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Today, it is projected that data storage and management is becoming one of the
key challenges in order to achieve Ultrascale computing for several reasons. First,
data is expected to grow exponentially in the coming years and this progression
will imply that disruptive technologies will be needed to store large amounts of data
and more importantly to access it in a timely manner. Second, the improvement of
computing elements and their scalability are shifting application execution from CPU
bound to I/O bound. This creates additional challenges for significantly improving
the access to data to keep with computation time, and thus avoid HPC from being
underutilized due to large periods of I/O activity. Third, the two initially separate
worlds of HPC that mainly consisted on one hand of simulations that are CPU bound
and on the other hand of analytics that mainly perform huge data scans to discover

1Institute of Computer Science, FORTH (ICS), Heraklion, Greece
2ARCOS, University Carlos III, Madrid, Spain
3BSC and Universitat Politécnica de Catalunya, Spain
4ARCOS, University Carlos III, Madrid, Spain
5Department of Computer Engineering, University of Murcia, Spain
6Institute of Computer Science, FORTH (ICS), Heraklion, Greece
7Barcelona Supercomputing Center (BSC), Spain
8DIMES, University of Calabria, Rende, Italy
9Institute of Computer Science, FORTH (ICS), Heraklion, Greece
10HASLab, INESC TEC & University of Minho, Portugal
11DIMES, University of Calabria, Rende, Italy
12DIMES, University of Calabria, Rende, Italy



“nesus-book”
2018/7/13
page 100

100 Ultrascale Computing Systems

information and are I/O bound, is blurring. Now, simulations and analytics need to
work cooperatively and share the same I/O infrastructure.

This challenge of data management is currently being addressed from many
different angles by a large international community, but there are three main concepts
in which there is a wide agreement:

• First, data abstractions need to change given that traditional parallel file systems
are failing on adapting to the new needs of applications and especially to their
scalability characteristics. For this reason, abstractions such as object stores or
key-values are positioning themselves in the lead to become the new storage
containers. Examples such as Dynamo, BigTable or Cassandra, among others,
are being used by companies like Facebook or Twitter that need to manage and
process incredibly huge amounts of data.

• Second, data needs to be replicated in order to both become resilient to errors in
the vast amount of hardware needed to store it and to offer fast enough access to
it. Unfortunately, this replication implies significant overheads in both the space
needed and the access/modification time of the data, which were the original
challenges.

• Third, the use of HPC is becoming more necessary than ever in order to be able
to analyze the huge amount of data that is generated everywhere (i.e. smart cities,
cars, open data, etc.), thus traditional HPC systems cannot be the only ones used
to analyze this data because they are scarce and very expensive to use. For this
reason, cloud environments are becoming closer to HPC in performance and
cheaper to use taking an active role in solving HPC problems of standard users.

In this chapter we will present three techniques that address the aforementioned
challenges. First, we will present Tucana, a novel key-value store designed to work
with fast storage devices such as SSDs. In addition to presenting its rich-features
including arbitrary dataset sizes, variable key and value sizes, concurrency, multi-
threading, and versioning, we will evaluate its performance compared with similar
key-value components with respect to throughput, CPU usage, and IO. This novel
key-value system advances in the idea that new abstractions to store data are needed
in Ultra Scale computing.

Second, we present Hercules and the benefits of integrating it and a Data Mining
Cloud Framework as an alternative to classical parallel file system enabling the
execution of data intensive application on cloud environments. Furthermore, we
detail a data-aware scheduling technique that can reduce the execution time of data
intensive workflows significantly. This platform combination, in addition to the new
data scheduler, puts a step forward in the use of cloud infrastructures for Ultra scale
computing by a larger community whose needs are growing.

Finally, this chapter discuss the idea of Conflict-free Replicated Data Types
(CRDT), a methodology that helps implementing basic types that can be replicated
without the overhead of synchronization on the critical path of data update, but with
the guarantee that, at some point in time, all replicas will see unequivocally all updated
done in the other replicas. Furthermore, basic CRDT can be combined to construct
larger datatypes with the same properties. This methodology enables the proliferation
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of replicas without the overhead of accessing/modifying them which will be key in
Ultra Scale computing.

4.1 Intra-node Scaling of an Efficient Key-value Store on
Modern Multicore Servers

Tucana is a key-value store designed for fast storage devices, such as SSDs, that re-
duces the gap between sequential and random I/O performance, especially under high
degree of concurrency and relatively large I/Os (a few tens of KB). It supports variable
size keys and values, versions, arbitrary data set sizes, concurrency, multithreading,
and persistence. Tucana uses a Be –tree approach that only performs buffering and
batching at the lowest part of the tree, since it is assumed that the largest part of the
tree (but not the data items) fits in memory. Comparing to RosckDB, Tucana is up to
9.2⇥ more efficient in terms of CPU cycles/op for in-memory workloads and up to
7⇥ for workloads that do not fit in memory.

This section analyzes in detail host CPU overhead, network and I/O traffic of
H-Tucana, a modification of HBase that replaces the LSM-based store engine of
HBase with Tucana. Several limitations to achieve higher performance are identified.
First, network path, inherited from HBase, becomes a bottleneck and does not allow
Tucana to saturate server cores. Second, lookups for traversing the tree represent up
to 78% of the time used by Tucana, mainly due to key comparisons. Finally, when
mmap, used by Tucana for allocating memory and device space, runs out of memory,
Tucana exhibits periods of inactivity and stops serving requests, until the system
replenishes available buffers for mmap.

4.1.1 Introduction
Currently, key-value (KV) stores have became an important building block in data
analytics stacks and data access in general. Today’s large-scale, high-performance
data-intensive applications usually use KV stores for data management, since they
offer higher efficiency, scalability, and availability than relational database systems.
KV stores are widely used to support Internet services, for instance, Amazon uses
Dynamo, Google uses BigTable, Facebook and Twitter use Cassandra and HBase.

The core of a NoSQL store is a key-value store that performs (key,value) pair
lookups. Traditionally key-value stores have been designed for optimizing accesses
to hard disk drives (HDDs) and with the assumption that the CPU is the fastest
component of the system (compared to storage and network devices). Indeed, key-
value stores tend to exhibit high CPU overheads [166].

Tucana [166] is a key-value store designed for fast storage devices, such as SSDs,
that reduces the gap between sequential and random I/O performance, especially
under high degree of concurrency and relatively large I/Os (a few tens of KB). Tucana
is a full-feature key-value store that achieves lower host CPU overhead per operation
than other state-of-the-art systems. It supports variable size keys and values, versions,
arbitrary data set sizes, concurrency, multithreading, and persistence. The design of
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Tucana centers around three techniques to reduce overheads: copy-on-write, private
subsection allocation, and direct device management.

Tucana is up to 9.2⇥ more efficient in terms of CPU cycles/op for in-memory
workloads and up to 7⇥ for workloads that do not fit in memory [166]. Tucana
outperforms RocksDB for in memory workloads up to 7⇥, whereas for workloads
that do not fit in memory both systems are limited by device I/O throughput.

Tucana is used to improve the throughput and efficiency of HBase [167], a popu-
lar scale-out NoSQL store. The LSM-based storage engine of HBase is replaced with
Tucana. Data lookup, insert, delete, scan, and key-range split and merge operations
are served from Tucana, while maintaining the HBase mapping of tables to key-value
pairs, client API, client-server protocol, and management operations (failure handling
and load balancing). The resulting system, called H-Tucana, remains compatible with
other components of the Hadoop ecosystem. H-Tucana is compared to HBase using
YCSB and results show that, compared to HBase, H-Tucana achieves between 2�8⇥
better CPU cycles/op and 2�10⇥ higher operation rates across all workloads.

This section uses Tucana to study the behavior of H-Tucana by using two datasets,
one that fits in memory and one that does not. In addition, H-Tucana’s behavior is
compared with HBase and with two ideal versions of H-Tucana that do not perform
I/O. The aim is to understand the overheads associated with efficient key value stores
for fast storage devices.

The aspect examined are: host CPU overhead, network and I/O traffic, the use of
RAM, and write amplification problem, i.e., whether the same data is written multiple
times. Results show that there are several important limitations to achieve higher
performance. Although the average CPU utilization is low, a few (one or two) cores,
that execute tasks of the network path, become bottleneck. The analysis for network
traffic shows that network devices are far from achieving their maximum throughput.
Therefore, the network path, inherited from HBase, does not allow Tucana to achieve
better performance. Regarding index metadata, traversing the Tucana tree represents
up to 78% of the time used by Tucana mainly due to the key comparisons. In addition,
when mmap runs out of memory, the key-value store exhibits periods of inactivity
and stops serving requests, until the system replenishes available buffers for mmap.
Next, these issues are analyzed and evaluated in more detail.

4.1.2 Background
KV stores have been traditionally designed for HDDs and use LSM-tree structure at
their core. LSM-trees [168] are a write-optimized structure that is a good fit for HDDs
where there is a large difference in performance between random and sequential
accesses. LSM-trees organize data in multiple levels of large, sorted containers,
where each level increases the size of the container.

Their advantages are: (1) they require a small amount of metadata, since data
containers are sorted; (2) I/Os can be large, resulting in optimal HDD performance.
The drawback is that for keeping large sorted containers they perform compactions
which incurs high CPU overhead and results in I/O amplification for reads and writes.

Going forward device performance and CPU-power trends dictate different
designs. Tucana uses as a basis a variant of B-trees, broadly called Be –trees [169].
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Be –trees are B-trees with an additional per-node buffer. These buffers allow to
batch insert operations to amortize their cost. In Be –trees the total size of each node
is B and e is a design-time constant between [0,1]. e is the ratio of B that is used for
buffering, whereas the rest of the space in each node (1-e) is used for storing pivots.

Buffers contain messages that describe operations that modify the index (insert,
update, delete). These operations are initially added to the tree’s root node buffer.
When the root node buffer becomes full, a subset of the buffered operations are
propagated to the buffers of the appropriate nodes at the next level. This procedure is
repeated until operations reach a leaf node, where the key-value pair is simply added
to the leaf. Leaf nodes are similar to B-Trees and they do not contain an additional
buffer, beyond the space required to store the key-value pairs.

A get operation traverses the path from the root to the corresponding leaf by
searching at the buffers of the internal nodes along the path. A range scan is similar to
a get, except that messages for the entire range of keys must be checked and applied
as the appropriate subtree is traversed. Therefore, buffers are frequently modified and
searched. For this reason, they are typically implemented with tree indexes rather
than sorted containers.

Compared to LSM-trees, Be –trees incur less I/O amplification. Be –trees use
an index to remove the need for sorted containers. This results in smaller and more
random I/Os. As device technology reduces the I/O size required to achieve high
throughput, using a Be –tree instead of an LSM-tree is a reasonable decision.

4.1.3 Tucana Design
Tucana [166] is a feature-rich key-value store that provides persistence, arbitrary
dataset sizes, variable key and value sizes, concurrency, multithreading, and version-
ing.

Tucana uses a Be –tree approach to maintain the desired asymptotic properties
for inserts, which is important for write-intensive workloads. Be –trees achieve this
amortization by buffering writes at each level of the tree. Tucana’s design assumes
that the largest part of the tree (but not the data items) fits in memory and Tucana
only performs buffering and batching at the lowest part of the tree.

