets
(false positives) and note onsets which are not represented by
any peak in the detection function or by peaks of very low am-
plitude (false negatives). As we could expect, the musical events
show a clear rhythmic structure since the ground truth onsets
marked in Fig. 2 are regularly spaced in time.

B. Probabilistic Model

Hidden Markov Models are useful for representing temporal
dependencies and integrating high level knowledge with signal
observations. The system proposed in Fig. 1 integrates contex-
tual information and audio features by defining an HMM where
a hidden state variable 7 represents the elapsed time, in temporal
frames, since the last onset event. The total number of states NV
is determined by the maximum time between consecutive events
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Fig. 3. Modeling temporal expectations for onset decoding in music signals
using a hidden Markov model.

accepted and so the possible states for 7 are {0,1,..., N —1}.
Following this notation, a state 7 = n implies that there have
been n frames since the last onset event and a state O denotes an
onset event. The state at any time frame ¢ is represented as 7, and
a particular state sequence is denoted as 7.7 = (71, T2, - .., TT).

The underlying temporal structure of the audio signal is then
encoded in the state transition probabilities, denoted as a; ; =
P(7 = jlrt—1 = 1). Fig. 3 shows the HMM model where
states are represented by nodes and transitions by links. The
state variable 7 measures the elapsed time since the last visit to
state O and therefore the only possible transitions are from one
state n to the following state n 4 1 or to the onset state event 0.
This significantly reduces the search space.

At each state, the system emits an observation, o;, which is
conditioned only on the current state and the state-conditional
observation probability is P(o¢|7¢). If we represent the set of
time instant frames where there is a local peak of the normalized
detection function d(t) as 7, the observation at this time instant

Ot is
o — d(t), ifteT
7o, otherwise.

3)

That is, the non-null observations of o; are the peaks of the onset
detection function that have been extracted from the input audio
signal. As described in [5], onset detection functions are de-
signed to show the potential location of onset events in their
peaks, and on this basis we choose these as observation for the
proposed probabilistic model. It is important to note that none
of the onset location candidates are discarded in (3). In addition,
the selection of the peaks of the detection function as observa-
tions facilitates the estimation of the observation likelihoods as
shown in Section II-B3. To make the rhythmic decoding system
more robust to spurious onset detections, we could have used the
detection function as observation of the proposed probabilistic
model, that is o, = d(t)Vt. However, informal tests show that
the global accuracy is higher when using (3).

The goal of the proposed probabilistic model is to find the
sequence of states which best explains the extracted audio signal
observations o;, given the underlying rhythmic structure of the
audio signal. The most likely sequence of states 77", that led to
the observations o1.7 is estimated as

7.0 = arg max P(my.7|o1.T). 4
T1:T
The sequence of rhythmically related onset times is obtained by
selecting the time instants that the decoded sequence of states,
T{. visited the onset state 7, = 0. The posterior probability of
a sequence of states 7y.7 can be calculated as

T
P(ri.rlo1.7) o< P(o1|m1)P(71) HP(Ot|Tt)P(Tt|Tt_1) 5)
t=2
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Fig. 4. Distribution estimate of the inter-onset time interval of an excerpt of
the rock song “Can’t Stand It” by Wilco.

where P(7q) is the initial state distribution, P(7¢|7¢_1) the tran-
sition probabilities, and P(o;|r;) the observation likelihoods.
These probabilities together with the decoding process govern
the HMM model introduced in this section and are described
next. Each of these sub-systems are shown as dashed blocks in
Fig. 1.

1) Initial Probabilities: The initial probabilities P(7; = n),
for states n = 0,..., N — 1, model the time instant when the
first onset is expected to happen. This is shown in the initial
probabilities block in Fig. 1 and feeds into the rhythmic de-
coding process. While we expect there to be rhythmic dependen-
cies between onset times, we should not place any assumptions
over the location of the first event (e.g., we cannot guarantee
the first onset will coincide with the start of the excerpt); there-
fore, we adopt a uniform distribution for the initial probabilities
P(T 1 = n)

2) Transition Distribution: The rhythmic structure of a music
signal defines the approximate regularity of the position of the
note events in most contexts. This regularity can be used to de-
fine temporal expectations about the position of sound events
as used in beat tracking systems [16] and [17]. To illustrate the
regularity of musical onset events, Fig. 4 shows the distribu-
tion of the time difference between consecutive hand-labeled
onsets, the inter-onset interval (IOI), of an excerpt of the rock
song “Can’t Stand It” by Wilco, which is part of the dataset de-
scribed in Section III-A. The probability density function is esti-
mated using a kernel density method with a normal kernel [32].
The figure reveals the predominant periodicities, in this case the
beat period, 0.3 s, and half the beat period, 0.15 s. The lowest
mode centered around 0.04 s is related to the inaccuracy asso-
ciated with the hand labeling process of the annotations [5].

