
INHABITATION MACHINES:
DETERMINISM AND PRINCIPALITY

Sandra Alves Sabine Broda

CRACS & CMUP
DCC - Faculty of Science, University of Porto

{sandra,sbb}@dcc.fc.up.pt

Abstract
Type-inhabitation is a topic of major importance, due to its close relationship to provability in
logical systems and has been studied from different perspectives over the years. In this paper we
revise the methods presented by Schubert et al. in 2015 for handling search for inhabitants in
the simply typed lambda calculus by the use of inhabitation machines. We make adjustments to
the definition of these machines, that allow us to process inhabitants in a deterministic way, as
well as to address the more complex problem of principality.

1. Introduction

In the simply typed λ-calculus, the problem of associating to a type a term that inhabits
it, which is known as type inhabitation, has been a major focus of research over the years.
Through the Curry-Howard isomorphism the problem is equivalent to provability of formulas
in the implicational fragment of propositional logic [12], and has crucial implications in the area
of proof-theory. Since normal forms in the λ-calculus correspond to Prawitz’s [15] notion of
normal deduction, algorithms for deciding type-inhabitation can be used for indirectly decide
provability. Note that typed λ-calculi derived from the Curry-Howard isomorphism led to the
development of theorem assistant tools, such as Coq, where proofs are formalized as programs,
which can be checked and executed, and which are valuable tools in the area of formal ver-
ification. The research carried out in the area led to a vast number of results, ranging from
the definition of algorithms for generating/counting terms/proofs, to the capture of complexity
classes, and the establishment of conditions guaranteeing the uniqueness of normal inhabitants
of a given type. For a non-exhausting list of references we point to [5, 7, 9, 18, 17, 11, 13]. The
subject has also been studied from the point of view of category-theory, where the uniqueness of
type inhabitants for a given typing was established through the verification of certain syntactic
constraints [2, 14, 3].

Recent work presented in [16], uses techniques from automata theory by defining inhabitation
machines that are able to recognise the set of all normal inhabitants of a type. An inhabitation
machine is an automata equipped with registers capable of storing a set of data elements, thus
allowing the machines to deal with an infinite alphabet. When processing tree representations

2 Sandra Alves, Sabine Broda

of terms these machines work locally, following the spine of the term. Therefore they are
non-deterministic and may require additional analysis to eliminate paths that do not lead to
successful computations. Still, the emptiness problem for the inhabitation machines, which
corresponds to the type inhabitation problem for the simply typed λ-calculus, proves to be
PSPACE-complete for these machines (the authors prove this result for a restricted version of
their ihnabitation machines, although one expects the same result to hold for the general case).
In fact, this is not surprising, since the inhabitation problem for simply typed λ-calculus is
long known to be PSPACE-complete [17], but nevertheless demonstrates the adequacy of the
proposed models, to deal with the inhabitation problem.

A more recent line of research [1], introduces the notion of pre-grammar, which is a set of
rules obtained from the structure of the type. From the pre-grammar of a given type one
can easily address the standard problems of type-checking as well as the emptiness problem.
Furthermore, from pre-grammars one can also address the emptiness problem using context
free grammars (CFGs) and corresponding deterministic pushdown automata (DPA). The PDA
implement acceptance by the empty stack, consequently the languages recognised by the gram-
mars/automata are deterministic and prefix free. This work draws inspiration from the work
by Schubert et al. [16] and the grammars proposed by Takahashi et al. [18], as well as the
Formula-Tree Method by Broda et al. [6, 8].

The aim of this paper is to build on these previous approaches, namely the notion of pre-
grammar and the inhabitation machines, to deal with the more complex (but closely related)
problem of principality. The problem of principal inhabitation was dealt within the context of
the Formula-Tree Method [6, 8], but no results were established regarding its complexity. The
main purpose of the present work is to revise the methods presented by Schubert et al, in order
to use the previous complexity results for the inhabitation machines, to establish complexity
bounds for the principality problem.