Figure 4.1 shows an overview of the tree index organization of Tucana. The index
consists of internal nodes with pointers to next level nodes and pointers to variable
size keys. A separate buffer per internal node stores the variable size keys. Pointers
to keys are sorted based on the key, whereas keys are appended to a buffer. The leaf
nodes contain sorted pointers to the key-value pairs. A single append-only log is used
to store both the key and values. The design of the log is similar to the internal buffers
of Be –trees. However, note that Tucana avoids buffering at intermediate nodes. For
each key, leaves store as metadata a fixed-size prefix of the key and a hash value of
the key, whereas the key itself is stored in the key-value log. These prefix and hash
values of the keys will help while traversing the tree.

Insert operations traverse the index in a top down fashion. At each index node, a
binary search is performed over the pivots to find the next level node to visit. When
the leaf is reached, the key-value pair is appended to the log and the pointer is inserted
in the leaf, keeping pointers sorted by the corresponding key. If a leaf is full, a
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Figure 4.1: Design of the tree index of Tucana.

split operation is triggered prior to insert. Split operations, in index or leaf nodes,
produce two new nodes each containing half of the keys and they update the index
in a bottom-up fashion. Delete operations place a tombstone for the respective keys,
which are removed later. Deletes will eventually cause rebalancing and merging.

Point queries locate the appropriate leaf traversing the index similar to inserts.
At the leaf, a binary search is performed to locate the pointer to the key-value pair.
Finally, range queries locate the starting key similar to point queries and subsequently
use the index to iterate over the key range.

Tucana manages the data layout as a set of contiguous segments of space to
store data. Each segment is composed of a metadata portion and a data portion. The
metadata portion contains the superblock, free log, and segment allocator metadata
(bitmap). The superblock contains a reference to a descriptor of the latest persistent
and consistent state for a segment. Each segment has a single allocator common for
all databases (key ranges) in a segment. The data portion contains multiple databases.
Each database is contained within a single segment and uses its own separate indexing
structure. Tucana keeps persistent state about allocated blocks by using bitmaps.

Tucana directly maps the storage device to memory to reduce space (memory
and device) allocation overhead. Tucana leverages mmap to use a single allocator for
memory and device space. mmap uses a single address space for both memory and
storage and virtual memory protection to determine the location (memory or storage)
of an item. This eliminates the need for pointer translation at the expense of page
faults. Additionally, mmap eliminates data copies between kernel and user space.

Tucana uses copy-on-write (CoW) to achieve recovery without the use of a log.
CoW maintains the consistency of both allocator bitmap and tree metadata. The
bitmap in each segment consists of buddy pairs with information about allocated
space. Only one buddy of the pair is active for write operations, whereas the other
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buddy is immutable for recovery. A global per segment increasing counter, named
epoch, marks each buddy. A successful commit operation increments the epoch
denoting the latest instant in which the buddy was modified.

For the tree structure, each internal index and leaf node has epochs to distinguish
its latest persistent state. During an update, whether the node’s epoch indicates that it
is immutable, a CoW operation will take place. After a CoW operation for inserting
a key, the parent of the node is updated with the new node location in a bottom-up
fashion. The resulting node belongs to epoch+1 and will be persisted during the next
commit. Subsequent updates to the same node before the next commit are batched by
applying them in place. Since keys and values are stored in buffers in an append-only
fashion, CoW is only performed on the header of each internal node.

Tucana’s persistence relies on the atomic transition between consistent states
for each segment. Metadata and data in Tucana are written asynchronously to the
devices. However, transitions from state to state occur atomically via synchronous
updates to the segment’s superblock with msync (commits). Each commit creates a
new persistent state for the segment, identified by a unique epoch id. The epoch of the
latest persistent state of a segment is stored in a descriptor to which the superblock
keeps a reference.

HBase [167] is a scale-out columnar store that supports a small and volatile
schema. HBase offers a table abstraction over the data, where each table keeps a set
of key-value pairs. Each table is further decomposed into regions, where each region
stores a contiguous segment of the key space. Each region is physically organized
as a set of files per column. At its core HBase uses an LSM-tree to store data [168].
Tucana is used to replace this storage engine, while maintaining the HBase metadata
architecture, node fault tolerance, data distribution and load balancing mechanisms.
The resulting system, H-Tucana, maps HBase regions to segments, and each column
to a separate tree in the segment. To eliminate the need for using HDFS under HBase,
HBase is modified so that a new node handles a segment after a failure. It is assumed
that segments are allocated over a reliable shared block device, such as a storage area
network (SAN) or virtual SAN and are visible to all nodes in the system. In this
model, the only function that HDFS offers is space allocation. Tucana is designed
to manage space directly on top of raw devices, and it does not require a file system.
H-Tucana assumes the responsibility of elastic data indexing, while the shared storage
system provides a reliable (replicated) block-based storage pool.

4.1.4 Experimental Evaluation
The experimental platform consists of two machines each equipped with a 16 core
Intel(R) Xeon(R) E5-2630 CPU running at 2.4 GHz and 64 GB DDR4 DRAM. Both
nodes are connected with a 40 Gbits/s network link. As storage device, the server
uses a Samsung SSD PRO 950 NVMe of 256 GB.

The open-source Yahoo Cloud Serving Benchmark (YCSB) [170] is. used to
generate synthetic workloads. The default YCSB implementation executes gets as
range queries and therefore, exercises only scan operations. For this reason, YCSB is
modified to use point queries for get operations. Two standard workloads proposed
by YCSB with the default values are run. Table 4.1 summarizes these workloads.
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Workload
A 50% reads, 50% updates
C 100% reads

Table 4.1 Workloads evaluated with YCSB. All workloads use a query popularity
that follows a Zipf distribution.

The following sequence is run: Load the database using workload A’s configuration
file, and then run workload C. In this way, the experiment has two phases an initial
one with only puts operations (write requests), and a second phase with only gets
operations (read requests). However, due to the commits at the beginning of the run
phase The run uses 32 YCSB threads and eight regions. Two datasets are used, a
small one that fits in memory and a large one that does not. The small dataset is
composed of 100M records, and the large dataset has 500M records. The load phase
creates the whole dataset and the run phase issues 10 million operations.

The analysis uses four engines: HBase, H-Tucana, NW-H-Tucana, and Ideal-H-
Tucana. H-Tucana is cross-linked between the Java code of HBase and the C code of
Tucana. NW-H-Tucana is a modification that does not perform any I/O by completing
all the I/O requests without issuing them to the storage device. The Tucana tree is
used, and the get and put operations are performed, but all the data remains in memory.
Ideal-H-Tucana is a modification in which Tucana completes put requests without
doing the insert operation and get requests return a dummy value. The Tucana tree is
not used and no I/O is performed either. For NW-H-Tucana and Ideal-H-Tucana only
the small dataset is used.

Graphs for CPU utilization depict values given by mpstat, and include: (i) User
that corresponds to %usr + %nice; (ii) Sys that corresponds to %sys + %irq + %soft,
where %irq and %soft correspond to the percentage of time spent by the CPUs to
service hardware interrupts and software interrupts, respectively; and (iii) IOW that
corresponds to %iowait the percentage of time that the CPUs were idle during which
the system had an outstanding disk I/O request.

4.1.4.1 Throughput analysis
Figure 4.2 depicts the throughput, in Kops/s, achieved by HBase and H-Tucana with
both datasets, and by NW-H-Tucana and Ideal-H-Tucana with the dataset that fits in
memory. Regarding H-Tucana and comparing both operations, the run phase (get
operations) outperforms the load phase (put operations) by 33.7% and 3.4⇥ with the
small and large datasets, respectively. There are several reasons for this difference
in performance. First, Tucana uses a lock for inserting new KV pairs, therefore put
operations require a lock to ensure exclusive access when modifying the tree. On the
contrary, Tucana provides lock-less gets. Second, the amount of I/O traffic during the
load phase is significantly larger than during the run phase. During the load phase, I/O
write operations are issued to ensure that the dataset is stored on the device, whereas
during the run phase there are almost not writes with the exception of a snapshot at the
beginning of the phase. In addition, for the small dataset, during the run phase there
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(a) 100M records (b) 500M records
Figure 4.2: Throughput (kops/s) achieved by HBase, H-Tucana, and the NW and
Ideal versions of H-Tucana with the 100M dataset, and by HBase and H-Tucana with
500M records.

are no reads since the dataset fits in memory, and for the large dataset, the amount
of data read is smaller than during the load phase. Finally, for the large dataset, the
memory pressure has a huge impact during the load phase, since index and leaf nodes
are evicted from memory and they have to be re-read several times, and they are
written multiple times.

Comparing performance to HBase, with the small dataset, H-Tucana significantly
outperforms HBase by up to 3.4⇥ and 4.8⇥ during the load and run phases, respec-
tively. Thanks to its Be –tree approach, when dataset fits in memory H-Tucana is
able to significantly improve HBase performance. However, with the large dataset,
H-Tucana exhibits up to 5.7% worst performance than HBase during the load phase,
whereas H-Tucana outperforms HBase by up to 9.9⇥ during the run phase.

HBase stores data on the device as HFiles, and the dataset is only sorted per
HFile. New insert operations do not need to read previous values. HBase usually
issues large write operations achieving good I/O performance. The size of the dataset
does not significantly impact on its write performance. However, for get operations,
this organization exhibits poor read performance when the dataset does not fit in
memory, since all HFiles have to be checked for each get. HBase (and LSM trees in
general) mitigate these overheads with the use of compactions and bloom filters.

With the large dataset and during the load phase, the problem of H-Tucana, as
subsection 4.1.4.3 shows, is the significant amount of data written, and the bad I/O
pattern produced. This problem is not inherent to the design of Tucana tree, but rather
due to mmap. subsection 4.1.4.3 shows that H-Tucana writes less amount of data than
HBase, but it issues smaller requests that ends in worst I/O performance.

During the load phase, NW-H-Tucana provides quite similar performance than
H-Tucana, the reason is that for small datasets and fast devices, the role of the
device is reduced and the differences between NW-H-Tucana and H-Tucana are small.
However, during the run phase, NW-H-Tucana improves H-Tucana performance
by up to 32%. This difference in performance is due to the snapshot performed by
H-Tucana at the beginning of the tests that issues I/O traffic and reduces H-Tucana
performance. When comparing both phases, get operations outperform by up to 84%
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(a) HBase (b) H-Tucana

(c) NW-H-Tucana (d) Ideal-H-Tucana
Figure 4.3: CPU utilization per core at the server side during the execution of the load
phase with 100M records.

(a) HBase (b) H-Tucana

(c) NW-H-Tucana (d) Ideal-H-Tucana
Figure 4.4: CPU utilization per core at the server side during the execution of the run
phase with 100M records.

put operations. Since NW-H-Tucana does not perform any I/O, the reason is again
that gets are lock-less operations, whereas puts are not.

Ideal-H-Tucana outperforms H-Tucana by up to 2⇥ and 14.2% during the load
and run phase by avoiding lookups over the tree, insertions, and I/O operations.
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NW-H-Tucana outperforms Ideal-H-Tucana by up to 23% during the run phase. The
reason is that Ideal-H-Tucana has to do an allocation for each get operation, but the
NW-H-Tucana version just returns an exiting value. The allocation cost more than the
work done by the NW-H-Tucana version. Due to this allocation, with Ideal-H-Tucana,
the load phase outperforms by up to 27% the run phase.