In general, onsets happen at multiples or fractions of the beat
period [3], [10]. In this sense, the rhythmic model block in Fig. 1
encodes this periodicity information by defining the multiples
and fractions of the beat period that are considered as likely lo-
cations of events. In order to account for these temporal expec-
tations, a tempo tracking system that informs the onset detection
task of the beat period is used. We do not specify any particular
tempo estimation method since our probabilistic model defines
a general framework to be used in combination with any tempo
induction algorithm, provided it obtains an appropriate estima-
tion of the beat period. Section III-B details the tempo induction
methods used to analyze the performance of the proposed onset
decoding algorithm.
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As shown in the transitions model of Fig. 1, the transition
probabilities P(7¢|m—1) are estimated using this tempo and
rhythmic model information. Let T} be the estimated beat pe-
riod and {my} with k = 1,..., K; the set of beat period ratios
that define a rhythmic template M; = {my}, where ¢ denotes
a specific template. The probability distribution function of the
inter-onset time, P(A;,;), for the input audio signal is estimated
as a mixture of independent and equally likely Gaussians

K
1« 1 < (Aioi_ﬂk>2>
= e () )
KL‘ =1 /27(0']% 20'%

where 115, and o, are the mean and the standard deviation of each
component k. The Gaussians are centered at a value related to
the beat period as

P(Aioi) =

pre = myTy (N

and the value of o, decreases proportionally to /i
_ M

=5

The parameter my, is a positive rational number to allow Gaus-
sians to be centered at, for example, 1/2 or 2/3 the beat period 7.
To avoid overlap between Gaussians the parameter 8 > 1 de-
fines the rate of change in the value of 0. The lower the mean
value pup, the smaller the standard deviation 0. Through in-
formal testing a value of 5 = 18 was found to be appropriate.
The width of the Gaussians, set by oy, allows for departures
from strict metrical timing that occur in musical performances
[11] and for timing deviations from the exact location of onsets
caused by the detection function [33].

Once the distribution of the inter-onset time has been esti-
mated, the temporal structure derived from the detection func-
tion is encoded in the state transition probabilities. As shown
in Fig. 5, if there are n frames between two consecutive onset
events, the a; ;’s and the distribution of A;,;, in frames, can be
related as

®)

Ok

n—2

P(Aipi =n) = an_1,0 H Ak k1 &)
k=0

where a; ; denotes the state transition probabilities P =

jli—1 = ). The state transition probabilities, for n =
1,..., N, can be iteratively calculated as follows:
P(Aisi = n
an-1,0 = % (10)
k=0 @k,k+1
p—1,n = 1- Ap—1,0- (11)

Note that (11) reflects the fact that the only possible transitions
defined in our model are the transitions from state n to the fol-
lowing state n + 1 or to the onset event 0.

The transition probability depends on the rhythmic template,
M;, assumed for the signal to be analyzed. In order to include
several musical styles such as pop, rock, techno, classic, and
jazz music, a set of multiple rhythmic templates, { M}, have
to be considered. Similar to [34], the following rhythmic tem-
plates are defined: a single template, Mingle = {1}, which as-
sumes potential locations of events at the beat period; a half tem-
plate, My.ir = {1,1/2}, which takes events at the beat period
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Fig. 5. State transition probabilities calculation.

and half the beat period; a double template, Maoubie = {1,2},
which considers potential locations of events at the beat pe-
riod and double the beat period; and, finally, an odd template,
Moaa = {1,2/3,1/3}, which assumes events at the beat period,
2/3 and 1/3 the beat period. Informal tests show that including
additional templates such as {1, 1/2, 2} does not increase the
performance of the system. With these set of templates we want
to account for odd divisions on the time between events and for
ambiguities associated to the metrical level at which the tempo
estimation occurs [35]. The most common situations are the half
and double tapping rate where the estimated tempo is half or
twice the annotated tempo. Therefore, the proposed half and
double templates are intended to deal with these ambiguities in
the beat period estimation process. Also, depending on the class
of music to be analyzed, a different set of templates could be de-
fined. In fact, if the study was restricted to pop music, a single
and a half template would probably be enough since beat struc-
tures tend to be simple in pop music.