The paper is structured as follows. In the next section we introduce some preliminary notions
on λ-calculus, inhabitation machines and pre-grammars. In Section 3 we describe how to obtain
an inhabitation machine from a pre-grammar of a given type, and prove that it accepts exactly
the set of normal inhabitants of that type. This definition differs from that in [16] and leads to
automata that operate in a deterministic way. Moreover, after removing a particular type of
rules in the pre-grammars, the inhabitation machines are able to describe sets of long normal
inhabitants, which is the more adequate framework when one wants to tackle principality. This,
is done in Section 4. There, we supply the inhabitation machines with two additional global
registers, that during the run of a term capture all elements of that run necessary to address
principality of the term. We provide an algorithm to compute the principal type of the term
from the information contained in the additional registers and prove the correctness of our
methods. Finally, in Section 5, we draw some conclusions and highlight some future work.

INHABITATION MACHINES: DETERMINISM AND PRINCIPALITY 3

2. Preliminaries

2.1. Simply Typed Lambda Calculus and Inhabitation Machines

In this paper we assume familiarity with basic results on the simply typed λ-calculus as de-
scribed in [10] or [4]. Following [16] we consider the Church style approach. We denote type
variables (atoms) by a, b, c, . . . and arbitrary types by lower-case Greek letters α, β, γ A
(simple) type is either a type variable, or of the form (α → β), where α and β are types.
As usual, we assume associativity to the right, writing α1 → α2 → · · · → αn instead of
(α1 → (α2 → (· · · → αn))). The set of simple types is denoted by T . A context Γ is a finite set
of typed term variables of the form xα, where x ranges over an infinite countable set of term
variables, denoted by V , and α ∈ T . Terms of type α in the context Γ, written ΛΓ(α), are a
family of sets defined as the smallest family that satisfies the following conditions.

• xα ∈ Γ implies xα ∈ ΛΓ(α);

• if M ∈ ΛΓ(α→ β) and N ∈ ΛΓ(α), then MN ∈ ΛΓ(β);

• if M ∈ ΛΓ∪{xα}(β), then λxα.M ∈ ΛΓ(α→ β).

In this paper we consider λ-terms modulo α-equivalence. As such, without loss of generality, we
can assume terms to use different variable names in different abstractions, i.e. without bound
variable clashes. If Γ = ∅, we usually abbreviate ΛΓ(α) by Λ(α), which denotes the set of all
(closed) inhabitants of α. When writing typed terms we sometimes omit some of the types in
order to keep notation simple. As such, we might just write λxa→bya.xy, λxy.xa→by or even
λxy.xy, if convenient and when the typing is implicitly given. Following the notation in [10],
we will on occasions write o when referring to a particular occurrence of an object o. Given a
term M and an occurrence of a subterm N of M , let sc(N,M) denote the set of typed variables
xτ such that N is in the scope of some abstraction λxτ in M .

Occurrences of subtypes of a type α are called negative (resp. positive) as follows.

• α is a positive subtype of α;

• if α = β → γ, then every positive (resp. negative) occurrence of a subtype in β is a
negative (resp. positive) occurrence in α; and every positive (resp. negative) occurrence of
a subtype in γ is a positive (resp. negative) occurrence in α.

Note that every type α can be uniquely written as α = α1 → . . . αn → a, where a is a type-
variable and n ≥ 0. The type-variable a is called the tail of α. If n ≥ 1, then α1, . . . , αn are
called the arguments of α. An occurrence τ in α is called a negative subpremise of α if and
only if it is the argument of a positive occurrence of a subtype in α.

It is well-known that for every normal inhabitant M of a type α, every occurrence of xτ in M
corresponds to one particular occurrence of a subtype τ in α. The following lemma establishes
the relationship between occurrences of variables in abstraction sequences and occurrences
of subterms in a normal inhabitant M , respectively with negative subpremises and positive
occurrences of subterms in its type, and can be easily proved by induction on the length of M .

4 Sandra Alves, Sabine Broda

Lemma 2.1 Let M be a closed β-normal inhabitant of a type α. Then, the fact M ∈ Λ(α) can
be obtained (in a unique way) applying the following rules a finite number of times.

• If N = xτN1 · · ·Nm is an occurrence of a subterm in M and xτ ∈ ΓN , N1 ∈ ΛΓN (β1),
. . . , Nm ∈ ΛΓN (βm), for m ≥ 0, τ = β1 → · · · → βm → β, and ΓN = sc(N,M),
then N ∈ ΛΓN (β). Furthermore, τ is a negative subpremise and each βi (resp. β) in this
subpremise is a positive (resp. negative) occurrence of a subtype in α.