4.1.4.2 CPU utilization analysis
For the small dataset, Figures 4.3 and 4.4 depict, for the server, the CPU utilization
per core produced during the execution of the load and run phases, respectively, with
the four engines. For the client, Figure 4.5 provides the average CPU utilization for
both phases, also for the smaller dataset. Figure 4.6 depicts, for HBase and H-Tucana,
the average CPU utilization for both phases with the 500M dataset. For the server,
Table 4.2 provides the average number of cores that has a CPU utilization larger than
80%, the average CPU utilization achieved, and also the percentage of time during
which this saturation occurs.

Figure 4.5: For the 100M dataset, average CPU utilization at the client side during
the execution of both phases for the four engines.

Figure 4.6: For the 500M dataset, average CPU utilization at the server and client,
during the execution of the load and run phase for HBase and H-Tucana. L-H and
R-H represent the load and run phase with HBase, and L-T and R-T represent the
load and run phase with H-Tucana.

Regarding the 100M records dataset, for HBase, the CPU utilization is, on
average, 34.6% and 55.3% for the load and run phases, respectively. However,
Table 4.2 shows that, during both phases, there are several cores (two and thirteen)
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that achieve a CPU utilization close to or above 90%. This effect does not appear on
Figures 4.3 and 4.4, because the cores saturated are not always the same. These cores
become a bottleneck, and do not allow HBase to provide better performance. Some
of these cores are usually executing tasks related to the network path, as the analysis
for Ideal-H-Tucana shows. On the contrary, the client has an average CPU utilization
lower than 10%.

H-Tucana has an average CPU utilization of 33.6% and 39.1% for the load and
run phases, respectively. Being more lightweight in CPU utilization than HBase,
H-Tucana provides a significant better performance. During the run phase, a small
percentage of the CPU utilization is for I/O wait time due to the commit that occurs at
the beginning of this phase. However, there is no I/O due to get operations because the
dataset fits in memory. For both phases, one core presents an average CPU utilization
above 80% during more of the half of the execution time. Consequently, during this
time, H-Tucana cannot provide a better performance. As results for Ideal-H-Tucana
show, these cores are executing tasks related to the network path (inherited from
HBase). The client still provides a low CPU utilization.

NW-H-Tucana provides an average CPU utilization of 33.5% and 44.4% for the
load and run phases, respectively. The load phase has one core with a CPU utilization
of 99% during two thirds of the time. The run phase also has saturation problem,
since during half of its execution time one core has a CPU utilization of 80%. It can
be considered that one core becomes a bottleneck, and NW-H-Tucana cannot provide
better performance. In addition, although the client presents a low CPU utilization,
during the run phase, two cores present a CPU utilization above 80% during 70% of
the execution time (this data is not presented due to space constraint).

Ideal-H-Tucana provides a low CPU utilization: on average, 26.1% and 23.1%
for the load and run phases, respectively. But, Table 4.2 shows a saturation problem
during the load phase, because the CPU utilization of one core is over 90%. Since,
Ideal-H-Tucana does not execute any code from Tucana, this bottleneck appears due
to HBase that mainly executes network tasks. Therefore, it can be claimed that HBase
has a problem on its network path that implies a serialization of the code. The client
average CPU utilization is larger than the server. Indeed, during the load phase, it is
60.1%, and four cores achieve an average CPU utilization close to 88%. Therefore, it
can be considered that the client is close to saturation as well. Ideal-H-Tucana cannot
provide a better performance when inserting KV pairs.

During the run phase, Ideal-H-Tucana does not have saturation problem at the
server. The client presents an average CPU utilization of 40.6%, and six cores has
an utilization above 80% but only 25% of the time. Therefore, during this phase, the
CPU is not a bottleneck.

With the 500M dataset, Figure 4.6 shows that H-Tucana presents a low CPU
utilization at the server during the load phase. The problem is the memory pressure
because the dataset does not fit in memory, and the system spends most of the time
managing pages faults. Tucana uses mmap as a single allocator for memory and device
space, and Tucana cannot decide which pages are evicted from memory and which are
kept. Therefore, pages containing index and leaf nodes are evicted, and they have to be
re-read from the devices. This behavior is analyzed in subsections 4.1.4.3 and 4.1.4.4.
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size Phase Engine CPU util # Cores % Time

100M

Load

HB 89.4 2.0 94.1
TU 88.3 1.0 61.5
NW 99.0 1.1 68.3
ID 90.0 1.0 65.0

Run

HB 86.1 13.0 97.2
TU 80.7 1.3 55.2
NW 80.2 1.0 59.1
ID 0.0 0.0 0.0

500M
Load HB 90.8 1.8 96.0

TU 86.5 1.9 66.7

Run HB 86.9 12.3 99.9
TU 84.2 14.4 97.5

Table 4.2 Number of cores with a CPU utilization larger than 80%, average CPU
utilization, and duration (in time percentage) of this saturation.

During the run phase, the percentage of time used for I/O wait is significantly
increased due to the amount of data that has to be read for the get operations since the
dataset does not fit in memory.

With HBase, the server presents a low average CPU utilization during the load
phase, however almost two cores present more than 90% during the execution of the
test. The run phase presents a higher average CPU utilization, with a high I/O wait
percentage due to the I/O read operations. But, again, the CPU becomes a bottleneck
with twelve cores having a CPU utilization close to 87%. Therefore, it can be claimed
that HBase cannot provide better performance.

With the large dataset, the client provides a quite low CPU utilization with both
HBase and H-Tucana. The reason is the drop of performance due to the lack of
memory at the server.

4.1.4.3 I/O analysis
Figure 4.7 depicts the total size of the dataset and the amount of data read and written
during the execution of the test with H-Tucana and HBase. For H-Tucana, metadata
represents blocks used for internal and leaf nodes, and data represents blocks used for
the KV log. For HBase, it is not able to distinguish between data and metadata.

H-Tucana presents a total write amplification of up to 37% and 2.2⇥ for the
100M and 500M records, respectively. However, several things should be highlighted.
During the load phase, the amount of data blocks written is almost equal to the total
size of key value log. The extra data blocks written are because a block could be
written several times on the device due to commits. But once a data block is full and
written on the device, it is never re-written again. However, the amount of metadata
blocks, written is up to 11.8⇥ larger than the actual size of the metadata. The reason
is that internal and leaf nodes are modified several times and in different instant of
time. In addition, with mmap modified disk blocks are written to the device not only
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(a) H-Tucana (b) HBase
Figure 4.7: Total size, in GB, of the dataset (metadata plus data) and amount of data,
in GB, read and written during the execution of the test with H-Tucana and HBase,
for both phases. S stands for Size, LR and LW for reads and writes performed during
the load phase, and RR and RW for reads and writes performed during the run phase.

during Tucana’s commit operations, but also periodically, by the flush kernel threads
when they are older than a threshold or when free memory shrinks below a threshold,
using an LRU policy and madvise hints. This policy also increases the times a
metadata block is written on the device.

During the run phase, the blocks written to the device are due to the Tucana’s
commit operations issued at the beginning of this phase. This commit writes on the
device blocks modified at the end of the load phase but not written to the device yet.

During the load phase, with 100M records, no data is read from the storage
device. However, with 500M records, metadata blocks are read because internal or
leaf nodes are evicted from memory. On the contrary, the data blocks are read to
make key comparisons. The problem is that mmap controls which pages are evicted
from memory due to memory pressure, and the current implementation of Tucana
cannot modify this behavior. As a result, mmap evicts not only data pages, but also
metadata pages. This behavior reduces the amount of I/Os that can be amortized for
inserts due to the limited buffering in the Be –tree.

During the run phase, no data is read with the small dataset. However, the large
dataset implies larger amount of data read from the SSDs, since the whole dataset
does not fit in memory.

HBase presents a write amplification problem due to the compactions performed
that is shown in Figure 4.7. Its total write amplification is up to 2.1⇥ and 7.1⇥ for
the 100M and 500M records, respectively. With respect to the amount of data read,
HBase does not read any data with the smaller dataset. With the large dataset, HBase
reads up to 8.5⇥ the size of the dataset.

Tucana has better inherent behavior with respect to amplification thanks to its
Be –tree. Indeed, Tucana does not require compactions at the expense of more random
and small I/Os. HBase introduces compactions, and ends up issuing larger requests.
With 500M records, during the load phase, the average request size is 239 kB and
641 kB for H-Tucana and HBase, respectively. Consequently, although HBase writes
by up to 45% more data than H-Tucana, HBase outperforms H-Tucana thanks to its
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I/O access pattern. With 100M records, during the load phase, the average request
size is 493 kB and 478 kB for H-Tucana and HBase, respectively, and therefore, there
is almost no difference in I/O performance between them.

4.1.4.4 Network and I/O traffic analysis
For H-Tucana, Figure 4.8 depicts the throughput and network traffic during the
execution of both phases, whereas Figure 4.9 depicts the throughput and I/O traffic.

Figure 4.8 shows that the network devices are not a bottleneck, since they are
able to provide up to 40 Gbit/s, but the maximum in-coming throughput achieved is
380 MB/s during the load phase, and the maximum out-going throughput achieved is
853 MB/s during the run phase. Therefore, as subsection 4.1.4.2 says, the network
path of HBase does not allow Tucana to achieve better network throughput.

Regarding I/O traffic, with the small dataset, the storage devices provides up to
515 MB/s of write throughput, achieving a 100% of disk utilization. Therefore, in
this case, Tucana is achieving almost its maximum performance, with high utilization,
and the devices can become a bottleneck. During the run phase, there is write traffic
due to the commit. Both phases do not have read traffic.

With the 500M records dataset, during the load phase storage devices provides
up to 512 MB/s of write throughput, however, the write performance drops as the
system runs out of memory, and achieves on average 163 MB/s. Regarding reads,
at the beginning of the execution there is not read traffic, since the dataset still fits
in memory. However, when the dataset does not fit in memory, the read traffic is
significantly increased. Due to the read and write traffic, the storage device is 100%
utilized. During the run phase, the storage device provides up to 378 MB/s of read
throughput, and it is close to a 100% of disk utilization.

4.1.5 Summary
This section analyzes host CPU overhead, network, storage and memory limitations
of an efficient key-value store, Tucana, designed for fast storage devices. Tucana is
a feature-rich key-value store that supports variable size keys and values, versions,
arbitrary data set sizes, concurrency, multithreading, and persistence and recovery
from failures. The issues analyzed include host CPU overhead, network and I/O
traffic, and memory use.

4.2 Data-centric workflow runtime for data-intensive
applications on Cloud systems

In the last decade, the scientific computing scenario is greatly evolving in two main
areas. First, the focus on scientific computation is changing from CPU-intensive jobs,
like large scale simulations or complex mathematical applications, towards a data-
intensive approach. This new paradigm greatly affects the underlying architecture
requirements, slowly vanishing the classical CPU bottleneck and exposing bottlenecks
in the I/O systems. Second, the evolution in computing technologies and science
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(a) Load 100M (b) Load 500M

(c) Run 100M (d) Run 500M
Figure 4.8: For H-Tucana, throughput (kop/s) and network traffic (MB/s) during the
execution of the load and run phase for 100M and 500M records. In and Out stand
for input and output network traffic, respectively.