To decode the sequence of rhythmic related onsets we must
select a rhythmic template. Using Bayes’ formula, the proba-
bility of the rhythmic model M; given the observation sequence
is

P(01T|M1)P(MZ)
P(o1.1)

This allows us to choose the template with the largest prob-

ability. Assuming that the initial probability of the rhythmic

model P(M;) is uniformly distributed, the model that best ex-
plain the observations can be chosen as

P(M;|o1.1) = (12)

M* = argmax [P(o1.7|M;)] .
{M:}

(13)

As long as the input audio is equally distributed along the set of
rhythmic templates this assumption is valid. Otherwise, a con-
textual music model would be required to characterize the model
probabilities P(M;) of the templates. This is left as a topic for
future work.

3) Observation Likelihood: Atevery time frame ¢, the system
is in a state 74 and it emits the observation o;. The observation
likelihood P(o¢|7;) represents the probability of observing oy
given that the system is in state 7.

These observation likelihoods need to be estimated for n =
0,...,N — 1 possible states. However, a very large number of
training samples would be required to estimate the parameters
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of the N probability distribution functions P(o;|7: = n). To
overcome this situation the distribution of all non-onset states
n = 1,...,N — 1 are assumed to be the same and tied to-
gether, equivalent to the data model simplification used in [19].
In other words, the output distribution is assumed to depend
only on an onset state n = 0 and a non-onset state n # 0
and therefore only two output distributions have to be estimated,
one for the onset state P(o;|7z = 0) and another one for all the
non-onset states P(o;|7: # 0). It could be argued that the dis-
tribution of the observations for states next to an onset state,
for example n = 1, would resemble the observation onset dis-
tribution, P(o;|7 = 0), instead of the non-onset distribution,
P(ot|m+ # 0), since we expect large values of the detection
function in the neighborhood of an onset. However, we know
from (3) that the observation sequence o, is made up of the local
peaks of the detection function d(t) and the observations o; in
a neighborhood of an onset are set to 0. Then this state-tying
simplification agrees with the observation vector o;.

On the one hand no-onset observations will typically be zero
and the probability will go down as the value of the observation
increases. Accordingly, an exponential distribution is chosen for
the no-onset model shown in Fig. 1, with parameter A for the
no-onset states n # 0:

P(o|m # 0) = Aexp(—Aoy). (14
On the other hand, onset observations will be generated by
different sources of events and its score will distribute around
a mean peak value. Therefore, a Gaussian distribution, corre-
sponding to the onset model in Fig. 1, with parameters p and o
is chosen for the onset state n = 0:

Ry
_exp <—%> (15)

The parameters of these models can be either fitted or trained
using actual data. In our case, the observation likelihoods are di-
rectly estimated by fitting the distributions detailed above using
the peak data observations obtained from the detection function
d(t).

4) Decoding: The estimates for the initial probabilities
P(7), the transition probabilities P(7|7;_1), and the observa-
tion likelihoods P(o4|7;) define the underlying model for the
input audio signal. Given this model and (4) and (5), we can
determine the sequence of states 7;.,- which best explains the
extracted audio signal observations o, as

P(0t|7_t = 0) = 5
™o

Tt|7't—1)

(16)
Reformulating the optimization by taking the negative loga-
rithm in (16) yields to

T

* -

71 = argmax [P(o1|m)P H (ot|m)P
T1:T

T

> In(P(odm))

T = argmin [— In (P(o1|m)P(71)) —
t=2

T1.T

T

—Zln(P(mTt_l))]. (17)

t=2
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Fig. 6. Tllustration of the probability evaluation for onset decoding.

Analogous to the weighted dynamic program proposed for
beat tracking in [36], an additional parameter « is introduced
to evaluate the influence of the rhythmic structure in the onset
decoding performance:

—aln (P(o1|m)P(m1))

T

—a Y In(P(rlm-1))

t=2

1.7 (a) = argmin
T1:T

(1-a) Zln

(18)

Ot|Tt

where o can vary between 0 and 1. This parameter balances the
importance of the rhythmic structure encoded in P(7¢|7:—1) and
the observation likelihoods P (0| 7). As «a approaches 0 the op-
timization becomes equivalent to a simple thresholding method
since the distribution of the observations is the only term to be
considered. In this case, we can expect to minimise the number
of false negative events. As « approaches 1 the optimization be-
comes similar to a beat tracker and the number of false positive
onset events is minimized. Setting o = 0.5 leads us to the opti-
mization objective defined in (17).