• If N = λxβ1 .N1 is an occurrence of a subterm in M and N1 ∈ ΛΓN∪{xβ1}(β2), for ΓN =
sc(N,M), then N ∈ ΛΓN (β1 → β2). Also, there is a positive occurrence of β1 → β2 with
α, with negative subpremise β1.

This unique derivation of M ∈ Λ(α) can be represented in the usual way as a tree with root
M ∈ Λ(α), and we will refer to it as the minimal derivation tree of M ∈ Λ(α).

A β-normal inhabitant of a type α is called a long normal inhabitant iff every variable occurrence
xτ , where τ = τ1 → · · · → τn → a, with n ≥ 0, is followed by the longest sequence of arguments
allowed by its type, i.e. has exactly n arguments. The finite set of terms obtained by η-reducing
a λ-term M is called the η-family of M and denoted by {M}η. It has been shown [5] that the
η-families of the long normal inhabitants of α partition the set of normal inhabitants of α into
non-overlapping finite subsets, each η-family containing just one long member. Thus, when
searching for normal inhabitants one might focus on the set of long normal inhabitants from
which all normal inhabitants can be obtained by η-reduction.

Example 2.2 Consider type α = ((o→ o)→ o→ o)→ o→ o which will be our running exam-
ple throughout this paper. Normal inhabitants of α are, for instance, M1 = λxτ1yτ2 .x(λzτ2 .y)y
and M2 = λxτ1 .x(λyτ2 .y), M3 = λxτ1yτ2 .x(λzτ2 .z)(x(λuτ2 .y)y), and M4 = λxτ1yτ2 .y, where
τ1 = (o → o) → o → o and τ2 = o. Note that M2 is not a long inhabitant, since variable
x(o→o)→o→o does not have sufficient (two) arguments.

Following [16], we also use a tree representation for terms, which is the format in which terms
will be processed by our automata/inhabitation machines. However, this representation is
restricted to β-normal terms and differs from that in [16], allowing us thereby to avoid the
notion of spine in our approach. As a consequence runs in our inhabitation machines will be
deterministic.

Definition 2.3 Given a β-normal term M , the tree tM is defined inductively by the following.

• The tree of M = λxτ .N has root node 〈λ, xτ 〉 with a unique subtree tN.

• The tree of M = xN1 . . . Nk has root node 〈var, xτ 〉 with k ≥ 0 subtrees tN1 , . . . , tNk.

Example 2.4 For M1 from Example 2.2 the tree tM1 is depicted below.

INHABITATION MACHINES: DETERMINISM AND PRINCIPALITY 5

〈λ, xτ1〉

〈λ, yτ2〉

〈var, x〉

〈λ, zτ2〉

〈var, y〉

〈var, y〉

Definition 2.5 A (single assignment) inhabitation machine A is a tuple 〈Σ, N,Q, qI ,R, δ〉,
where Σ = {λ, var} is a finite signature, N is an infinite set of data elements, Q is a finite set
of states, qI ∈ Q is the initial state, R is a finite set of register names, and δ ⊆ Σ×Q× (R∪
{∅})× ~Q×(R∪{∅}) is the transition relation containing rules written as a, q, r q1, . . . , qn, r

′

with n ≥ 0, a ∈ Σ and where ~Q denotes the set of finite (possibly empty) sequences of elements
in Q.

The machine traverses tree representations of λ-terms in normal form, as defined above. There
is a set Reg containing a register for every register name in R. During a traversal variable
names (elements of N) can be stored in the registers. We denote particular constellations of
the set of registers Reg by R1, R2, etc. To access the elements stored in registers, there exists
a function cont that given a particular constellation R of Reg and register name r returns the
content cont(R, r) of register r in R. A configuration of A in a tree t is a (finite) sequence
of tuples of the form ci = (ti, qi, Ri), where ti is a subtree of t, qi ∈ Q and Ri is a particular
constellation of Reg.

The operational semantics for such a machine A and term t is as follows. The initial con-
figuration is c = (t, qI , R∅), where all registers in R∅ are empty, i.e. cont(R∅, r) = ∅ for all
r ∈ R. A non-empty sequence c1, c2, . . . , cn with c1 = (t1, qi, R1) transitions to sequence
c1, . . . , ck, c2, . . . , cn if one of the following applies:

• t1 has root 〈λ, x〉 and a single subtree t′, there is some rule λ, qi,∅ q1, r in δ, k = 1,
and c1 = (t′, q1, R′), where R′ is obtained from R1 by updating register r with the addition
of variable x;

• t1 has root 〈var, x〉 and k ≥ 0 subtrees t1, . . . , tk, there is some rule var, qi, r
q1, . . . , qk,∅ in δ, x ∈ cont(R1, r), and for 1 ≤ j ≤ k one has cj = (tj, qj, R1).