(a) Load 100M (b) Load 500M

(c) Run 100M (d) Run 500M
Figure 4.9: For H-Tucana, throughput (kop/s) and I/O traffic (MB/s) during the
execution of the load and run phase for 100M and 500M records.

funding restrictions are changing the available computing resources in the scientific
community.
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In current approaches, the interfaces and management solutions of the different
infrastructures present notable differences, requiring different programming models,
even for the same application. On the other side, the future ultrascale systems should
take advantage of every possible resource available in a transparent way for the
user [171].

Workflow management systems are computing platforms widely used today for
designing and executing data-intensive applications over High-Performance Comput-
ing (HPC) systems or distributed infrastructures. Data-intensive workflows consist
of interdependent data processing tasks, often connected in a DAG style, which
communicate through intermediate storage abstractions, typically files [172].

Current trends in scientific computing and data-intensive applications are in-
volved in the use of Cloud infrastructures as a flexible approach to virtually limitless
computing resources in a pay-per-use basis. Additionally, several research centers
complement their private computing infrastructure (usually HPC systems) with public
Cloud resources. The systems from both HPC and Cloud domains are not efficiently
supporting data-intensive workflows, especially because their design was thought
for individual applications and not for ensembles of cooperating applications. Given
this current scenario, a solution that combines characteristics typical of HPC, data
analysis, and Cloud computing is becoming more and more necessary.

This section describes a data-aware scheduling strategy [173] for exploiting
data locality in data-intensive workflows executed over the DMCF [174] and Her-
cules [175] platforms. Some experimental results are presented to show the benefits
of the proposed data-aware scheduling strategy for executing data analysis workflows
and for demonstrating the effectiveness of the solution. Using a data-aware strategy
and Hercules as temporary storage service, the I/O overhead of workflow execution
has been reduced by 55% compared to the standard execution based on the Azure
storage Cloud infrastructure, leading to a 20% reduction of the total execution time.
This evaluation confirms that our data-aware scheduling approach is effective in
improving the performance of data-intensive workflow execution in Cloud platforms.

Some existing solutions focused on the use of in-memory storage as a different
approach for solving the bottlenecks in highly concurrent I/O operations, such as
Parrot and Chirp [176]. Our in-memory approach takes hints from all these solutions,
by i) offering popular data access APIs (POSIX, put/get, MPI-IO), ii) focusing on
flexible scalability through distributed approaches for both data and metadata, iii)
the use of compute nodes (or worker VMs) to enhance the I/O infrastructure, and iv)
facilitating the deployment of user-level components.

The remainder of this section is structured as follows. Subsection 4.2.1 describes
the main features of DMCF. Subsection 4.2.2 introduces Hercules architecture and
capabilities. Subsection 4.2.3 emphasizes the advantages of integrating DMCF and
Hercules. Subsection 4.2.4 details the data-aware scheduling technique proposed.
Subsection 4.2.5 presents the experimental results. Finally, Subsection 4.2.6 concludes
this section.
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4.2.1 Data Mining Cloud Framework overview
The Data Mining Cloud Framework (DMCF) [174] is a software system implemented
for designing and executing data analysis workflows on Clouds. A Web-based user
interface allows users to compose their applications and submit them for execution
over Cloud resources, according to a Software-as-a-Service (SaaS) approach.

The DMCF architecture has been designed to be deployed on different Cloud
settings. Currently, there are two different deployments of DMCF: i) on top of a
Platform-as-a-Service (PaaS) Cloud, i.e., using storage, compute, and network APIs
that hide the underlying infrastructure layer; ii) on top of an Infrastructure-as-a-
Service (IaaS) Cloud, i.e., using virtual machine images (VMs) that are deployed on
the infrastructure layer. In both deployment scenarios, we use Microsoft Azure13 as
Cloud provider.

The DMCF software modules can be grouped into web components and compute
components (see top-left part of Figure 4.10). DMCF allows users to compose, check,
and run data analysis workflows through a HTML5 web editor. The workflows can
be defined using two languages: VL4Cloud (Visual Language for Cloud) [174] and
JS4Cloud (JavaScript for Cloud) [177]. Both languages use three key abstractions:

• Data elements, representing input files (e.g., a dataset to be analyzed) or output
files (e.g., a data mining model).

• Tool elements, representing software tools used to perform operations on data
elements (partitioning, filtering, mining, etc.).

• Tasks, which represent the execution of Tool elements on given input Data
elements to produce some output Data elements.

The DMCF editor generates a JSON descriptor of the workflow, specifying what
are the tasks to be executed and the dependency relationships among them. The
JSON workflow descriptor is managed by the DMCF workflow engine that is in
charge of executing workflow tasks on a set of workers (virtual processing nodes)
provided by the Cloud infrastructure. The workflow engine implements a data-drive
task parallelism that assigns workflow tasks to idle workers as soon as they are ready
to execute. Further details on DMCF execution mechanisms are given in Subsection
4.2.3.

4.2.2 Hercules overview
Hercules [175] is a distributed in-memory storage system based on the key/value
Memcached database. The distributed memory space can be used by the applications
as a virtual storage device for I/O operations. Hercules has been adapted for being
used as an alternative to Cloud storage service, offering in-memory shared storage for
applications deployed over Cloud infrastructures.

Hercules architecture (see top-center part of Figure 4.10, labeled Hercules in-
stance) has two main layers: front-end (Hercules client library) and back-end (server
layer). The user-level library is used by the application (or DMCF workers) for
accessing to the Hercules back-end. The library features a layered design, while
13http://azure.microsoft.com
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Figure 4.10: DMCF+Hercules architecture. Under an Iaas infrastructure, DMCF acts
as a workflow engine while Hercules accelerates I/O accesses.

back-end components are based on enhanced Memcached servers that extend basic
functionality with persistence and tweaks.

Hercules offers four main advantages: scalability, easy deployment, flexibility,
and performance.

Scalability is achieved by fully distributing data and metadata information among
all the available nodes, avoiding the bottlenecks produced by centralized metadata
servers. Data and metadata placement is completely calculated at client-side by a
hashing algorithm. The servers are completely stateless.

Easy deployment and flexibility at worker-side is provided by a POSIX-like
user-level interface in addition to the classic put/get approach existing in current
NoSQL databases. This approach supports legacy applications with minimum changes.
Servers can also be deployed without root privileges.

Performance and flexibility are targeted at server-side by exploiting I/O paral-
lelism. The capacity of dynamically deploying as many Hercules nodes as necessary
provides the flexibility feature. The combination of both approaches results on each
node being accessed independently, multiplying the total throughput peak perfor-
mance.

4.2.3 Integration between DMCF and Hercules
DMCF and Hercules can be configured to achieve different levels of integration, as
shown in Figure 4.11.

Figure 4.11a shows the original approach of DMCF, where every I/O operation
is carried out against the Cloud storage service offered by the Cloud provider (Azure
Storage). There are, at least, four disadvantages about this approach: usage of
proprietary interfaces, I/O contention in the service, lack of configuration options,
and persistence-related costs unnecessary for temporary data. Figure 4.11b presents
a second scenario based on the use of Hercules as the default storage for temporary
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generated data. Hercules I/O nodes can be deployed on as many VM instances as
needed by the user depending on the required performance and the characteristics of
data. Figure 4.11c shows a third scenario with a tighter integration of DMCF and
Hercules infrastructures [178]. In this scenario, initial input and final output are stored
on persistent Azure storage, while intermediate data are stored on Hercules in-memory
nodes. Hercules I/O nodes share virtual instances with the DMCF workers.

Current trends in data-intensive applications are extensively focusing on the
optimization of I/O operations by exploiting the performance offered by in-memory
computation, as shown by the popularity of Apache Spark Resilient Distributed
Datasets (RDD). The goal of this subsection is strengthening the integration between
DMCF and Hercules by leveraging the co-location of compute workers and I/O nodes
for exposing and exploiting data locality. In order to simplify the implementation
of the solution, some workarounds were used: each time that one worker needed to
access data (read/write operations over a file), it copied the whole file from Hercules
servers to the worker local storage. This approach may greatly penalize the potential
performance gain in I/O operations for two main reasons:

• Data placement strategy. The original Hercules data placement policy dis-
tributes every partition of a specific file among all the available servers. This
strategy has two main benefits: avoids hot spots and improves parallel accesses.
In an improved DMCF-Hercules integration, whole files can be stored on the
same Hercules server.

• Data locality agnosticism. Data-locality will not be fully exploited until the
DMCF scheduler is tweaked for running tasks on the node that contains the
necessary data and/or the data is placed where the computation will be realized.

Figure 4.12 describes an improvement to the third scenario of integration between
DMCF and Hercules, which is exploited as the base for the proposed data-aware
scheduling strategy. Four main components are present: DMCF worker daemon,
Hercules daemon, Hercules client library, and Azure client library. The DMCF
worker daemons are in charge of executing the workflow tasks; Hercules daemons

(a) Scenario 1: Azure stor-
age.

(b) Scenario 2: Hercules. (c) Scenario 3: Azure storage and
Hercules.

Figure 4.11: Integration scenarios between DMCF and Hercules.
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act as I/O nodes (storing data in-memory and managing data accesses); the Hercules
client library is intended to be used by the applications to access to the data stored
in Hercules (query Hercules daemons); the Azure client library is used to read/write
data from/to the Azure storage.

In this model, we use a RAM disk as generic storage buffer for I/O operations
performed by workflow tasks. The objective of this approach is to enable the support
of DMCF to any existing tool, allowing even binaries independently of the language
used for their implementation, while offering in-memory performance for local
accesses.

The logic used for managing this RAM disk buffer is based on the full information
about the workflow possessed by the DMCF workers. When every dependency of an
specific task is fulfilled (every input file is ready to be accessed) the DMCF worker
brings the necessary data to the node from the storage (Azure Storage in the first
scenario or Hercules in the second scenario).

Based on this approach, every existing tool is capable of accessing transparently
data, without the need of modifying the code. After the termination of the task, every
data written in the RAM disk is transferred to Hercules/Azure by the DMCF worker.
Every data transfer to/from Hercules is performed by the DMCF worker through the
Hercules client library.

Figure 4.12: DMCF and Hercules daemons.

4.2.4 Data-aware scheduling strategy
This subsection presents the data-aware scheduling strategy that combines DMCF
load-balancing capabilities and Hercules data and metadata distribution functionalities
for implementing various locality-aware and load-balancing policies.

Before going into details of the purposed scheduling mechanism, we recall the
high-level steps that are performed for designing and executing a knowledge discovery
application in DMCF [174]:

1. The user accesses the website and designs the workflow through a Web-based
interface.

2. After workflow submission, the system creates a set of tasks and inserts them
into the Task Queue.
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3. Each idle worker picks a task from the Task Queue, and concurrently executes
it.

4. Each worker gets the input dataset from its location. To this end, a file transfer
is performed from the Data Folder where the dataset is located, to the local
storage of the worker.

5. After task completion, each worker puts the result on the Data Folder.
6. The Website notifies the user whenever each task has completed, and allows

her/him to access the results.