The Viterbi algorithm [31] is used to determine the most
likely sequence of states 7} («) that led to the observations
o1.7 given the underlying rhythmic model. This is illustrated
in Fig. 6, where the black-arrowed line shows the best target
sequence 77, («) decoded from (18). Note that the proposed
system looks through all the possible combinations of state
path sequences represented by gray-arrowed lines and therefore
every peak extracted from the detection function, which defines
the system observations o, is considered as an onset candi-
date. The model takes into account the temporal dependencies
between successive peak candidates and performs a noncausal
decoding of the onsets. The search space is larger than the
one considered in traditional thresholding, where each peak
candidate is individually considered. Also, the computational
load is larger when using rhythmic information.

Finally, the most likely set of rhythmically related onset times
T ot (@) is obtained by selecting the time instants that the de-

onset
coded sequence of states 7., () visited the onset state n = 0:

Tonser (@) = {t : 7 () = 0} (19)
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TABLE 1
DATASET OF COMPLEX MIXTURES

No. Reference File Genre Duration ~ Onsets
1 Bello et. al. [5] Jaillet 65  Pop 3s 15
2 Jaillet 70  Pop 4s 19
3 Dido Pop 12s 56
4 Fiona Pop 8s 40
5 Jaxx Techno  6s 45
6 Wilco Rock 15s 63
7 Metheny  Jazz 6s 33
8 Daudet et. al. [33] 11 Techno  6s 56
9 12 Rock 15s 59
10 13 Jazz 14s 47
11 14 Jazz 11s 53
12 15 Classic  20s 38
13 17 Pop 15s 27
Total onsets 551

III. EXPERIMENTAL SETUP

This section describes the database and the performance mea-
sures used to evaluate the proposed onset rhythmic decoding
system. In addition, we detail the detection functions and the
tempo estimation methods used to estimate the peak candidates
and the beat period of the input audio signal. The reference
system that defines the baseline performance used for compar-
ison is also described.

A. Dataset and Evaluation

To evaluate our onset detection model we use audio exam-
ples from existing databases. Since traditional onset detection
algorithms and, more recently, score-level fusion approaches
have shown good performance on single-instrument audio sig-
nals, [27] and [37], we focus on the case of complex mixtures
using the excerpts from [5] and [33]. The selected audio signals
are mixtures of multiple instruments and singing, including dif-
ferent music genres. The ground truth onsets were hand anno-
tated by musical experts. Details about the annotation process
can be found in [5] and [33]. The dataset is comprised of 13
polyphonic audio files with a total 551 annotated onsets. The
size of the dataset is comparable to the MIREX complex mix-
ture class for onset detection [38]. This dataset was also recently
evaluated in [27] and it has been shown that fusion of multiple
onset detection functions does not provide any benefit on com-
plex mixtures over traditional thresholding. Table I shows the
genre, duration and the number of onsets for each file in the
dataset.

Although the signals of the database are short, the excerpts
are long enough to be able to obtain a reliable estimate of the
beat period. Tempo estimation methods generally use an anal-
ysis window of 4 s to 8 s and, as indicated in [13] and [30], this
length is long enough to provide a robust estimate of the peri-
odicity of the detection function. The signals of the database are
between 4 s and 20 s except for the first test signal whose dura-
tion is 3 s. This is a pop excerpt with a clear rhythmic structure
where the tempo estimation algorithms included in the system
obtain a reasonable estimate of the beat period.
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For the quantitative evaluation of our onset detection system
we follow the approach from [6] using the following quantities:
precision, P, recall, R, and F-measure, F’;

Necd

P=—— (20)
Ned + Nip
R=_ ed 1)
Ned + N
2PR
= 22
P+ R 22)

where n.q is the number of correctly detected onsets, ng, is
the number of false positives (detection of an onset when no
ground truth onset exists), and ny, is the number of false nega-
tives (missed detections). A correct detection is defined as one
occurring within a + /—50 ms tolerance window of each ground
truth onset [38]. Total performance results are calculated by ac-
cumulating the number of false positives, false negatives and
correct detection across all the files of the dataset.

B. Reference Systems

The proposed method defines a general probabilistic frame-
work to be used in combination with any onset detection
function and tempo induction algorithm. This differs from
current onset detection research which focuses on the definition
of a feature that works for multiple signals of different nature.
Therefore, to analyze the performance of our rhythmic de-
coding system under different conditions, three state-of-the-art
onset detection functions will be used: the Complex Domain
detection function [5], the Spectral Flux detection function [5]
and the Resonator Time Frequency Image detection function
[26]. Also, the effect of tempo estimation in the accuracy of the
decoded onsets will be analyzed by comparing the proposed
probabilistic model when using two different tempo estimators:
a HMM version of the tempo estimation method presented in
[30] by Davies et al. and the algorithm introduced by Ellis in
[36].