The empty configuration sequence represents success. We say that A accepts a tree t if there
is a run from the initial configuration (sequence) c = (t, qI , R∅) to the empty sequence. The
set of normal terms M such that A accepts tM is denoted by L(A).

6 Sandra Alves, Sabine Broda

2.2. Pre-grammars

In this section we describe how to obtain for a type α a set of rewriting rules, which we call the
pre-grammar of α, and denote by pre(α). This device was first presented in [1] and has been
shown useful for addressing different kind of problems related to type inhabitation. In fact, [1]
also contains a simpler variant of a pre-grammar, based on subtypes instead of occurrences
of subtypes, which would be sufficient to deal with inhabitation here and actually produces
smaller inhabitation machines. Nevertheless, in Section 4 we need this more elaborate variant
of a pre-grammar in order to deal with principal inhabitants.

We start by associating to each type α a set OccT(α) that contains for each occurrence β of
a subtype β a tuple (β, n, l), where n ∈ N, and l ∈ {var} ∪ { n → m | n,m ∈ N }. Distinct
occurrences of the same subtype are assigned distinct tuples. This set is uniquely defined, up
to isomorphism between integers n used in the tuples.

Definition 2.6 Given a type α ∈ T let OccT(α) be the smallest set satisfying the following.

• For each occurrence of a type variable a in α there is a tuple (a, n, var) ∈ OccT(α);

• if β → γ is an occurrence of a subtype of α, and (β, n, lβ), (γ,m, lγ) ∈ OccT(α) are the
tuples corresponding to β and γ in this occurrence, then (β → γ, k, n→ m) ∈ OccT(α);

• for each n ∈ N there is at most one tuple (β, n, l) ∈ OccT(α).

Furthermore, given a particular occurrence of a subtype β of α we denote by n(β) the unique
integer n such that (β, n, l) ∈ OccT(α). We frequently will refer to n(β) as the identifier of β
w.r.t. OccT(α). Finally, t(n) = β, lab(n) = l, and N(α) = { n | (β, n, l) ∈ OccT(α) }.

In order to deal correctly with the correspondence between occurrences of subtypes and occur-
rences of subterms, polarities have to be taken into account. With this purpose, and whenever
convenient, we might superscript an integer n with + if n corresponds to a positive occurrence
of a subtype, i.e. an occurrence that can be the type of a subterm of an inhabitant, and with
− if it corresponds to a negative subpremise of α, i.e. if it corresponds to an occurrence that
can be the type of a variable in an abstraction sequence. Integers that correspond to a negative
occurrence, which is no subpremise, will not be superscripted.

We say that two integers n,m ∈ N(α) are equivalent w.r.t. OccT(α), and write n ≡OccT m, if
and only if they correspond to the same subtype.

Definition 2.7 Given a type α and the associated set OccT(α), the binary relation T (α) ⊆
N(α) × N(α) is defined by (k, n) ∈ T (α) iff (β, n,m → k) ∈ OccT(α), for some occurrence of a
subtype β, i.e., β = β1 → β2, lab(β1) = m and lab(β2) = k. Furthermore, for (k, n) ∈ T (α)
let q(k, n) = m.

Lemma 2.8 If α contains p occurrences of type variables a1, . . . , ap, then the graph of T (α),
whose set of nodes correspond to N(α), consists of p unary trees with roots lab(a1), . . . , lab(ap),
respectively.

INHABITATION MACHINES: DETERMINISM AND PRINCIPALITY 7

Example 2.9 For α = ((o → o) → o → o) → o → o from Example 2.2 the set OccT(α)
contains eleven tuples (β, n, l), where β, n and l are given below.

β n l
o 0 var

o 1 var

o 2 var

o 3 var

β n l
o 4 var

o 5 var

o→ o 6 0→ 1
o→ o 7 2→ 3

β n l
o→ o 8 4→ 5

(o→ o)→ o→ o 9 6→ 7
α 10 9→ 8

The equivalence relation ≡OccT partitions N(α) into four equivalence classes, which are {10+},
{9−}, {6+, 7, 8+}, and {0−, 1+, 2+, 3, 4−, 5+}. The associated graph T (α) is depicted below.