1 Procedure main()
2 while true do
3 if locallyActivatedTasks.isNotEmpty() or TaskQueue.isNotEmpty() then
4 task  selectTask(locallyActivatedTasks, TaskQueue);
5 TaskTable.update(task, ‘running’);
6 foreach input in task.inputList do
7 transfer(input, DataFolder, localDataFolder);

8 transfer(task.tool.executable, localToolFolder);
9 foreach library in task.tool.libraryList do

10 transfer(library, ToolFolder, localToolFolder);

11 taskStatus  execute(task, localDataFolder, localToolFolder);
12 if taskStatus = ‘done’ then
13 foreach output in task.outputList do
14 transfer(output, localDataFolder, DataFolder);

15 TaskTable.update(task, ‘done’);
16 foreach wfTask in TaskTable.getTasks(task.workflowId) do
17 if wfTask.dependencyList.contains(task) then
18 wfTask.dependencyList.remove(task);
19 if wfTask.dependencyList.isEmpty() then
20 TaskTable.update(wfTask, ‘ready’);
21 locallyActivatedTasks.addTask(wfTask);

22 else //Manage the task’s failure;

23 else //Wait for new tasks in TaskQueue;

24 SubProcedure selectTask(locallyActivatedTasks, TaskQueue)
25 bestTask  Hercules.selectByLocality(locallyActivatedTasks, TaskQueue);
26 if bestTask in TaskQueue then
27 TaskQueue.removeTask(bestTask);

28 foreach task in locallyActivatedTasks do
29 if task != bestTask then
30 TaskQueue.addTask(task);

31 empty(locallyActivatedTasks);
32 clean(localDataFolder);
33 clean(localToolFolder);
34 return bestTask;

Algorithm 1. Worker operations.

Algorithm 1 describes the data-aware scheduler employed by each worker. Com-
pared to the original scheduler described in [174], this novel scheduling algorithm
relies on a local list within each worker, called locallyActivatedTasks. This list con-
tains all the tasks whose status was changed by this worker from ‘new’ to ‘ready’
at the end of the previous iteration. The worker cyclically checks whether there
are tasks ready to be executed in locallyActivatedTasks or in the Task Queue (lines
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2-3). If so, a task is selected from one of the two sets (line 4) using the selectTask
subprocedure (lines 24-34), and its status is changed to ‘running’ (line 5). Then, the
transfer of all the needed input resources (files, executables, and libraries) is carried
out from their original location to two local folders, referred to as localDataFolder
and localToolFolder (lines 6-10). At line 11, the worker locally executes the task
and waits for its completion. If the task is ‘done’ (line 12), if necessary the output
results are copied to a remote data folder (lines 13-14), and the task status is changed
to ‘done’ also in the Task Table (line 15). Then, for each wfTask that belongs to the
same workflow of task (line 16), if wfTask has a dependency with task (line 17), that
dependency is deleted (line 18). If wfTask remains without dependencies (line 19), it
becomes ‘ready’ and is added to the Task Queue (lines 20-21). If the task fails (line
22), all the tasks that directly or indirectly depend on it are marked as ‘ f ailed’.

The selectTask subprocedure works as follows. First, it invokes the selectByLo-
cality function provided by Hercules, which selects the best task that this worker can
manage from locallyActivatedTasks and the Task Queue (line 25). To take advantage
of data locality, the best task selected by this function is the one having the highest
number of input data that are available on the local storage of the worker, based on the
information available to Hercules. This differs from the original data-locality agnostic
scheduling policy adopted in DMCF, in which each worker picks and executes the
task from the queue following a FIFO policy. If such best task was chosen from
the Task Queue, then that task is removed from the Task Queue (line 26-27). All
the tasks in locallyActivatedTasks that are different from the best task are added
to the Task Queue, thus allowing the other workers to execute them (line 28-30).
Finally, locallyActivatedTasks is emptied, and localDataFolder and localToolFolder
are cleaned from the data/tools that are not used by bestTask (lines 31-33).

4.2.5 Experimental evaluation
This subsection presents the experimental evaluation of the data-aware scheduling
strategy used to improve the integration between DMCF and Hercules. For this
evaluation, we have emulated the execution of a data analysis workflow using three
alternative scenarios:

• Azure-only: every I/O operation of the workflow is performed by DMCF using
the Azure storage service.

• Locality-agnostic: a full integration between DMCF and Hercules is exploited,
where each intermediate data is stored in Hercules, while initial input and final
output are stored on Azure. DMCF workers and Hercules I/O nodes share
resources (they are deployed in the same VM instance), however, every I/O
operation is performed over remote Hercules I/O nodes through the network.

• Data-aware: based on the same deployment as in the previous case, this scenario
is based on a full knowledge of the data location, and executes every task in
the same node where the data are stored, leading to fully local accesses over
temporary data. Based on this locality exploitation, most I/O operations are
performed in-memory rather than through the network.
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Listing 4.1: Classification JS4Cloud workflow.
1: var TrRef = Data.get("Train");
2: var STrRef = Data.define("STrain");
3: Shuffler({dataset:TrRef, sDataset:STrRef});
4: var n = 20;
5: var PRef = Data.define("TrainPart", n);
6: Partitioner({dataset:STrRef, datasetPart:PRef});
7: var MRef = Data.define("Model", [3,n]);
8: for(var i = 0; i <n; i++){
9: C45({dataset:PRef[i], model:MRef[0][i]});
10: SVM({dataset:PRef[i], model:MRef[1][i]});
11: NaiveBayes({dataset:PRef[i], model:MRef[2][i]});
12: }
13: var TeRef = Data.get("Test");
14: var BMRef = Data.define("BestModel");
15: ModelSelector({dataset:TeRef, models:MRef, bestModel:BMRef});
16: var m = 80;
17: var DRef = Data.get("Unlab", m);
18: var FDRef = Data.define("FUnlab", m);
19: for(var i = 0; i <m; i++)
20: Filter({dataset:DRef[i], fDataset:FDRef[i]});
21: var CRef = Data.define("ClassDataset", m);
22: for(var i = 0; i <m; i++)
23: Predictor({dataset:FDRef[i], model:BMRef, classDataset:CRef[i]});

The evaluation is based on a data mining workflow that analyzes n partitions of
the training set using k classification algorithms so as to generate kn classification
models. The kn models generated are then evaluated against a test set by a model
selector to identify the best model. Then, n predictors use the best model to produce
in parallel n classified datasets. The k classification algorithms used in the workflow
are C4.5, Support Vector Machine (SVM) and Naive Bayes, which are three of the
main classification algorithms [179]. The training set, test set and unlabeled dataset
that represent the input of the workflow, have been generated from the KDD Cup
1999’s dataset14, which contains a wide variety of simulated intrusion records in a
military network environment.

Listing 4.1 shows the JS4Cloud source code of the workflow. At the beginning,
we define the training set (line 1) and a variable that stores the shuffled training set
(line 2). At line 3, the training set is processed by a shuffling tool. Once defined
parameter n = 20 at line 4, the shuffled training set is partitioned into n parts using
a partitioning tool (line 6). Then, each part of the shuffled training set is analyzed
in parallel by k = 3 classification tools (C4.5, SV M, NaiveBayes). Since the number
of tools is k and the number of parts is n, kn instances of classification tools run in
parallel to produce kn classification models (lines 8-12). The kn classification models
generated are then evaluated against a test set by a model selector to identify the best
model (line 15). Then, m = 80 unlabeled datasets are specified as input (line 15).
Each of the m input datasets is filtered in parallel by m filtering tools (lines 19-20).
Finally, each of the m filtered datasets is classified by m predictors using the best

14http://kdd.ics.uci.edu/databases/kddcup99/kddcup99
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model (lines 22-23). The workflow is composed of 3+ kn+2m tasks. In the specific
example, where n = 20, k = 3, m = 80, the number of generated tasks is equal to 223.

Figure 4.13 depicts the VL4Cloud version of the data mining workflow. The
visual formalism clearly highlights the level of parallelism of the workflow, expressed
by the number of parallel paths and the cardinality of tool array nodes.

Figure 4.13: Classification VL4Cloud workflow.

Once the workflow is submitted to DMCF using either JS4Cloud or VL4Cloud,
DMCF generates a JSON descriptor of the workflow, specifying which are the tasks
to be executed and the dependency relationships among them. Thus, DMCF creates a
set of tasks that will be executed by workers. In order to execute a given workflow
task, we have provisioned as many D2 VM instances (CPU with 2 cores and 7GB of
RAM) in the Azure infrastructure as needed, and configured them by launching both
the Hercules daemon and the DMCF worker process on each VM. In order to better
understand the performance results, we have performed a preliminary evaluation of
the expected performance of both Azure Storage and Hercules. Table 4.3 presents
bandwidth performance of an I/O micro-benchmark consisting in writing and reading
a 256 MB file, with 4 MB chunk size. Latency results are not relevant for data-
intensive applications. Due to the usual large file size, the latency-related time is
negligible in comparison with the bandwidth-related time.

Table 4.3 Bandwidth micro-benchmark results (in MB/s).

Operation Hercules
local access

Hercules
remote access

Azure Storage
data access

Read 800 175 60
Write 1,000 180 30

After the initial setup, DMCF performs a series of preliminary operations (i.e.,
getting the task from the Task Queue, downloading libraries, and reading input files
from the Cloud storage) and final operations (e.g., updating the Task Table, writing
the output files to the Cloud storage). Table 4.4 lists all the read/write operations



“nesus-book”
2018/7/13
page 124

124 Ultrascale Computing Systems

performed during the execution of the workflow on each data array. Each row of the
table describes: i) the number of files included in the data array node; ii) the total
size of the data array; iii) the total number of read operations performed on the files
included in the data array; and iv) the total number of write operations performed on
the files included in the data array. As can be noted, all the inputs of the workflow
(i.e., Train, Test, UnLab) are never written on persistent storage, and the final output
of the workflow (i.e., ClassDataset) is not used (read) by any other task.

Table 4.4 Read/write operations performed during the execution of the workflow.

Data node N. of
files

Total
size

N. of read
operations

N. of write
operations

Train 1 100MB 1 -
Strain 1 100MB 1 1
TrainPart 20 100MB 60 20
Model 60 ⇡20MB 60 60
Test 1 50MB 1 -
BestModel 1 300KB 80 1
UnLab 80 8GB 80 -
FUnLab 80 ⇡8GB 80 80
ClassDataset 80 ⇡6GB - 80

Figure 4.14a shows the turnaround times of the workflow executed in the three
scenarios introduced earlier: Azure-only, Locality-agnostic, Data-aware. In all
scenarios, the turnaround times have been measured varying the number of workers
used to run it on the Cloud from 1 (sequential execution) to 64 (maximum parallelism).
In the Azure scenario, the turnaround time decreases from 1 hour and 48 minutes
on a single worker, to about 2.6 minutes using 64 workers. In the Locality-agnostic
scenario, the turnaround time decreases from 1 hour and 34 minutes on a single
worker, to about 2.2 minutes using 64 workers. In the Data-aware scenario, the
turnaround time decreases from 1 hour and 26 minutes on a single worker, to about 2
minutes using 64 workers. It is worth noticing that, in all the configurations evaluated,
locality-agnostic allowed us to reduce the execution time in about 13% compared to
the Azure scenario, while data-aware allowed us to reduce the execution time in about
20% compared to the Azure scenario.