To evaluate the benefit of using rhythmic information, the
performance of the proposed model is compared with the com-
monly used adaptive thresholding algorithm described in [6] and
[5]. In adaptive thresholding the detection function is first nor-
malized using its local mean as in (1), then the peaks are ex-
tracted as in (2) and finally a fixed threshold is used to decide if
a peak is an onset or not. As discussed in Section II-A, this nor-
malization process accounts for changes in the local dynamics
of the onset detection function so that small peaks in the vicinity
of a large peak are not selected as onset candidates. Also, note
that a threshold value of O is implicitly used in (2), therefore
every peak of the normalized detection function is initially con-
sidered as an onset candidate in our rhythmic decoding method.
Then, from the set of all peak candidates, our rhythmic decoding
approach uses the temporal structure of the music signal to filter
out those peak candidates that are not rhythmically related. The
adaptive thresholding approach simply applies a fixed threshold
to the set of all peak candidates.

IV. RESULTS AND DISCUSSION

In this section, the advantages of using rhythmic informa-
tion are presented in Section IV-A. Then, Sections IV-B and
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Fig. 7. Decoding results for an excerpt of Wilco’s audio file [5]. The solid line
corresponds to the normalized Complex Domain detection function, ground
truth annotations are marked with vertical lines and onset estimates of the
proposed probabilistic method are labeled with down triangles symbols. Peaks
marked with star symbols represent potential false positives when using an
adaptive thresholding algorithm.

IV-C discuss the effect of using different detection functions
and tempo estimation algorithms in the proposed probabilistic
framework. Finally, Section IV-D introduces a detailed analysis
of the results discussing possible limitations of the system.

A. Is Rhythmic Information Helpful?

To illustrate the potential advantage of using rhythmic infor-
mation over the standard adaptive thresholding approach de-
scribed in [5] and [6] we refer to Fig. 7. This figure shows
the onsets decoded using rhythmic information in an excerpt
of the rock song “Can’t Stand It” by Wilco with a rhythmic
weighting parameter o = 0.5. The solid line corresponds to the
Complex Domain detection function [6] normalized according
to the adaptive-thresholding paradigm, ground truth annotations
are marked with vertical lines and the onset event estimates of
the proposed probabilistic method are labeled with down tri-
angles symbols. The starred time instants, at 5.9 s and 6.8 s,
respectively, are examples of large peaks in the Complex Do-
main detection function which do not correspond to annotated
onsets. Comparing the height of these peaks with the detected
onset at 5.4 s we can observe an intrinsic problem with tradi-
tional thresholding methods. We cannot easily define a threshold
that will allow the low peak at 5.4 s but disregard the peaks at
5.9 s and 6.8 s. This results in the following trade off: either
we use a threshold low enough to catch the peak at 5.4 s and
incur false positives for the higher non-onset peaks, or we use
a higher threshold and incur a false negative for the 5.4 s peak.
Therefore, to accurately detect all the onsets in this example we
must use an alternative method than standard thresholding. In
this sense, the probabilistic integration of rhythmic knowledge
allows our system to exploit the temporal expectations associ-
ated with rhythmic hypothesis and make musically meaningful
event decisions.

We now compare onset detection based on adaptive thresh-
olding and the proposed decoding system by plotting the preci-
sion (P) versus recall (R) measures defined in (21) and (22).
As described in Section II-A, the local mean is subtracted prior
to the peak picking to normalize the detection function. There-
fore, to trace out the performance curve of the original detection
function using adaptive thresholding, a fixed threshold 6 that is
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varied between 0 and 1 is applied to the peak observations o
obtained from the normalized detection function. The perfor-
mance curve of the proposed method is calculated by varying
the rhythmic weighting parameter « between O and 1 and eval-
uating the precision and recall of the onset event decoding se-
quence 7% . (a) given by (19).