5+

8+

10+

1+

6+

2+ 3

7

9−

4− 0−
4

9

0 2

6

Now, pre(α) can be computed from OccT(α) and T (α) as follows.

Definition 2.10 Given a type α and a set of tuples OccT(α), we denote by pre(α) the smallest
set of rules satisfying the following conditions.

• If m−, n+ ∈ N(α) and n+ ≡OccT m
−, then n := m ∈ pre(α);

• if m−, k+, n+ ∈ N(α) and (β, n,m→ k) ∈ OccT(α), then n := λm.k ∈ pre(α);

• if m−s , n
+ ∈ N(α) and (m1,m2), (m2,m3), . . . , (ms−1,ms) ∈ T (α), for some s ≥ 2, n+ ≡OccT

m1, and q(mi,mi+1) = qi for 1 ≤ i ≤ s− 1, then n := ms qs−1 · · · q1 ∈ pre(α).

Example 2.11 From the sets OccT(α) and T (α) from Example 2.9 we obtain the following set
of rules pre(α).

10 := λ9.8 6 := λ0.1 | 9 6 2 := 9 6 2 | 4 | 0
8 := λ4.5 | 9 6 5 := 9 6 2 | 4 | 0 1 := 9 6 2 | 4 | 0

3. Inhabitation

In this section, given type α, we define how to obtain an inhabitation machine Aα from pre(α),
such that L(Aα) is the set of closed normal inhabitants of α.

Definition 3.1 Given a type α let Aα = 〈Σ, N,Q, qI ,R, δ〉, where Σ = {λ, var}, N = V,
Q = { qn | n+ ∈ N(α) }, qI = qn(α), R = { rn | n− ∈ N(α) }, and δ is defined as follows:

• if n := λm.k ∈ pre(α), then λ, qn,∅ qk, rm ∈ δ;
• if n := m i1 · · · ik ∈ pre(α), then var, qn, rm qi1 , . . . , qik ,∅ ∈ δ, where k ≥ 0.

8 Sandra Alves, Sabine Broda

Example 3.2 The inhabitation machine for α from Example 2.2 isAα = 〈{λ, var},V , Q, q10,R, δ〉,
where Q = {q1, q2, q5, q6, q8, q10}, R = {r9, r4, r0} and δ contains the rules below.

λ, q10,∅ q8, r9 var, q5, r9 q6, q2,∅ var, q2, r4 ∅
λ, q8,∅ q5, r4 var, q2, r9 q6, q2,∅ var, q2, r0 ∅
λ, q6,∅ q1, r0 var, q1, r9 q6, q2,∅ var, q1, r4 ∅
var, q8, r9 q6,∅ var, q5, r4 ∅ var, q1, r0 ∅
var, q6, r9 q6,∅ var, q5, r0 ∅

Now, consider M = λxy.x(λz.y)y, whose tree representation tM is isomorphic to the one in
Example 2.4. Below we depict the unique run of tM on Aα. We represent a change from one
configuration sequence to another by 〈a,x〉, where 〈a, x〉 is the root of the tree that is processed
(remember that by definition we always process the leftmost tuple in the configuration sequence
first). In this way, it becomes implicit which tree pertains to each of the tuples, and we may
omit them to shorten the presentation. The contents of the registers are displayed by sets
indexed with register names. The run starts with the initial configuration (tM , q10, [∅9, ∅4, ∅0]).

(q10, [∅9, ∅4, ∅0]) 〈λ,x〉 (q8, [{x}9, ∅4, ∅0]) 〈λ,y〉 (q5, [{x}9, {y}4, ∅0]) 〈var,x〉

(q6, [{x}9, {y}4, ∅0]), (q2, [{x}9, {y}4, ∅0]) 〈λ,z〉 (q1, [{x}9, {y}4, {z}0]),
(q2, [{x}9, {y}4, ∅0]) 〈var,y〉 (q2, [{x}9, {y}4, ∅0]) 〈var,y〉 ε.

Proposition 3.3 Given α ∈ T and a normal term M , the inhabitation machine Aα operates
in a deterministic way on tM .

Proof. We will show that for any configuration c1, c2, . . . , cn, with c1 = (t1, qi, R1), reached
from the initial configuration c = (tM , qn(α), R∅), there is at most one transition rule of Aα that
applies.