We also evaluated the overhead introduced by DMCF in the three scenarios. We
define as overhead the time required by the system to perform a series of preliminary
operations (i.e., getting the task from the Task Queue, downloading libraries and
reading input files from the Cloud storage) and final operations (e.g., updating the
Task Table, writing the output files to the Cloud storage) related to the execution of
each workflow task. Table 4.5 shows the overhead time of the workflow in the three
analyzed scenarios. We observe that the overhead in the Azure-only scenario is 40
minutes, while in the Locality-agnostic scenario is 26 minutes and in the Data-aware
is 18 minutes. This means that using Hercules for storing intermediate data we were
able to reduce the overhead by 36% using a locality-agnostic approach, and by 55%
using a data-aware approach.
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Table 4.5 Overhead in the three scenarios.

Total time
(sec.)

Overhead
(sec.)

Azure-only 6,487 2,382
Locality-agnostic 5,624 1,519
Data-aware 5,200 1,086

Figure 4.14b presents the time required by the application to perform every I/O
operation of the application, and Figure 4.14c increases the level of detail, showing
only the operations affected by the use of the Hercules service, i.e., I/O operations
that work on temporary data. As shown in the figure, the difference between the three
strategies is clear.

In order to better show the impact of the Hercules service, Figure 4.14d presents
a breakdown of the total execution time, detailing the time spent on each of the tasks
executed by the workflow application: computation tasks (CPU Time), I/O tasks
over input/results files stored in Azure Storage, and I/O operations performed over
temporary files. This figure clearly shows how the time required for I/O operations
over temporary files, the only operations affected by use of Hercules services, are
reduced to be almost negligible during the execution of the workflow, showing a great
potential for increasing the I/O performance in data-intensive applications with large
amounts of temporary data.

4.2.6 Conclusions
While workflow management systems deployed on HPC systems (e.g., parallel ma-
chines) typically exploit a monolithic parallel file system that ensures highly efficient
data accesses, workflow systems implemented on a distributed infrastructure (most
often, a public Cloud) must borrow techniques from the Big Data computing (BDC)
field, such as exposing data storage locality and scheduling work to reduce data
movement in order to alleviate the I/O subsystems under highly demanding data
access patterns.

In this section, we proposed the use of DMCF+Hercules as an alternative to
classical shared parallel file systems, currently deployed over the HPC infrastructures.
Classical HPC systems are composed by compute resources and I/O nodes completely
decoupled. Based on this approach, the available I/O nodes can scale with the number
of compute nodes performing concurrent data accesses, avoiding the bottleneck of
current parallel file systems. In extreme cases, our solution should also be provided
over the I/O infrastructure of the parallel file system, taking advantage of the available
resources (I/O nodes counting with large amounts of RAM and a dedicated high-
performance network). DMCF+Hercules aims to achieve scalability to enhance
four main aspects that contribute to the file I/O bottleneck illustrated as motivation
above: metadata scalability, data scalability, locality exploitation, and file system
server scalability. DMCF+Hercules will act as an I/O accelerator, providing improved
performance for data accesses to temporary data.
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Figure 4.14: Performance evaluation of the classification workflow using Azure-only,
locality-agnostic and data-aware configurations.
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This section also presented an experimental evaluation performed to analyze the
performance of the proposed data-aware scheduling strategy executing data analysis
workflows and to demonstrate the effectiveness of the solution. The experimental
results show that, using the proposed data-aware strategy and Hercules as storage
service for temporary data, the I/O overhead of workflow execution is reduced by
55% compared to the standard execution based on the Azure storage, leading to a 20%
reduction of the total execution time. These results demonstrate the effectiveness of
our data-aware scheduling approach in improving the performance of data-intensive
workflow execution in Cloud platforms.
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4.3 Advanced Conflict-free Replicated DataTypes

One approach to achieve ultra-scale data management is to use a full data replication
paradigm with a relaxed consistency model. This is advocated given the tradeoffs of
Availability, Consistency, and network Partition addressed by the CAP theorem [180].
While a relaxed consistency model allows for prompt local updates, this can lead to
potential conflicts in the data once merged elsewhere. With the premise to eventually
converge to a single state, manual and case-tailored solutions are unproven correct and
cumbersome to use. In this section, we present a more generic and mathematically
proven method though Conflict-free Replicated DataTypes [181] that guarantee even-
tual convergence. We present four variants of CRDT models: operation-based, pure
operation-based, state-based, and delta-state based CRDTs [181, 97, 182, 98, 183].
We aim to keep the presentation simple by addressing a common “set” datatype
example throughout all CRDT variants to show their differences. We finally present
a case study, on the dataClay [184, 185] distributed platform, demonstrating how
CRDTs can be used in practice15.

4.3.1 Scalability and Availability Tradeoffs
With the immense volumes of data generated by social networks, Internet of Things,
and data science, scalability becomes one of the major data management challenges.
To sustain such data volumes, a data management service must guarantee both a large
data storage capacity and high availability. Although the former can be increased
through scaling up, i.e., augmenting the storage capacity of a service though adding
larger hard drives or using RAID technology, the availability challenge remains, due
15The research leading to these results has received funding from the European Union’s Horizon 2020
- The EU Framework Programme for Research and Innovation 2014-2020, under grant agreement No.
732505, LightKone project.
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to bottlenecks and single points of failure. A typical alternative is to scale out through
distributing, a.k.a., replicating, the data over distinct nodes either within a small
proximity, like a cluster, or scattered over a large geographical space. This however
raises a challenge on the quality of data, subject to the speed of Read/Write operations
and data freshness, and often governed through a data consistency model [186].

Traditionally, the common approach was to fully replicate the data and use a
strong consistency model, e.g., sequential consistency or total order protocols like
quorum-based consensus [187, 188]. However, the overhead of synchronization
becomes intolerable under scale, especially in a geographically distributed setting
or loosely coupled systems. In fact, the CAP theorem [180, 189] forces to choose
between (strict) data consistency and availability, given that network partitions are
hard to avoid in practice. Consequently, the recent trend is to adopt a relaxed data
consistency model that trades strict consistency for high availability. This is advocated
by applications that cannot afford large response times on reads and writes, and
thus allow for stale reads as long as propagating local writes eventually lead to
convergence [190]—assuming system quiescence.

The weakest consistency models that guarantee convergence often adopt a variant
of Eventual Consistency [190] (EC) in which updates are applied locally, without
prior synchronization with other replicas, such that they are eventually delivered and
applied by all replicas. In practice, many applications require stronger guarantees
on time and order, and advocate the causal consistency model, which enforces a
happens-before relation [191]: A is delivered before B if A occurred before B on
the same machine; or otherwise, A occurred before a send event and B occurred
after a receive event (possibly by transitivity). To understand the need for causal
consistency in applications, consider an example on a replicated messaging service
where Bob commented on Alice’s message, i.e., Alice’s message happened before
Bob’s comment. Since, in a distributed setting, it can happen that different users read
from different servers (a.k.a., replicas), without enforcing causal consistency some
users may read Bob’s comment before Alice’s message.

Even if it boosts availability, a relaxed consistency model can lead to conflicts
when concurrent operations are invoked on different replicas. Traditionally, conflicts
are reconciled manually or left to the application to decide on the order (all concurrent
versions are retained and exposed) [192]. This process is very costly and subject
to errors which necessitates a systematic way instead. Conflict-free Replicated
DataTypes [181, 97, 98] (CRDTs) are mathematical abstractions that are proven to be
conflict-free and easy to use, and they are recently being adopted by leading industry
like Facebook, Tom Tom, Riak DB, etc.. In the rest of this section, we introduce
CRDTs and present some of the recent advanced models.

4.3.2 Conflict-free Replicated Datatypes
Conflict-free Replicated Datatypes (CRDTs) [181, 97, 98] are data abstractions (e.g,
counters,sets, maps, etc), that are usually replicated over (often loosely-connected)
network of nodes, and are mathematically formalized to guarantee that replicas
converge to the same state, provided they eventually apply the same updates. The
assumption is that state updates should be commutative, or designed to be so. This
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ensures that applying concurrent updates on different nodes is independent from
their application order. For instance, applying “Add A” and “Add B” to a set will
eventually lead to both elements A and B in the two replicas. Whereas, concurrent
non-commutative operations “Add A” and “Remove A” may lead to two different
replicas (one is empty and the other has element A).

There are two main approaches for CRDTs: operation-based (a.k.a., op-based)
and state-based. The former is based on disseminating operations whereas the latter
propagates a state that results from locally applied operations. In the systems where
the message dissemination layer guarantees Reliable Causal Broadcast (RCB), op-
based CRDTs are desired as they allow for simpler implementations, concise replica
state, and smaller messages. On the other hand, state-based CRDTs are more complex
to design, but can handle duplicates and out-of-order delivery of messages without
breaking causality, and thus are favored in hostile networks.

In the following, we elaborate on these models and their optimizations focus-
ing on the Add-wins Set (AWSet) datatype (in which a concurrent add dominates
a remove). We opt for AWSet being a very common datatype that has causality
semantics, which helps explaining the different ordering guarantees in CRDT models.
More formally, in an AWSet that retains add and rmv operations together with their
timestamps t, the concurrent semantics can be defined by a read operation that returns
the following elements:

{v | (t, [add,v]) 2 s ^ 8(t 0, [(add | rmv),v]) 2 s · t 6< t 0} (4.1)

Op-based CRDTs. In op-based CRDTs [181], each replica maintains a local
state that is type-dependent. A replica is subject to clients’ operations, i.e., query and
update, that are executed locally as soon as they arrive. While query operations read
the local (maybe stale) state without modifying it, updates often modify the state and
generate some message to be propagated to other replicas through a reliable causal
broadcast (RCB) middleware. The RCB handles the exactly-once dissemination
across replicas, mainly through an API composed of causal broadcast function cbcast
and causal deliver function cdeliver.

S : State type, si is an instance
preparei(o,si) : Prepares a message m given an operation o
e↵ecti(m,si) : Applies a prepared message m on a state
vali(q,si) : Read-only evaluation of query q on a state

Figure 4.15: The general composition of an op-based CRDT.

To explain the process further, we consider the general structure of an op-based
CRDT in Figure 4.15, and convey Algorithm 1 in Figure 4.16 that depicts the interplay
between the RCB middleware and the CRDT. In particular, when an update operation
o is issued at some node i having state si, the function preparei(o,si) produces a
message m that includes some ordering meta-data in addition to the operation. This
message m is then broadcast by calling cbcasti(m), and is delivered via cdeliver j(m)
at each destination node j (including i itself). cdeliver triggers e↵ect j(m,s j) that
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state:
�i 2 ⌃

on operationi(o):
m := preparei(o,�i)
cbcasti(m)

on cdeliveri(m):
�i := e↵ecti(m,�i)

on queryi():
vali(�i)

Algorithm 1: CRDT & RCB

state:
�i = (s,⇡) 2 P(O)⇥ (O,)

on operationi(o):
tcbcasti(o)

on tcdeliveri(m, t):
⇡i := e↵ecti(m, t,⇡i)

on tcstablei(t):
�i := prunei(⇡i, s, t)

on queryi():
vali(�i)

Algorithm 2: Pure CRDT & TRCB1

Figure 4.16: Distributed algorithms for node i showing the interplay of classical
and pure op-based CRDTs given a standard versus tagged reliable causal broadcast
middlewares, respectively.