Fig. 8(a) presents the total performance curve for the dataset
described in Section III using the Complex Domain detection
function [6]. The tempo induction system that is used to inform
the onset detection task of the beat period estimation is Davies
et al. method [30]. Adaptive thresholding results are shown with
a dashed line and the proposed method with a solid line. Better
performance is indicated by a shift of a curve to the top-right
corner of the axes which corresponds to a 100% rate of recall and
precision. Contours of equal F' measure are plotted with dotted
lines and their corresponding values are also indicated. As the
threshold ¢ increases, the precision tends to increase and the re-
call decreases. Similarly, as the value of « is larger, the precision
increases and the recall decreases. The reason is that the only
peaks that are chosen as onset events are those that are strongly
related in time and obviously the number of onset states that
the decoded path visits is smaller. For a« = 0.5, shown with an
x-mark, both precision and recall tend to be balanced. As can be
seen, the performance curve of the rhythmic decoding approach
lies above adaptive thresholding. In fact, the maximum F' mea-
sure is 83.5% for rhythmic decoding and 76.5% for adaptive
thresholding, therefore a gain of 7.0% can be obtained by inte-
grating rhythmic information. In this case, the proposed system
successfully exploits the temporal expectations associated with
the rhythmic hypothesis. Note that this increase in performance
is obtained at the expense of a noncausal decoding and a larger
computational load. Therefore, the improvement is valid if the
application is not constrained by computational or real-time re-
strictions.

As expected, the value of the threshold parameter ¢ has a large
impact on the results. Fig. 8(d) shows the total F' measure versus
the weighting parameter « and the adaptive threshold value 6.
In adaptive thresholding, the maximum value of F' is obtained
for 6* = 0.1 and the performance decreases significantly as we
move away from this optimal threshold value 6*. Therefore, as
already discussed in [6], it seems very difficult to select an ap-
propriate value of threshold automatically since small changes
in § can have a large impact on performance. However, rhythmic
decoding is robust to the selection of the weighting parameter
a. The F' measure stays around 83.0% for values of o ranging
from 0.2 to 0.8 and within this range is always above the perfor-
mance curve of the adaptive thresholding approach.

B. Onset Detection Function Dependence Analysis

‘We turn now to evaluate the performance of our rhythmic de-
coding system using different onset detection functions to ex-
tract the peak candidates. Fig. 8(b) and (e) shows the total per-
formance results using the well-known Spectral Flux detection
function [5] and Fig. 8(c) and (f) using the Resonator Time Fre-
quency Image (RTFI) detection function [26]. These results are
consistent with those shown in Fig. 8(a) and (d). It is also inter-
esting to see that rhythmic decoding on Complex Domain and
Spectral Flux perform similarly in terms of the maximum value
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Fig. 8. Rhythmic decoding results using different onset detection functions and Davies et al. [30] tempo estimation algorithm. The influence of the rhythmic
weighting parameter o (continuous lines) and the adaptive weighting parameter & (dashed lines) is shown. Figures (a)—(c) plot precision (P) versus recall (R),
where dotted lines are a contour plot of equal F-measure values. Figures (d)—(f) plot the F-measure (F) versus o and &. The x-mark denotes condition or = 0.5.
The detection functions are: the Complex Domain [5], (a) and (d); the Spectral Flux [5], (b) and (e); and the Resonator Time Frequency Image [26], (c) and (f).

of I, 83.5% and 83.1% respectively, and their dependence on
the value of o but adaptive thresholding on Complex Domain
outperforms Spectral Flux.

As can be seen by comparing Fig. 8(a), (b), and (c), adaptive
thresholding on RTFI outperforms Complex Domain and Spec-
tral Flux detection functions. Interestingly, thythmic decoding
on RTFI also improves total performance compared to Complex
Domain and Spectral Flux. In fact, the maximum F-measure for
adaptive thresholding on RTFI is 80.9% and rhythmic decoding
on RTFI achieves a maximum F-measure of 84.8%, which is
1.3% larger than Complex Domain. It can be seen in the top-left
and bottom-right part of Fig. 8(c) that the rhythmic decoding
curve is below adaptive thresholding. Still, the F-measure on the
region where adaptive thresholding outperforms rhythmic de-
coding is below 76.0% and the performance curve of rhythmic
decoding is mostly above adaptive thresholding.

C. Tempo Estimation Dependence Analysis

The effect of tempo estimation in the accuracy of the decoded
onsets is now analyzed by comparing the proposed probabilistic
model when using Davies et al. method [30] and Ellis’s algo-
rithm [36] to estimate the tempo. Fig. 9 shows the curve of total
performance, precision versus recall, of our rhythmic decoding
system using the Complex Domain detection function to esti-
mate the peak candidates and Davies et al. method [30] and
Ellis’s algorithm [36] for tempo estimation. Results of the adap-
tive thresholding peak-picking algorithm are also included as
the baseline performance. The figure shows that rhythmic de-
coding works better than adaptive thresholding using any of the
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Fig. 9. Comparison of tempo estimation algorithms using the Complex Do-
main detection function [5]: adaptive thresholding (dashed line), rhythmic de-
coding with Davies et al. algorithm [30] (continuous line) and rhythmic de-
coding with Ellis’s algorithm [36] (gray line). The x-mark denotes condition
a = 0.5.

