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SUMMARY

Traffic Sampling is viewed as a prominent strategy contributing to lightweight and scalable network
measurements. Although multiple sampling techniques have been proposed and used to assist network
engineering tasks, these techniques tend to address a single measurement purpose, without detailing the
network overhead and computational costs involved. The lack of a modular approach when defining the
components of traffic sampling techniques also makes difficult their analysis. Providing a modular view
of sampling techniques and classifying their characteristics is, therefore, an important step to enlarge the
sampling scope, improve the efficiency of measurement systems, and sustain forthcoming research in the
area. In this context, this paper defines a taxonomy of traffic sampling techniques based on a comprehensive
analysis of the inner components of existing proposals. After identifying granularity, selection scheme
and selection trigger as the main components differentiating sampling proposals, the study goes deeper
on characterizing these components, including insights into their computational weight. Following this
taxonomy, a general-purpose architecture is established to sustain the development of flexible sampling-
based measurement systems. Traveling inside packet sampling techniques, this paper contributes to a clearer
positioning and comparison of existing proposals, providing a road map to assist further research and
deployments in the area.
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1. INTRODUCTION

The growth in size and heterogeneity of today’s communication networks has brought huge
challenges to network planning and management activities. The need for efficient monitoring
solutions, being crucial to assist service providers and network managers in these activities, is
further stressed when considering recent paradigms such as Next Generation Networks and Cloud
Computing, where aspects such as service convergence, mobility, virtualization and ubiquity are
expected to coexist in a seamless network environment.

The most used and versatile strategy designed to assist network monitoring is traffic measurement.
Traffic measurement techniques can be applied in real, emulated or simulated networks and the
measurement points can be deployed directly in the network nodes, in dedicated equipment or in
general-purpose devices connected to the network under analysis.

The huge traffic volume traversing high-capacity links, the distinct accuracy requirements
associated with service types or monitoring activity, and the positioning of measurement points
are main challenges when designing a measurement strategy. Assuming that monitoring activities
should not interfere with the normal network operation, passive measurement methodologies adopt
a non-intrusive approach, i.e., they are based on real traffic in the network under analysis, in
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contrast to active measurement methodologies that resort to intrusive traffic, i.e., probe packets are
injected into the network for measurement purposes. A major difficulty associated with the usage of
passive measurements is the volume of traffic involved, resulting in high-resource requirements for
processing, storage and transmission of data [1]. Hence, the most common strategy used to mitigate
this challenge is traffic sampling. Sampling consists of selecting a subset of packets that will allow
to estimate parameters about all traffic, with compatible degrees of accuracy, avoiding processing
it completely. In this way, packet sampling has become mandatory for effective passive network
measurements, especially in the network core, reducing the amount of data to a manageable size
[2].

Despite the substantial research work regarding packet sampling, the majority of existing
proposals are focused on specific network measurement tasks, aiming at increasing the accuracy
estimation of a single network metric or a small set of metrics. This scenario hampers the
development of an encompassing measurement strategy based on traffic sampling able to support a
large range of network management and planning activities, in a scalable way.

To sustain the development of configurable and efficient sampling techniques it is crucial to
identify and understand the distinct features inherent to sampling. Analyzing sampling techniques
through its constituent parts rather than a closed unit will allow to address issues such as accuracy
estimation, sampling data overhead and computational weight within a narrower and simpler scope.
A survey of the current literature on the topic reveals that a comprehensive classification of sampling
techniques, including adaptive and hybrid techniques, and their inner components is still missing.

In this context, this work defines a taxonomy of sampling techniques with the aim to clarify
sampling concepts and to provide a common ground for current and forthcoming research
involving traffic sampling. By looking inside of traffic sampling techniques and identifying their
main components, this taxonomy provides a modular view of sampling which can be explored
both to adjust sampling configuration to specific measurement requirements and to enhance the
performance of network measurement systems. In the classification criterion, the granularity,
selection scheme and selection trigger are identified and proposed as the main components
distinguishing current proposals. A comparative study demonstrates the taxonomy ability in guiding
the modular design of classical and emerging sampling techniques. In addition, based on our
previous work evaluating the computational requirements of different sampling techniques [3], some
advices are given regarding the computational weight of each component and their suitability for
specific network measurement tasks.