S =N⇥P(I ⇥N⇥V ) s0
i = (0,{})

preparei([add,v],(n,s)) = [add,v, i,n+1]
e↵ecti([add,v, i0,n0],(n,s)) = (n0 ^ (i = i0) _ n,s[{(v, i0,n0)})

preparei[rmv,v],(n,s)) = [rmv,{(v0, i0,n0) 2 s | v0 = v}]
e↵ecti([rmv,r],(n,s)) = (n,s\ r)

vali(n,s) = {v | (v, i0,n0) 2 s}

Figure 4.17: Operation-based Add-Wins Set CRDT, at node i.

returns a new replica state s 0
j. Finally, a query operation q is issued, vali(q,si) is

invoked, and no corresponding broadcast occurs.
Example.
We further exemplify op-based CRDTs though an “Add-wins Set” (AWSet)

CRDT design depicted in Figure 4.17. The state S is composed of a local sequence
number n 2N and a set of values in V together with some meta-data in I ⇥N that is
used to guarantee the causality information of the datatype. The prepare of an add
operation produces a tuple, to be disseminate by RCB, composed of the element to be
added together with the ID and the incremented sequence number of the local node i.
The e↵ect function is invoked on RCB delivery and leads to adding this tuple to the
state and incrementing the sequence number only if the prepare was local at i. To the
contrary, preparing a rmv returns all the tuples containing the removed item, which
allows the corresponding e↵ect to remove all these tuples. Finally, the val function
returns all the elements in the set.

Pure Op-based CRDTs. Op-based CRDTs can be optimized to reduce the dis-
semination and storage overhead. Indeed, since op-based CRDTs assume the presence
of and RCB, one can take advantage of its time abstractions, i.e., often implemented
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S = P(O)⇥T ,! O s0
i = (si,pi)

0 = ({},{})
e↵ecti(o, t,s,p) = (s\{[add,v] | o = [rmv,v]},

p \{(t 0, [add,v]) | o = [rmv,v] ^ t 0 < t}[
{(t,o) | o = [add,v] ^ (_,o) 62 p ^ o 62 s})

vali(s,p) = {v | [add,v] 2 s _ (t, [add,v]) 2 p}
prunei(p,s,t) = (s[{o},p \{(t,o)}) ^ t  t

Figure 4.18: Pure operation-based Add-Wins Set CRDT, at node i.

via version vectors (VV), to guarantee causal delivery and thus avoid disseminating
the meta-data produced by prepare. Consequently, this leads to disseminating the
“pure” operations and possible arguments which makes the prepare useless, hence
the name Pure op-based CRDTs [98, 183]. In addition, this “pure” mind-set leads to
having a standard state for all datatypes: a partially order log: Polog. However, this
will lead to storing the VV in the state which can be very expensive when the number
of replicas in the systems is high. Fortunately, and contrary to the classical op-based
approach, the time notion of VV is useful to transform the Polog into a sequential log
which eventually helps to prune the—no longer needed—VVs.

Tagged Reliable Causal Broadcast (TRCB). To achieve the above optimizations,
we consider an extended RCB, called Tagged RCB (TRCB), that provides two func-
tionalities through the API functions: tcdeliver and tcstable [98, 183]. The former is
a equivalent to the standard RCB cdeliver presented above with a simple extension
to the API by exposing the VVs (used internally by the RCB) to the node upon
delivery, which can be appended to the operation by the recipient. On the other hand,
tcstable is a new function that returns a timestamp t indicating that all operations
with timestamp t  t are stable: have been delivered on all nodes. The essence is
that no concurrent operations to the stable operations in the Polog are expected to
be delivered, and hence, the corresponding VVs in the Polog can be pruned without
affecting the datatype semantics.

Given the TRCB, depicted in Algorithm 2 of Figure 4.16, the design of Pure
CRDTs differs from the classical ones in different aspects. First, the state is common
to all datatypes, and is represented by a set of stable operations and a Polog. Second,
prepare has no role anymore as the operations and its arguments can be immediately
disseminated though the TRCB. Third, the significant change is with the e↵ect
function that discards datatype-specific “redundant” operations before adding to the
Polog (e.g., a duplicate operation). However, to the contrary of classical op-based
CRDTs, only one e↵ect function is required per datatype. Finally, prune function
is required to move stable operations (triggered via the TRCB’s tcstable) to the
sequential log after pruning the VVs.

Example. Using the same example of the AWSet, we provide the Pure CRDT
version in Figure 4.18. The state is composed of a set of sequential operations s
and Polog p: a map from timestamps to operations. The prepare does not exist
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due the reasons mentioned above, and hence the operation and its arguments are
sent to the destination. Once a rmv operation is delivered, the e↵ect deletes the
corresponding operation from s and those in the causal past of rmv 2 p . (Remember
that all operations in s are in the causal past of delivered operations.) Finally, e↵ect
only adds an add to p if the element is not in s or p . Once the tcstable triggers prune,
given a stable timestamp t , all operations with timestamp t  t become stable; and are
thus removed by prune from p and added to s without the (now useless) timestamp.

Additional pedantic details. A catalog of many op-based CRDT specifications
like counters, sets, registers, maps, etc., can be found in [183]. There are also several
optimizations that are beyond the scope of this book. For instance, the pure op-based
specifications can be generalized further to have a common framework for all CRDTs
in such a way the user only needs to define simple datatype-specific rules to truncate
the Polog. In addition, one can go deeper and optimize each datatype aside. An
example is to replace the stable state with a classical datatype instead of retaining the
set of operations. On the other hand, datatypes that are natively commutative can be
easier to implement as classical op-based CRDTs. Finally, we avoid presenting the
details of the TRCB for presentation purposes. The reader can refer to [98, 183] for
these details.

State-based CRDTs. While op-based CRDTs are based on the dissemination
of operations that are executed by every replica, a “state” is disseminated in the
state-based CRDTs [181]. A received state is incorporated with the local state via a
merge function that, deterministically, reconciles any existing conflicts.

S : State defined as join semi-lattice, si is an instance
Mutators : mutating operations that inflate the state.

st s0 : LUB to merge states s and s0

vali(q,si) : Read-only evaluation of query q on a state

Figure 4.19: The general composition of a state-based CRDT.

As depicted in Figure 4.19, a state-based CRDT consists of a state, mutators,
join, and query functions. The state S is designed as a join-semilattice [193]: a set
with a partial order, and a binary join operation t that returns the least upper bound
(LUB) of two elements in S, and is always designed to be commutative, associative,
and idempotent. On the other hand, mutators are defined as inflation: for any mutator
m and state X , X v m(X). This guarantees that the state never diminishes, and thus,
each subsequent state subsumes the previous state when joined elsewhere. Finally,
the query operation leaves no changes on the state. Note that the specification of all
these functions, and the state, are datatype-specific.

Anti-entropy protocol. To the contrary of op-based CRDTs that assume the
presence of RCB, state-based CRDTs can ensure eventual convergence using a simple
anti-entropy protocol, as in Figure 4.20, that periodically ships the entire local state
to other replicas. Each replica merges the received state with its local state using
the join operation. (The algorithm in Figure 4.20 can be more sophisticated to
include retransmissions, routing, or gossiping, but we keep it simple for presentation
purposes.).
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inputs:
ni 2 P(I), set of neighbors

durable state:
Xi := ? 2 S, CRDT state

on receivej,i(Y )
X

0
i = Xi t Y

on operationi(m)
X

0
i = m(Xi)

periodically // ship state
j = random(ni)
sendi,j(Xi)

1
Figure 4.20: A basic anti-entropy algorithm for state-based CRDTs.

S = P(I⇥N⇥E)⇥P(I⇥N)

s0
i = ({},{})

addi(e,(s, t)) = (s[{(i,n+1,e)}, t)
with n = max({k | (i,k,_) 2 s})

rmvi(e,(s, t)) = (s, t [{( j,n) | ( j,n,e) 2 s})
vali((s, t)) = {e | ( j,n,e) 2 s ^ ( j,n) 62 t}

(s, t)t (s0, t 0) = (s[ s0, t [ t 0)

Figure 4.21: State-based AWSet CRDT, at node i.

Example. Again, we exemplify on state-based CRDTs via Figure 4.21 that depicts
the design of AWSet. The state S is composed of two sets. One set is for the addition
of elements with unique tags defined by unique ID and sequence number, and another
tombstones set that serves for collecting the removed tags. This design is crucial to
achieve the semi-lattice inflation properties subject to mutators: add and rmv. The
former adds the new element to the addition set together with a new tag leaving the
tombstones set intact. An element is removed by rmv through adding its unique tag to
the tombstones set. Notice that the element must not be removed from the addition set
which violates inflation. Given these specifications, the query function val will simply
return all the added elements that do not have corresponding tags in the tombstones
set. Finally, the merge function t joins any two (disseminated or not) states by simply
computing the union of the sets, thus respecting the semi-lattice properties.

Delta-state CRDTs. Despite the simplicity and robustness of state-based CRDTs,
the dissemination overhead is high as the entire state is always propagated even with
small local state updates. Delta-state CRDTs [97, 182] are state-based CRDT variants
that allow to “isolate” the recent updates on a state and ship the corresponding delta,
i.e., a state in the semi-lattice corresponding only to the updates, and shipped to be
merged remotely. The trick is to find new delta-mutators (a.k.a., d -mutators) md that
return deltas instead of entire states (and again, these are datatype specific). Given a
state X , the relation between mutators m in state-based CRDTs and md is as follows:

X 0 = m(X) = X tmd (X) (4.2)
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S = P(I⇥N⇥E)⇥P(I⇥N)

s0
i = ({},{})

addd
i (e,(s, t)) = ({(i,n+1,e)},{})

with n = max({k | (i,k,_) 2 s})
rmvd

i (e,(s, t)) = ({},{( j,n) | ( j,n,e) 2 s})
vali((s, t)) = {e | ( j,n,e) 2 s ^ ( j,n) 62 t}

(s, t)t (s0, t 0) = (s[ s0, t [ t 0)

Figure 4.22: Delta-state AWSet CRDT, at node i.

This represents the main change in the design of state-based CRDTs in Fig-
ure 4.19.

Example. Considering the AWSet example, the only difference between the delta
CRDT version in Figure 4.22 and its state-based counterpart in Figure 4.21 is with
mutators. One can simply notice that addd returns the recent update that represents
the added element whereas add returns the entire state. A similar logic holds for the
difference between rmvd and rmv. As for the t and val, their design is the same in
both versions; however, notice that the propagated and merged message is a delta-state
in Figure 4.22 rather than a whole state. Indeed, although a delta-mutator returns a
single delta, it more practical to join deltas locally and ship them in groups (which
must not affect the t in any case) as we explain next.