tempo estimation algorithms. The maximum F-measure value
is 81.4% using Ellis’s tempo estimator, 83.5% using Davies et
al. method and 76.5% for adaptive thresholding. The proposed
probabilistic framework works better with Davies et al. tempo
estimator since its curve of performance is above rhythmic de-
coding using Ellis’s approach. This is something we could ex-
pect since, as shown in [39], Davies et al. tempo estimator per-
forms statistically better than Ellis’s algorithm. These results
suggest that the proposed probabilistic framework obtains good
results provided the tempo estimator provides a fair estimate of
the beat period.
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TABLE II
MAXIMUM F-MEASURE AND SELECTED TEMPLATES
FOR EACH FILE OF THE DATASET

F-measure Template
No Adapt.  Rhythmic  Oracle  Rhythmic Oracle
1 9638 100.0 100.0 {1,172} {1,172}
2 941 87.5 87.5 {1} {1}
3 891 93.0 93.0 {1,172} {1,172}
4 853 95.4 98.5 {1,2/3,1/3} {1}
5 889 89.4 89.4 {1,2/3,1/3}  {1,2/3,1/3}
6 909 93.3 93.3 {1,172} {1,172}
7 81.0 87.5 89.2 {1,2/3,1/3} {1}
8 936 94.3 94.3 {1,2/3,1/3}  {1,2/3,1/3}
9 86.0 90.4 90.4 {1,172} {1,172}
10 632 66.7 66.7 {1,2} {1,2}
11 909 94.9 94.9 {1,172} {1,172}
12 60.0 64.4 79.0 {1,2/3,1/3} {12}
13 80.7 82.8 82.8 {1,172} {1,172}

D. Detailed Analysis

For a more detailed analysis, results of the individual test sig-
nals are presented in Table II. This table shows the maximum
F-measure value obtained using the best overall § and « param-
eters for adaptive thresholding (Adapt.) and rhythmic decoding
(Rhythmic). To explore the limitations of the proposed prob-
abilistic framework in more detail, an oracle approach is also
introduced. The oracle makes a rhythmic decoding of the on-
sets as described in Section II-B4 but, instead of selecting the
rhythmic template according to the criterion proposed in (13),
it selects the template that achieves the maximum F-measure.
Obviously, we cannot use the actual performance to automati-
cally select templates in practice, but this gives us insight on the
accuracy of the selection of templates. To this end, Table II also
shows the maximum F' value achieved by the oracle approach
(Oracle) and the rhythmic templates selected by the proposed
rhythmic decoding system and the oracle approach.

It is interesting to verify that thythmic decoding performs
consistently better than adaptive thresholding. This agrees with
the total performance results shown in Fig. 8 and suggests that
rhythmic information is correctly exploited. The maximum
F' value obtained by rhythmic decoding is larger than the
one achieved by adaptive thresholding for all the files of the
dataset except for the second excerpt. In this excerpt, four of
the annotated onsets are less than 50 ms away from each other.
This inter-onset-time difference is of the order of the estimated
inaccuracy of the hand labeling process [5]. In this case, the
annotated times are expected to be very noisy ground-truth
estimates. This is confirmed by the adaptive thresholding
algorithm which achieves its maximum F-measure for a very
small value of 6 = 0.01. This value of 6 is far from the optimal
threshold value 6* = 0.1 shown in Fig. 8(a) and it will not
help to improve the total performance of adaptive thresholding
on the whole dataset. As we could expect, these onsets are not
rhythmically related and the rhythmic decoding algorithm is
not able to correctly detect them.
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Fig. 10. Probability distribution of the inter-onset time interval of the jazz song
“Unquity Road” by Pat Metheny.

As can be also seen in Table II, the rhythmic template selected
according to the likelihood of the model defined in (13) gener-
ally agrees with the oracle selection. This suggests an appro-
priate behavior of the selection criterion. However, we find dif-
ferences on the selection of the templates for excerpts 4, 7, and
12. Test signal number 4 is a pop excerpt where the oracle ap-
proach selects the single template Mjipgle = {1} and achieves
a 3% more of F' value than the proposed rhythmic decoding
system which chooses an odd template Moqq = {1,2/3,1/3}.
In any case, the periodicity defined by the single template, {1},
is included in the odd template, {1,2/3,1/3}, and the perfor-
mance achieved by rhythmic decoding is still relevant, 10.0%
higher than the reference system defined by the adaptive thresh-
olding approach.