Taking the proposed taxonomy into consideration, we advocate a three-layer measurement
architecture addressing key components to sustain a versatile and lightweight measurement strategy.
This architecture has grounded the development of a traffic sampling framework able to be applied
in both online and offline measurement scenarios.

The remaining of this paper is organized as follows: the related work is discussed in Section 2;
the main characteristics of sampled-based measurement systems are introduced in Section 3; the
proposed taxonomy of sampling techniques is presented in Section 4, including a comparison of
current sampling proposals; and the conclusions are drawn in Section 5.

2. RELATED WORK

Traffic sampling techniques sustain a broad range of network tasks. As illustrated in Figure 1,
examples of these tasks include:

(i) network management involving short, medium and long term planning and management of
network operation, maintenance and provisioning of network services [4][5];

(ii) traffic engineering involving performance optimization, traffic characterization, traffic
modeling and control [6][7][8];

(iii) performance evaluation of protocols and management tools, network reliability and fault
tolerance [9][10][11];
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Figure 1. Usefulness of sampling

(iv) network security, including anomalies and intrusion detection, botnet and DDoS (Distributed
Denial of Service) identification [12][13][14][15];

(v) SLA (Service Level Agreement) compliance, where auditing tools may resort to network
sampling for measuring and reporting service levels [16];

(vi) QoS control, an area widely assisted by sampling, for measuring parameters such as delay,
jitter and packet loss [17][18][19]. Most of these techniques claim better performance for
each network task when compared with approaches widely deployed in measurement points,
such as [1] [20].

Existing surveys on sampling usually assess the impact of packet sampling on various network
monitoring activities [21] [22] [23] [24], identify the challenges of applying sampling and analyzing
sampled network measurements [25] [26], or study the performance of traffic selection schemes [23]
[27]. However, they usually do not address new sampling approaches such as adaptive techniques,
restricting the analysis to the classical techniques referred in [1].

As regards the classification of traffic sampling techniques, a review of the literature demonstrates
that none of the existing proposals define structurally all the components involved in sampling.
Initial proposals for classifying traffic sampling techniques [28] were further developed and
standardized within IETF [1]. These proposals classify the techniques concerning the packet
selection scheme in use, e.g. systematic or random sampling, but exclude more elaborate sampling
schemes. In [25], the relationship between traffic sampling and traffic aggregation aiming at data
reduction on passive Internet measurements is introduced. This strategy involves grouping traffic
streams according to flow keys observed within a period of time, instead of individual packets. The
selection policy concepts are discussed in [2], however, the study is limited to count and event-driven
approaches.

The present study, parsing classical and recent sampling proposals, brings an added value to the
field, establishing a reference classification platform and a comparative overview for helping future
research. Moreover, useful insights are given into the computational weight and the suitability of
each approach for main network tasks. This knowledge allows designing more efficient and scalable
sampling techniques.

3. SAMPLING-BASED MEASUREMENT SYSTEMS

Aiming at fostering the deployment of encompassing and flexible measurement strategies, this
work proposes a three layer sampling architecture covering the main elements involved in traffic
measurements. Each layer is modularly designed, which provides flexibility to accommodate
mechanisms able to enhance the overall performance in current and forthcoming measurement
scenarios.
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3.1. Sampling concepts

Traffic sampling techniques share a set of concepts sometimes presented in an ambiguous way.
To avoid inconsistencies, the most common terms are assumed in accordance with the following
definitions:

• Sample - subset of network packets that are selected at the measurement point and then
considered in the estimation of network parameters. This is also often referred as sample
event, which consists in an individual action of selection and capture of packets from the
stream under analysis;

• Sample size - number of packets or time interval in which all incoming packets at the
measurement point are selected and captured to compose a sample. The sample size is
controlled by triggers, that are responsible for starting and finishing each sample taking into
account the packet position into the stream or its timestamp at the measurement point;

• Interval between samples - number of packets or time interval in which all incoming packets
are ignored for measurement purposes. Likewise the sample size, the manipulation of interval
between samples also resorts to triggers.