Causal anti-entropy protocol.. This delta CRDT optimization comes at a cost: it
is not longer safe to blindly merge received (delta) states when the datatype requires
causal semantics. Indeed, state-based CRDTs implicitly ensure per-object causal
consistency since the state itself retains all the causality information, whereas a delta
state includes the tags of individual changes without any memory about the causal
past. This requires a little more sophisticated anti-entropy protocol that enforces
causal delivery on received deltas and supports coarse-grained shipping of delta
batches, called “delta-intervals”. A delta-interval Da,b

i is a group of consecutive deltas
correspOnding to a sequence of all the local delta mutations from a through b�1,
and merged together via t before shipping:

Da,b
i =

G
{dk

i | a  k < b} (4.3)

Given this, an anti-entropy algorithm can guarantee causal order if it respects the
“causal delta-merging condition”: Xi w Xa

j . This means that a receiving replica can
only join a remote delta-interval if it has already seen (and merged) all the causally
preceding deltas for the same sender. The algorithm in Figure 4.23 is a basic anti-
entropy protocol that satisfies the causal delta-merging property. (We discarded many
optimization to focus on the core concept.) In addition to the state, a node retains a
sequence number that, together with the acknowledgments map, helps the node to
identify the missing deltas to be sent to a destination. In addition, the delta-interval D
serves to batch deltas locally before sending them periodically. Once an operation
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is received from a client, a corresponding delta is returned by md , which is then
merged to the local state and joined to D for later dissemination to a random node.
Once a delta interval is received, it gets merged to the local state as well as the local
delta-interval buffer—to be sent to other nodes. Finally, deltas that have been sent to
all nodes are garbage-collected from D.

inputs:
ni 2 P(I), set of neighbors

durable state:
Xi := ? 2 S, CRDT state
ci := 0 2 N, sequence number

volatile state:
Di := {} 2 N ,! S, sequence of �s
Ai := {} 2 I ,! N, ack map

on operationi(m
�)

d = m
�(Xi)

X
0
i = Xi t d

D
0
i = Di{ci 7! d}

c
0
i = ci + 1

on receivej,i(delta, d, n)
if d 6v Xi then

X
0
i = Xi t d

D
0
i = Di{ci 7! d}

c
0
i = ci + 1

sendi,j(ack, n)
on receivej,i(ack, n)

A
0
i = Ai{j 7! max(Ai(j), n)}

periodically // ship delta-interval
j = random(ni)
d =

F
{Di(l) | Ai(j)  l < ci}

sendi,j(delta, d, ci)
periodically // garbage collect �s

l = min{n | ( , n) 2 Ai}
D

0
i = {(n, d) 2 Di | n � l}1

Figure 4.23: Basic causal anti-entropy protocol satisfying the delta-merging condition.

Additional pedantic details. A catalog of many delta-state CRDT specifications
like counters, sets, registers, maps, etc., can be found in [97, 182]. There are also
several optimizations that are beyond the scope of this book. For instance, the tags in
the tombstone set can be compressed further in a single version vector and few tags.
This helps generalizing the specifications to use a common causality abstraction per
all datatypes [182]. Furthermore, the causal anti-entropy protocol can consider other
conditions to improve performance, e.g., through considering transitive propagation
of deltas or sending a complete state once a delta does not help, e.g., a node was
unavailable for a long time. In this particular case, other useful alternatives to define
deltas by join decomposition can be found in [194].

4.3.3 A case study: dataClay distributed platform
We now present a case study to demonstrate the practical use of CRDTs in a real
distributed system: dataClay distributed platform [184, 185]. The aim is to give the
reader an applied example of CRDTs showing how they can make the developers
life easier. For that purpose, we try to be direct and simple to help the reader getting
started.

dataClay. A distributed platform aimed at storing, either persistently or in
memory, Java and Python objects [184, 185]. This platform enables, on the one hand,
to store objects as in an object-oriented database and, on the other hand, to build
applications where objects are distributed among different nodes, while still being
accessible from any of the nodes where the application runs. Furthermore, dataClay
enables several applications to share the same objects as part of their data set.
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S = I ,!N

s0
i = {}

inci(m) = m{i 7! m(i)+1}
vali(m) = Â

r2dom(m)

m(r)

mtm0 = max(m,m0)

Figure 4.24: State based GCounter CRDT, on replica i.

dataClay has three interesting properties. The first is that it stores the class
methods in addition to the data. This functionality has several implications that help
application developers use the data in this platform: (1) data can only be accessed
using the class methods (no direct field modifications) and thus class developers can
take care, for instance, of integrity constraints that will be fulfilled by all applications
using the objects; and (2) methods can be executed over the objects inside the plat-
form, without having to move the data to the application. The second property is that
objects in dataClay are not flat; and they can rather be composed of other objects, or
language basic types, like in any object-oriented language. Finally, dataClay enables
objects to be replicated to several nodes managed by the platform in order to increase
tolerance to faults and/or execution performance by exploiting parallelism.

The case for CRDTs. Despite fully replicating the data (and class definitions) to
improve tolerance to faults, dataClay does not natively implement any synchronization
scheme between replicas since some applications (or modules of an application) can-
not afford paying the synchronization price [195, 186]. Consequently, to provide this
flexibility, dataClay tries to offer mechanisms for class developers to implement the
consistency model their objects may need. Nevertheless, building such mechanisms is
always tedious and, most importantly, synchronization implies a performance penalty
and lack of scalability [189]. Here is where CRDTs come into play to provide a
relaxed consistency and seamless plug-and-play conflict resolution for the replicated
objects across the platform. Furthermore, given that code is part of the replicated data,
the class developers can implement CRDTs and dataClay itself will guarantee that
the update rules will be followed regardless of the application using them.

Using CRDTs. For replicating objects, dataClay can provide the developer
with a library for CRDTs to be used in the classes and maybe through composing
objects. Given that dataClay’s system model is a graph-like Peer-to-Peer system, it
is more desirable to use the state-based CRDT model since no RCB middleware is
required. By using CRDTs, any application can modify the data objects without prior
synchronization with other replicas or applications. Once the changes are propagated,
CRDTs can eventually converge to the same value. In order to show how CRDTs
are mapped to dataClay, we provide a simple example on a Grow-only Counter
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(GCounter) CRDT [181, 97]. We choose the counter being a simple example and at
the same time shows how a semi-lattice can be different from the AWSet discussed
before.

The GCounter specification is conveyed in Figure 4.24. In this design, the state S
is defined as a map from node IDs to a natural number corresponding to the increments
done locally. As inc mutator shows, a node can only increment its own key, whereas
the val query function returns the sum of all keys from all nodes. Once a (whole) state
is propagated, the merge is done through taking the maximum counter corresponding
to each key. For instance, in a system of three nodes, the following two GCounters
are merged as follows: (1,4,5)t (3,4,2) = (3,4,5). In the Java implementation of
the GCounter presented in Figure 4.25, the state is coded as a hash map to enable
the addition of new replicas on the fly, without any kind of synchronization and/or
notification as part of the CRDT. In this code, the increment method pushes the new
version of the hash map to all existing replicas to have the last up-to-date version and
recover any potentially missed update from another node. We leave the details of the
code as an exercise to the reader.

Class deployment. As mentioned above, dataClay also replicates the class defini-
tions to be used by the applications across the systems and to allow method invocations
close to the data. For this purpose, once a class is updated, the different versions must
be coordinated to avoid conflicts in the semantics of the corresponding class instances.
In order to allow for these updates in a loosely coordinated fashion, the classes can
be designed as a Set CRDT associated with the class version. When a class update
is made somewhere by any developer, the changes are deployed everywhere in the
system, but they cannot be used until all replicas in the system see the new change.
This concept is similar to the causal stability feature provided by the Tagged RCB
presented before. In particular, although not all nodes detect causal stability of a
version at the same time, once any node detects this, it is safe to start using that
version. The reason is that causal stability ensures that the version has been delivered
by all nodes in the system, and thus, the new class updates can be fetched to be used
in the future. Notice that we are talking about class deployment here, but the designer
must consider the compatibility between the old and the new versions, e.g., if some
class instances already exist.

4.3.4 Conclusions and Future Directions
CRDTs make using replicated data less cumbersome to developers and correct being
mathematically designed abstractions. However, they can only be useful when the
application semantics allow for stale reads and favor immediate writes. CRDTs exist
for many datatype variants of counters, sets, maps, registers, graphs, etc. They can
however be extended to other types as long as operations are commutative or can be
made so.

This section presented two main variants for CRDTs and their important opti-
mizations. Some of the tradeoffs are understood, while others require future empirical
investigation. Op-based CRDT designs are more intuitive to design and can be
used once a reliable causal middleware is available. If it is possible to extend the
middleware API, once can use pure op-based CRDTs to reduce the overhead of
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Figure 4.25: An implementation for GCounter CRDT in dataClay.

dissemination and storage. On the other hand, state-based CRDTs are more tolerant
in hostile networks and gossip-like systems being natively idempotent: data can
arrive though different nodes and get merged safely. Despite being easy to use in
practice, state-based CRDTs can be expensive on dissemination when the state is
not small. Consequently, it is recommended to use the delta-state CRDT alternative
that significantly reduces the dissemination cost if a convenient causal anti-entropy
protocol can be deployed. Furthermore, hybrid models of these variants can have
tradeoff properties, and are interesting to study in the future work. Finally, it would be
promising to investigate the feasibility of CRDTs in other system models and research
areas like Edge Computing or Blockchain.
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4.4 Summary

Given current projections for data growth and the needs for increased data processing,
ultrascale systems face significant challenges for keeping up both with data storage
and access. This chapter has examined approached to tackle the efficiency of data
storage and access at three levels: the storage level via an efficient key-value store,
the workflow-level via a locality aware workflow management systems, and the
algorithmic-level via the use of conflict-free replicated data types.

Midterm challenges related to data management in Ultrascale system will require
more research in topics related to:

HPC and data analysis: Understand and realize the close relationship between HPC
and data analysis in the scientific computing area and advances in both are
necessary for next-generation scientific breakthroughs. To achieve the desired
unification, the solutions adopted should also be portable and extensible to future
Ultrascale systems. These systems are envisioned as parallel and distributed
computing systems, reaching two to three orders of magnitude larger than today’s
systems.

Embrace and cope with new storage device technologies: The appearance of new
storage device technologies carry a lot of potential for addressing issues in these
areas, but also introduce numerous challenges and will imply changes on the
way data is organized, handled, and processed, throughout the storage and data
management stack.

Shift from performance to efficiency: Instead of only or mostly considering abso-
lute performance as the driving force for new solutions, we should shift our
interest to considering the efficiency at which infrastructures are operating.
This is becoming more important as the size at which future infrastructures are
required to operate continues to scale with application requirements.

To face those challenges, we will need to enforce the convergence of HPC, Ultra-
scale and Big Data worlds. Storage, interconnection networks and data management
in both HPC and Cloud needs to cope with technology trends and evolving application
requirements, while hiding the increasing complexity at the architectural, systems
software, and application levels. Future work needs to examine these challenges
under the prism of both HPC and Cloud approaches and to consider solutions that
break away from current boundaries. Moreover, future applications will need more
sophisticated interfaces for addressing the challenges of future Ultrascale computing
systems. These novel interfaces should be able to abstract architectural and opera-
tional issues from requirements for both storage and data. This will allow applications
and services to easier manipulate storage and data, while providing the system with
flexibility to optimize operation over a complex set of architectural and technological
constraints.
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