If the root of t1 is of the form 〈λ, x〉, then only transition rules of the form λ, qi,∅ qk, rm
apply. By definition, given i ∈ N(α), there can be at most one tuple (β, i,m → k) ∈ OccT(α)
and consequently at most one rule i := λm.k ∈ pre(α), as well as at most one transition rule
of the form above in δ.

If the root of t1 is of the form 〈var, x〉, then only transition rules of the form var, qi, rm
qi1 , . . . , qik ,∅ apply. There is a rule of this form if and only if there exist (mk,mk−1), . . . , (m1,m0)
∈ T (α) with m0 = m, mk ≡OccT i

+ and for 1 ≤ j ≤ k, q(mj,mj−1) = ij. Suppose that there
is another different transition rule of the form var, qi, rm′ qj1 , . . . , qjl ,∅ . Consequently, we
have the same conditions for this rule, in particular the condition m′l ≡occT i+. But, in each
(unary) tree in the graph of T (α) there is at most one node m′′ such that m′′ ≡occT i+. Thus,
mk and m′l must occur in two different trees and consequently also m and m′, which implies
that m 6= m′. Furthermore, M is supposed to have no bound variable clashes. Thus, variable
x can be present in at most one of the registers Rm or Rm′ . Consequently, by the definition of
the operational semantics of inhabitation machines, at most one of these transition rules can
apply. 2

Theorem 3.4 The language L(Aα) is the set of closed normal inhabitants of α.

INHABITATION MACHINES: DETERMINISM AND PRINCIPALITY 9

Proof. For the first part of the proof consider a closed normal inhabitant M of α, any
occurrence N of a subterm in M and the corresponding node N ∈ ΛΓN (β) in the minimal
derivation tree of M ∈ Λ(α), where ΓN = sc(N,M). Let RN be the constellation of Reg

such that for every occurrence of a subtype σ, register rn(σ) contains exactly the variables
in ΓN corresponding to that occurrence of σ. We will show, by structural induction on N
that (tN , qn(σ), RN) ∗ ε, where ∗ denotes the reflexive, transitive closure of . Then,
(tM , qn(α), R∅) ∗ ε and M ∈ L(Aα).

– Suppose that N = xτN1 · · ·Nm ∈ ΛΓN (β), xτ ∈ ΓN , Nj ∈ ΛΓN (βj) for 1 ≤ j ≤ m,
m ≥ 0 and τ = β1 → · · · → βm → β. Since τ is an occurrence of a subtype of α,
there is a rule n(β) := n(τ) n(β1) · · · n(βm) ∈ pre(α) and consequently a transition
rule var, qn(β), rn(τ) qn(β1), . . . , qn(βm),∅ ∈ δ in Aα. Since xτ ∈ Γn, we have x ∈
cont(RN , rn(τ)). Thus, the transition rule applies and
(tN , qn(β), RN) (tN1 , qn(β1), RN), . . . , (tNm , qn(βm), RN). Now, the result follows from the
induction hypothesis.

– Now, suppose that N = λxβ1 .N1 ∈ ΛΓN (β), with β = β1 → β2 and N1 ∈ ΛΓN∪{xβ1}(β2).
Then, there is a rule n(β) := λn(β1).n(β2) ∈ pre(α) and consequently a transition rule
λ, qn(β),∅ qn(β2), rn(β1) ∈ δ. Thus, (tN , qn(β), RN) (tN1 , qn(β2), RN1), where RN1 is
obtained from RN by updating register rn(β1) with the addition of variable x. Again, the
result follows from the induction hypothesis.

For the second part of the proof we show that given a normal term M and i ∈ N(α), if the
tuple (tM , qi, R) ∗ ε, then M ∈ ΛΓR(t(i)), where ΓR = { xt(n) | n ∈ N(α), x ∈ cont(R, rn) }.
Then for M ∈ L(Aα), (tM , qn(α), R∅) ∗ ε implies that M ∈ Λ(α). This part of the proof is by
induction on the length of the transition sequence from (tM , qi, R) to ε.