Figure 2 illustrates the above concepts.

Figure 2. Basic sampling concepts

3.2. Measurement architecture

A sampling-based measurement architecture is foreseen as comprising three planes, as illustrated
in Figure 3. The management plane includes tasks deployed directly in measurement points or
in external management entities, namely: (i) map the measurement needs related to a specific
network task into the more suitable sampling technique and its operational parameters; (ii) select
and communicate with the measurement points which will perform packet sampling in order to
set them up; and (iii) process the measurement results and provide a visualization component,
when applicable, based on reports produced by the control plane. This also involves identifying
an information model able to define managed objects in the network independently of specific
implementations or protocols in use [29], as well as a standardized way for encoding information
related to the sampling process, exporting and storage of the sampled data. In this way, the more
comprehensive information model for packet sampling is the extended version of the IPFIX (IP
Flow Information eXport) for PSAMP [30], which includes properties required by packet sampling
reports that cannot be modeled using the basic IPFIX information model [31].

A modular design of the control plane allows a flexible sampling technique selection and
configuration. Considering IETF PSAMP work and recent sampling proposals, a sampling
taxonomy is here proposed to identify the inner characteristics distinguishing sampling techniques
(see Section 4). The taxonomy also supports the definition of new sampling techniques which can
be adjusted to each traffic/service measurement scenario.

In the control plane, the sampled packets received from the data plane are processed and the
relevant field contents are extracted according to the network task measurement needs. These values
are then aggregated (both in time and space) and exported following IETF guidelines (RFC6728,
RFC6313), and using IPFIX specifications.

At the data plane, following the sampling rules defined in the control plane, packets are collected
from the network link for subsequent use. Due to performance issues involved in reading packets
from network links, mainly in high-capacity networks, the processes implemented in this plane must
be kept simple, avoiding processing overhead. In this way, after collected, the unprocessed packets
are reported to the control plane to be processed.
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Figure 3. Architecture description

Regarding packet capturing, the measurement point implements an interface, also called capture
device, which may be a NIC or any other device able to reading and collecting packets from
the monitored link. In wired networks, where most traffic measurements are performed, the
capture interface can be positioned in-line and in mirroring mode. While in in-line mode, the
measurement point is directly connected to the monitored link between two hosts, usually resorting
to a network tap that duplicates all observed traffic through passive splitting (on optical fiber links)
or regeneration (in electrical copper networks), in mirroring mode, the network device forwarding
packets can mirror packets from one or more ports to another port, in which the measurement point
device is attached.

Considering that packets have to traverse several layers from the interface to the library (which is
located at the top of the operating system’s network stack), the overall capture performance depends
on the efficiency in handing over packets from the capture device interface to the upper plane via
the packet capture library. One of the various strategies proposed to improve this process is using
a memory mapping technique in order to reduce the cost of copying packets from kernel-space to
user-space through DMA (Direct Memory Access) [32].

Articulating the measurement scope, the required information model and the adequate sampling
strategy is a major design issue for achieving an encompassing and efficient sampling solution. In
this context, we have implemented a flexible sampling framework in order to select and configure
each sampling technique according to the measurement purpose [33]. The framework allows to
combine the sampling components defined above, and can be applied to both online and offline
measurement scenarios.
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4. TAXONOMY PROPOSAL

A wide coverage of the related literature shows that most of the sampling techniques, whether simple
or complex, share a set of structural components, based on standard schemes, or as new strategies,
arranged orthogonally with classical schemes or completely disjunct. In this way, describing these
components in a modular and hierarchical structure able to foster a flexible and simple deployment
of a comprehensive number of techniques represents a key role toward effective measurement
systems based on sampling.