On the contrary, rhythmic decoding does not obtain a large in-
crease in performance on excerpts 7 and 12 when compared to
adaptive thresholding. Test signal number 7 is an excerpt of the
jazz tune “Unquity Road” by Pat Metheny and Fig. 10 shows
an estimation of the probability distribution of the inter-onset
time interval of this excerpt. As can be seen, this musical ex-
cerpt has a complex rhythmic structure and the potential in-
crease given by the oracle approach with respect to the refer-
ence adaptive thresholding is not very large. In this case, the
assumption of a constant rhythm structure and the simplicity of
the rhythmic information integrated in the probabilistic model
makes the system unable to deal with very complex temporal
relationships. For this reason, the maximum performance of
the rhythmic decoding system does not significantly improve
the performance of the traditional thresholding approach. Test
signal 12 is a classical excerpt where both adaptive thresholding
and rhythmic decoding do a poor job detecting onset. The max-
imum performance obtained by rhythmic decoding is 4% larger
than adaptive thresholding but the oracle approach achieves a
maximum F' value of 79.0%. Although the potential increase in
performance that we can obtain by using rhythmic information
is large, the criterion defined in (13) is not able to correctly select
the most appropriate rthythmic template in terms of maximum
F-measure. A HMM is a generative model and the criterion de-
fined in (13) selects the model that best fits to the observations.
Thus, this template selection approach does not imply the max-
imization of a performance measure such as the F-measure.
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Fig. 11. Results for the Complex Domain detection function [5] showing pre-
cision (P) versus recall (R) for adaptive thresholding 6 (dashed line), rhythmic
decoding (continuous line), and the oracle approach (gray line). The x-mark de-
notes condition a = 0.5.

In summary, the proposed approach is limited by the
simplicity of the rhythmic information integrated in the proba-
bilistic model and the accuracy of the selection of the rhythmic
templates. As expected, results suggest that the proposed
system seems to work best for music with simple and regular
onset patterns.

In this section, we have studied the performance on each of
the files that comprises the dataset, but it is also interesting to
compare the curve of total performance of the proposed system
with the oracle approach. Fig. 11 presents a comparison of the
total performance in terms of precision (P) and recall (R) of both
approaches. The oracle curve represents the performance that
could be obtained if we knew the annotations and selected the
rhythmic template according to the maximum F-measure. As
can be seen, the performance of the rhythmic decoding approach
is very close to that of the oracle approach. In fact, the max-
imum F' value achieved by the oracle is 85.4% versus 83.5%
of the proposed rhythmic decoding system. This suggests that,
in general, the likelihood-based selection criterion presented in
(13) does a reasonable work selecting the rhythmic template.

V. CONCLUSION AND FUTURE WORK

We have proposed a method for onset event decoding in com-
plex mixtures. The method explicitly integrates rhythmic con-
textual knowledge and information extracted from the signal
using a probabilistic formulation. The proposed algorithm ex-
ploits the temporal expectations associated with a rhythmic hy-
pothesis and makes musically meaningful event decisions. A
further benefit of this probabilistic approach is that the method
defines a specific optimality criterion and estimates the onsets
events that best explain the extracted information from the audio
signal.

The detection accuracy has been evaluated using a hand-la-
beled dataset of real music signals and a comparison with
the commonly used adaptive thresholding algorithm has been
provided. Results showed that rhythmic information can be suc-
cessfully exploited for onset detection. It has been also shown
that, in terms of total performance, the optimality criterion
proposed for onset decoding is robust to the selection of the
parameter introduced to weight the influence of the rhythmic
information.
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In addition, the system defines a general framework to be used
in combination with any onset detection function and rhythmic
structure estimator. This differs from standard onset detection
research which focuses on the definition of a feature that works
for multiple signals of different nature. It has been shown that
rhythmic information can be successfully exploited over arange
of onset detection functions and tempo estimation algorithms.
Finally, a detailed analysis of the results showed that the method
works best for music with simple and regular onset patterns.

As part of our future work we plan to adapt the system for
beat tracking by defining an appropriate transition distribution.
We will also explore the effect of variable tempo in our model
and the possibility of inferring the rhythmic template along the
duration of the input signal. The effects of a causal decoding of
the onsets will be also studied. We are also interested in studying
the dependence on the rhythmic information weighting param-
eter and how accurate the tempo estimation is. The definition of
a specific set of rhythmic templates according to the genre of the
music could be also explored. Another interesting extension in-
cludes the integration of multiple features as inputs. In this case,
a large dataset for training will be required in order to learn the
dependencies between the different features.
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