– Suppose that tM has root 〈λ, x〉 and a single subtree tN , and that the first transition is
by some rule λ, qi,∅ qj, rk to (tN , qj, Rk), where Rk has been obtained from R updating
register rk by adding variable x. Then, i := λk.j ∈ pre(α) and t(i) = t(k) → t(j). By

the induction hypothesis N ∈ ΛΓR∪{xt(k)}(t(j)). It follows that M ∈ ΛΓR(t(i)).
– Finally, suppose that tM has root 〈var, x〉 and k ≥ 0 subtrees tN1 , . . . , tNk , and that the

first transition is by some rule var, qi, rm qn1 , . . . , qnk ,∅ ∈ δ, such that x ∈ cont(R, rm)
to (tN1 , qn1 , R), . . . , (tNk , qnk , R). Then, there is a rule i := m n1 · · ·nk ∈ pre(α), t(m) =
t(n1) → · · · t(nk) → t(i) and xt(m) ∈ ΓR. By the induction hypothesis, Nj ∈ ΛΓR(t(nj))
for 1 ≤ j ≤ k. Thus, M ∈ ΛΓR(t(i)).

2

4. Principal Inhabitants

In this section we address the more complex problem of principal inhabitants. The methods we
present here are based on the syntactic characterisation of principal proof-trees given in [6, 8].
Following that approach, and since every principal normal inhabitant expands to a unique long
normal inhabitant that is also principal, we will from now on focus on long normal inhabitants.

10 Sandra Alves, Sabine Broda

Definition 4.1 An inhabitant M ∈ Λ(α) is called a principal inhabitant of α, if for every type
τ such that M ′ ∈ Λ(τ) and M ′ is structurally identical to M (that is, M ′ differs from M in the
types that annotate variables), then τ is an instance of α, i.e. can be obtained from α by some
type substitution. In this case, α is called the principal type of M . A principal long normal
inhabitant of α is a principal inhabitant in long normal form.

It has been shown in [1] how to change the definition of pre(α) in order to apply exactly to the
set of long normal inhabitants. For this, it is sufficient to drop in pre(α) all rules of the form
n := ms qs−1 · · · q1 such that lab(n) 6= var. The pre-grammar thereby obtained is denoted by
preL(α).

Example 4.2 The pre-grammar preL(α) for the set long normal inhabitants of α from Exam-
ple 2.2 is the following.

10 := λ9.8 6 := λ0.1 2 := 9 6 2 | 4 | 0
8 := λ4.5 5 := 9 6 2 | 4 | 0 1 := 9 6 2 | 4 | 0

The approach given in [6, 8] establishes that, in the beginning all occurrences of type variables
in α have to be made different. Here, this is already achieved by the association of different
identifiers to different occurrences of subtypes in OccT(α). In order to keep track of the ful-
filment of the conditions in the characterisation of principal proof-trees in [6, 8], we supply
our inhabitation machines with two additional global registers. We will also need to refer to
the identifier of the tail variable of an occurrence of a subtype with identifier n, which will be
denoted by tail(n). Note that tail(n) is the root of the (unary) tree in graph T (α), that
contains n.

Example 4.3 For instance, tail(10) = tail(8) = tail(5) = 5 in our running example.

Definition 4.4 A principal inhabitation machine P is a tuple 〈Σ, N,Q, qI ,R, id, needs, δ〉,
where Σ = {λ, var} is a finite signature, N is an infinite set of data elements, Q is a finite
set of states, qI ∈ Q is the initial state, R is a finite set of register names, id and needs are
two seperate registers, and δ ⊆ Σ×Q× (R∪ {∅})× ~Q× (R∪ {∅}) is the transition relation

containing rules written as a, q, r q1, . . . , qn, r
′ with n ≥ 0, a ∈ Σ and where ~Q denotes the

set of finite (possibly empty) sequences of elements in Q.

The machine traverses tree representations of λ-terms in a similarly way as above, updating in
every transition step the global registers id and needs. Now, the configuration of P in a tree
t is a tuple of arity 3, containing:

– a (finite) sequence of tuples of the form ci = (ti, qi, Ri), where ti is a subtree of t, qi ∈ Q
and Ri is a particular constellation of Reg;

– register id;
– and register needs.