With the aim to provide a common ground for current and forthcoming sampling proposals,
the proposed taxonomy fragments the sampling techniques into three well-defined components
according to the granularity, selection scheme and selection trigger in use. Then each component is
further divided into a set of approaches commonly followed in both classic and recently proposed
sampling techniques. An overview of the taxonomy is illustrated in Figure 4, where:

Figure 4. High-level view of sampling taxonomy

• Granularity - identifies the atomicity of the element under analysis in the sampling process: in
a flow-level approach, the sampling process is only applied to packets belonging to a flow or to
a set of flows of interest; in a packet-level approach, packets are eligible as single independent
entities;

• Selection scheme - identifies the function defining which traffic packets will be selected and
collected; this scheme may follow a deterministic, a random or an adaptive function;

• Selection trigger - determines the spatial and temporal sample boundaries; it may use a time-
based approach, a count-based approach or an event-based approach.

4.1. Granularity

This component identifies which segment of traffic is considered in the sampling process and in the
data reporting format. During the selection of packets, the sampler may consider all traffic traversing
a measurement point or just part of it, targeting specific flows of interest. Generally, this decision
depends on the network task (or measurement objective to fulfill), the network parameters being
monitored, and the available communication and computational resources.

4.1.1. Flow-level Sampling According to RFC3697 [34], a flow is defined as a stream of packets
sent by a particular source to a unicast, anycast or multicast destination, which exhibits specific
properties or attributes in common. Traditionally, these properties (also called a flow key) are
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identified based on five fields (5-tuple) of the packet header, namely source and destination IP
addresses, source and destination ports, and type of protocol. In addition, RFC 2724 [35] and RFC
7011 [36] extend flow identification based on application layer information, MPLS (Multiprotocol
Label Switching) labels or fields derived from packet treatment (e.g., next-hop IP address, etc.).

In terms of traffic sampling, the flow-level approach consists in applying the traffic capture policy
only to packets belonging to a flow or a set of flows of interest. This involves classifying packets
into flows before or during the sampling process [25]. Although considering a subset of flows may
reduce the volume of data captured, stored and transmitted by the measurement point, this approach
may increase the computational weight insofar all incoming packets must be processed to identify
which flow they belong to. It also requires prior knowledge of which flows should be measured or
some strategy to decide automatically which flows should be sampled.

Note that flow-level sampling is different from flow sampling (discussed in RFC 7014 [37]), that
consists in capturing all packets that belong to a particular flow. Nevertheless, the strategies used
in selecting flows, presented in [37] (i.e., systematic and random), also may be applied to flow-
level sampling context. In addition, different strategies can also target specific flows according to
the measurement purpose. An example is the method introduced in [38], called smart sampling,
that addresses the correct estimation of flow size distribution. These strategies are presented below
already considering the necessary adaptations toward flow-level sampling:

• Deterministic flow selection - resorts to a deterministic function in which a set of flows are
selected according to the number of flows arriving at the measurement point or during a time
interval of observation. In the first case, the measurement point selects every N th arriving flow
to be considered for sampling, independently of the traffic type. Flow selection is then based
on the first packet of a flow, upon which a counter is increased every time a packet belonging
to a new flow arrives at the measurement point. If the counter is increased to a multiple of N ,
this flow will be considered for packet sampling. In the second approach, the packets from
every flow observed at the measurement point between a time-based interval are elected to
participate in the sampling process [37].

• Random flow selection - is based on a random process to select flows following a n-out-of-N
or a probabilistic scheme. In n-out-of-N, n flows are selected out of the parent population,
which consists of N incoming flows. It may involves generating n different random numbers
in the range [1,N ] and then selecting all flows with arrival position equal to one of the random
numbers. In probabilistic flow selection, the decision of whether or not a flow is selected
to participate in packet sampling follows a predefined probability that may be uniform (i.e.,
with the same selection probability for all flows) or non-uniform (i.e., where the selection
probability can vary for different flows). The probabilistic scheme implies that the number of
selected flows can vary [37].

• Smart sampling - aims at enhancing the ability to identify accurately the distribution of the
traffic by controlling the flows that will participate in the sampling process according to a
threshold previously defined. For every incoming flow, the measurement point maintains a
counter with the size of the flow (in bytes or number of packets), then flows of size greater
than the threshold are always selected, while smaller flows are selected with a probability
proportional to their size [38].

Some works have demonstrated that conducting sampling only to a specific set of flows of interest
can improve the estimation accuracy for tasks sensitive to flow sizes [39]. For instance, while traffic
accounting targets mainly flows of large sizes [12], anomaly detection targets flows of small sizes
[6]. In addition, as a group of packets share the same features (i.e., flow key), it is possible to
aggregate flows and thereby reduce the storage and transmission requirements to a manageable
amount. In this way, flow-level sampling is expected to comply with IPFIX - IP Flow Information
Export (RFC5470 [40], RFC6183 [41]).

4.1.2. Packet-level Sampling In this approach, incoming packets to a measurement point are
considered single independent entities. Conversely to flow-level sampling, at packet-level the
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packets do not need to be previously classified into flows, which may reduce drastically the
computational requirements of processing every packet. Furthermore, collecting packets indistinctly
turns packet-level sampling into a flexible and appropriate solution to be used in general purpose
measurement tasks and aggregated estimations, in presence of diverse traffic types.

On the other hand, packet-level sampling may be difficult to deploy over large and high-
speed networks, due to the challenges regarding the storage and transmission of measured data
in environments with many flows.

There are many sampling techniques based on packet-level granularity and, following the
increasing importance of traffic sampling, Cisco Systems has introduced a module in its tool
for traffic monitoring - NetFlow. By default, NetFlow processes all incoming packets at the
measurement point, keeping incremental statistical data about each flow in a cache memory. This
requires high-processing resources, mainly in presence of high-speed links. In Sampled NetFlow
a systematic selection scheme (discussed in Section 4.2.1) is used to process uniquely a subset of
packets arriving at a defined interface, then flow records are assembled over the sampled packets.
Furthermore, a random selection scheme (discussed in Section 4.2.2) was included in the tool aiming
to increase the accuracy of the available statistics. Note that, although Netflow and Sampled Netflow
are flow-based tools (state information is maintained per flow), in fact, the sampling selection
scheme is packet-based, justifying the inclusion in this section.

As regards the exporting of sampled packets, a protocol based on IPFIX informational model
(RFC5102 [42]), modified to report on single packets rather than on flows, is presented in RFC5474
[43]. This protocol defines mandatory contents for basic reports and an extended version able to
include all fields required in RFC5102 [42].

4.2. Selection Scheme

The selection scheme identifies the selection function that determines the pattern under which
packets will be selected and collected. This scheme can follow a systematic, a random or adaptive
function.

4.2.1. Systematic Sampling In systematic sampling, the process of packet selection is ruled by
a deterministic function which imposes a fixed sampling frequency, independently of the packet
contents or treatment. In this scheme only equally spaced traffic portions are collected, i.e., sampling
triggers are periodic (see Section 4.3) [1].

This approach is usually simple to develop and deploy, however, there is an inherent risk of
obtaining biased samples if the packets being sampled exhibit a periodic structure which is rationally
related to the deterministic function. This may lead to inaccurate results in parameter estimation
due to the deterministic behavior of sampling and to the bursty nature of network traffic. Another
potential drawback is that systematic sampling is to some extent predictable and, hence, open to
deliberate manipulation [25].

Regarding the computational weight (e.g., CPU load and memory usage), the resources required
by systematic techniques are directly related to the sampling frequency [3]. As discussed in [44] for
flow accounting, the definition of the optimal number of samples depends on the expected accuracy,
therefore, the accuracy level also impacts on the resources required.

4.2.2. Random Sampling The random selection scheme aims to avoid biasing samples by ruling
the sampling frequency through a random process, usually resorting to a pseudorandom generator
or to a probabilistic function.

The pseudorandom approach tries to avoid predictability choosing values exponentially
distributed (for time-based trigger, discussed in Section 4.3) or geometrically distributed (for count-
based trigger, discussed in Section 4.3.2) [25]. A common strategy following this principle is
performed by inducing the random function generator to converge to a required sampling rate,
ensuring that the sampling frequency distribution is limited by maximum and minimum values. The
n-out-of-N technique presented in [1] and used in Cisco Sampled NetFlow follows this approach,
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where n packets are randomly selected from a traffic population of N packets, generating numbers
in the range [1, N ] and then selecting all packets that have the corresponding packet position.

As regards the probabilistic approach, the decision about the sampling frequency follows a
predefined probability density function. The probabilistic function can be uniform, where all
packets have an equal probability to be selected, or non-uniform, where the packets have different
probability of selection. In [13], it is introduced a sampling technique based on a probabilistic
scheme for anomaly detection, namely network scans, SYN flooding and worms. This technique
divides time into strata and then selects an incoming packet with a probability, which is a decreasing
function f of the predicted size of the flow the packet belongs to.

In [3], it is shown that for equivalent sampling frequencies, the random techniques require slightly
more computational resources than systematic sampling. The computational burden may however
vary according to the complexity of the probabilistic function adopted. As discussed in [2] [27],
there is no clear advantage in the choice of random or systematic sampling for traffic classification
and characterization.

Random approaches are also difficult to deploy for estimating multipoint metrics such as end-to-
end delay, even in flow-level approaches, as the sampling processes running on the measurement
points involved are not correlated, and there are no guarantees that samples will be composed by
the same packets [45].

4.2.3. Adaptive Sampling In this approach, the sampling technique is endowed with the ability
to change the selection of packets during the course of measurements. This flexibility aims at
identifying the most important parts of a traffic stream according to the measurement needs or
to save network resources during critical periods of its operation.

Adaptive packet sampling techniques can be based on linear prediction, fuzzy logic or other
particular adaptive strategies and mechanisms that consider the traffic behavior, the packet content
or the network status to rule sampling pattern changes. Although the use of an adaptive strategy
may suggest higher consumption of resources, some adaptive techniques may introduce less
computational weight, regarding CPU load and memory consumption, even when compared with
classical techniques [3].

The multiadapative sampling technique presented in [46] uses linear prediction to identify
changes in the network activity and therefore set a more suitable sampling pattern, by adjusting
accordingly the sampling frequency (manipulating the interval between samples) and the sample
size. This allows reducing the measurement overhead while keeping the accuracy in traffic
characterization.

In adaptive sampling techniques based on fuzzy logic, a controller adjusts the sampling rate based
on past experience of similar situations, determining the most suitable action for a particular traffic
condition or measurement requirement. Some of these proposals discuss the characteristics and
deployment of this type of controller, as in [47] and [48]. These approaches tend to require more
resources as long-time databases are required to store the knowledge about past situations. They
also tend to be less reactive and effective in accommodating new measurement needs.

4.3. Selection Trigger

In network measurements based on sampling, only a subset of all packets traversing the
measurement point is selected and considered to estimate network metrics. To achieve this, a trigger
is defined to determine the start and the end of a sample, and consequently the interval between
samples. In this way, a selection trigger is classified as time-based, count-based or event-based as
described below.

4.3.1. Time-based A time-based approach defines that the beginning and the end of a sample is
determined based on packet arrival timestamping. Its deployment consists of using a first countdown
timer within which all packets arriving at the measurement point are selected for the sample and a
second countdown timer within which all packets incoming are ignored for measurement purposes.
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As shown in Figure 5(a), when the trigger fires the beginning of a new sample, the measurement
point waits for the first bit of the next incoming packet and starts the collection. When the trigger
fires the end of sampling, the measurement point continues the collection until the last bit of the
current packet and then interrupts the selection process.

This may involve a simple deterministic function as discussed in [46], in which a systematic
selection scheme is used [1] (presented in Section 4.2.1), where the sample size and the interval
between samples are set at the beginning of the sampling process and remain invariant until the end.
In the adaptive approach presented in [18], the interval between samples is decided dynamically
based on the variance of an observed reference parameter while the sample size remains invariant.

In terms of performance, the work reported in [49] demonstrates that time-based triggers are
less robust than count-based when applied in traffic characterization, being affected by the bursty
nature of network traffic. However, they may be suitable for applications that require the analysis of
consecutive packets, such as IDS [50].

Traffic burstiness may also affect the volume of data involved in a sampling process, and hamper
the adoption of strategies which define the optimal number of samples beforehand (as it is difficult
to anticipate the number of packets arriving at the measurement point in each sampling interval). As
discussed in [3], the amount of data collected in time-based techniques is often higher than in count-
based ones. However, as there is no significant activity during the interval between samples, such
as packet counter increments (introduced in Section 4.3.2), this approach may achieve a significant
reduction in the ratio of CPU load and memory usage per MByte collected and stored.

4.3.2. Count-based The count-based approach defines that the beginning and the end of a sample
are driven for the spatial position of the packet within the traffic stream, using counters which are
independent of the packet arrival timestamp.

An example of using this approach involves a deterministic function in which the interval between
samples corresponds to a predefined number of packets that must arrive at the measurement point
before the beginning of a new sample. For this, the counter is decremented at every packet arriving
at the measurement point; when the counter reaches zero, a new sample starts. This strategy is used
in Sampled NetFlow and illustrated in Figure 5(b).

(a) Time-based

(b) Count-based

Figure 5. Example of time-based and count-based selection triggers

Having the possibility of anticipating which proportion of the traffic will be collected and stored,
count-based techniques are suitable for environments with limited resources, or for applications
where it is necessary to determine the optimal number of samples for a specific accuracy, as
discussed in [44]. In this approach, every packet arriving at the measurement point must be
processed to shift the packet counter, therefore, the computational weight involved is directly related
to the total load of the traffic under analysis [3].

4.3.3. Event-based In this approach the decision on when a sample starts and ends takes into
account some particular event observed in the traffic being monitored. This event may be some
value in the packet content, the treatment of the packet at the measurement point or a more complex
observation. The packet content corresponds to the union of the packet header (which includes link
layer, network layer, and other encapsulation headers) and packet payload [1]. Sampling techniques
based on this strategy may predefine some values of the packet header and then, all packets in
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which these values match are selected for the sample. This approach is usually called property
match filtering [1].

Hash-based techniques, such as presented in [51], are considered event-based, once the hash
function is applied to the packet contents and then the packet is selected if the hash value falls in a
selection range. This approach is sometimes used to emulate random sampling by selecting a proper
range of hash values. Although event-based allows collecting a specific range of packets of interest,
as it involves processing all incoming packets to identify the event. This may lead to workload
overhead in the equipment.

4.4. Hybrid Techniques

There are several techniques that combine approaches of the same taxonomy component, usually
from the selection trigger or selection scheme. These techniques aim at enhancing traffic sampling,
although the overlap increases the computational cost for traffic measurement.

An example of a hybrid technique is the use of an event-based trigger that fires upon observation
of a packet with specified contents, after which any incoming packets within the next t seconds
are selected to compose the sample, using a time-based approach [25]. This solution may also be
deployed in conjunction with a count-based approach by capturing the first n packets arriving at
the measurement point after identifying the event. As exemplified in Figure 6, the event is the first
packet of a new flow observed in the stream and the sample size is equal to 3. This strategy may be
of interest for traffic classification or security tasks.

Figure 6. Hybrid technique - event-based and count-based

4.5. Comparative Summary of Sampling Techniques

After exemplifying how sampling components can be articulated to establish a particular sampling
technique, this section provides a comparative summary on a comprehensive range of current
sampling techniques in light of the taxonomy defined in Section 4.

The sampling taxonomy presented before allows to classify both classical and recent sampling
techniques as well as to ground the definition of future proposals. Figure 7 exemplifies how the
components defined in the taxonomy can be organized to deploy a sampling technique. The resulting
sampling structure can be linear or hybrid (detailed in Section 4.4) depending on how sampling
approaches are elected per component.

Figure 7(A) corresponds to a technique defined in [1] and available in most deployed sampling
tools, e.g., Cisco NetFlow and sFlow. Although the technique represented in Figure 7(B) is
also defined in [1], it is scarcely deployed in the current network measurement panorama, even
considering its importance for IDS [50]. The technique represented in Figure 7(C) illustrates the
flexibility in deploying new sampling profiles. This technique might be used for monitoring a
specific service and adapting the sampling frequency in response to some event observed into its
own traffic. Some techniques able to be used in this context are presented in [12] [17].

Table I presents a summary of most used and referenced sampling techniques classified according
to the proposed taxonomy, highlighting the network task to which the technique is oriented to. This
comparative study, along with insights throughout this work, allows a clearer positioning of existing
sampling proposals, being both a contribution for further research in the area and a road map for
deciding on the most suitable sampling technique to use.
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Figure 7. Example of sampling technique composition

Table I. Taxonomy of sampling techniques

Sampling Proposals Granularity Selection scheme Selection trigger Network task
Pkt Flow Sys Rnd Adp Cnt Time Event

Adaptive
√ √ √

Traffic
linear prediction [47] engineering
Adaptive non-linear

√ √ √
Traffic

sampling [6] engineering
Adaptive random

√ √ √
Traffic

sampling [52] engineering
Adaptive statistical

√ √ √
QoS assurance

sampling [18] and control
Botnet-aware

√ √ √
Security

adaptive sampling[53]
Distributed adaptive
sampling [17]

√ √ √
QoS assurance
and control

Flow statistics
√ √ √ √

QoS assurance
trivial sampling [19] and control
Fuzzy regulator

√ √ √
Performance

adapt. sampling [54] evaluation
Hash-based

√ √ √
Traffic

sampling [1] engineering
Systematic

√ √ √
Traffic

count-based [1] engineering
Systematic

√ √ √ √
Traffic

SYN sampling [2] engineering
Systematic

√ √ √
Traffic

time-based [1] engineering
Modified FLC

√ √ √
Performance

sampling [48] evaluation
Multiadaptive

√ √ √
Traffic

sampling [46] engineering
Opportunistic

√ √ √
Security

sampling [12]
Random

√ √ √
Network

sampled NetFlow [55] management
Resource conserving

√ √ √
Performance

sampling [9] evaluation
Sample and

√ √ √
SLA

hold [51] compliance
Sampled

√ √ √
Network

NetFlow [55] management
sFlow [20]

√ √ √
Traffic
engineering
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5. CONCLUSIONS

Aware of the relevance and need of a common understanding in the traffic sampling arena, this
work goes inside packet sampling techniques establishing a comprehensive taxonomy of their
inner characteristics. After identifying granularity, selection scheme and selection trigger as the
main differentiating components of sampling proposals, the study has further detailed each of
these components, discussing also the involved computational weight. Following this taxonomy,
a general-purpose sampling-based measurement architecture has been proposed to assist the
deployment of flexible and lightweight measurement systems. Finally, classic and recent sampling
techniques have been compared taking into account the proposed taxonomy, highlighting their
applicability in the network management context.

Having demonstrated the ability to frame existing sampling techniques, future work will carry out
an extensive and systematic comparative analysis of each measurement task supported by packet
sampling. The aim is to provide reliable inputs to select the most suitable technique for specific
network scenarios and measurement goals. The full specification of all components in the proposed
sampling-based measurement architecture, covering aspects such as mapping the measurement
requirements into a suitable sampling technique and selecting the packet fields of interest, the
aggregation level and exporting format, is also a key aspect to be addressed in forthcoming work.
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