The operational semantics for such a machine P and term t is as follows. The initial con-
figuration is ((t, qI , R∅); id; needs), where all registers in R∅ are empty, i.e. cont(R∅, r) = ∅

INHABITATION MACHINES: DETERMINISM AND PRINCIPALITY 11

for all r ∈ R. A configuration (c1, c2, . . . , cn; id; needs) with c1 = (t1, qi, R1) transitions to
configuration (c1, . . . , ck, c2, . . . , cn; id′; needs′) if one of the following applies:

• t1 has root 〈λ, x〉 and a single subtree t′, there is some rule λ, qi,∅ q1, r in δ, k = 1,
and c1 = (t′, q1, R′), where R′ is obtained from R1 by updating register r with the addition
of variable x, id′ = id and needs′ = needs;

• t1 has root 〈var, x〉 and k ≥ 0 subtrees t1, . . . , tk, there is some rule var, qi, rn
q1, . . . , qk,∅ in δ, x ∈ cont(R1, rn), and for 1 ≤ j ≤ k one has cj = (tj, qj, R1). Here id′

is obtained from id by adding the identification i = tail(n), and needs′ = needs \ {n}.

We say that P accepts a tree t with output (id′, needs′) if there is a run from the initial
configuration ((t, qI , R∅); id; needs) to configuration (ε; id′; needs′). The set of normal terms
M such that P accepts tM is denoted by P(A).

With this modifications, we can now define the principal inhabitation machine Pα for a type α.

Definition 4.5 Given a type α let Pα = 〈Σ, N,Q, qI ,R, id, needs, δ〉, where Σ = {λ, var},
N = V, Q = { qn | n+ ∈ N(α) }, qI = qn(α), R = { rn | n− ∈ N(α) }, id = ∅, needs = { n |
n− ∈ N(α), lab(n) 6= var }, and δ is defined as follows:

• if n := λm.k ∈ preL(α), then λ, qn,∅ qk, rm ∈ δ;
• if n := m i1 · · · ik ∈ preL(α), then var, qn, rm qi1 , . . . , qik ,∅ ∈ δ, where k ≥ 0.

Example 4.6 The transition rules of the principal inhabitation machine Pα, for our running
example, are the ones of Aα in Example 3.2, after removing rules var, q8, r9 q6,∅ and
var, q6, r9 q6,∅. These two rules apply to terms that are not long and for this reason the
corresponding production rules have been withdrawn from the pre-grammar. In the initial
configuration registers id and needs are respectively ∅ and {9}.

The run of M = λxy.x(λz.y)y on Pα is now the following:

((q10, [∅9, ∅4, ∅0]); ∅; {9})
 〈λ,x〉 ((q8, [{x}9, ∅4, ∅0]); ∅; {9})
 〈λ,y〉 ((q5, [{x}9, {y}4, ∅0]); ∅; {9})
 〈var,x〉 ((q6, [{x}9, {y}4, ∅0]), (q2, [{x}9, {y}4, ∅0]); {5 = 3}; ∅)
 〈λ,z〉 ((q1, [{x}9, {y}4, {z}0]), (q2, [{x}9, {y}4, ∅0]); {5 = 3}; ∅)
 〈var,y〉 ((q2, [{x}9, {y}4, ∅0]); {5 = 3, 1 = 4}; ∅)
 〈var,y〉 (ε; {5 = 3, 1 = 2 = 4}; ∅).

Proposition 4.7 Given type α and a normal term M , then M is a long inhabitant of α if
and only if Pα accepts M with some output (id′, needs′). Furthermore, for all identifications
n = m in id′ one has lab(n) = lab(m) = var, and n ∈ needs′ implies that lab(n) 6= var.

Proof. It follows from the definition of the operational semantics for inhabitation machines and
for principal inhabitation machines, and from the fact that preL(α) is obtained from pre(α)
dropping all rules n := ms qs−1 · · · q1 such that lab(n) 6= var, that a normal term M is accepted
by Pα with some output (id′, needs′) if and only if M is accepted by Aα and M is long. The
condition on id′ follows from the fact that for every transition rule var, qi, rn q1, . . . , qk,∅

12 Sandra Alves, Sabine Broda

in δ one has lab(i) = lab(tail(n)) = var. The condition on needs′ is a consequence of the
definition of Pα and the initial configuration. 2

Definition 4.8 Consider a type α with set OccT(α), a partition id of { n ∈ N(α) | lab(n) =
var } and a subset needs ⊆ { n ∈ N(α) | lab(n) 6= var }. Then, raise(α, id, needs) denotes
the type obtained from α as follows.

• Every occurrence of a subtype β with n(β) ∈ needs is substituted by a fresh type variable;

• all occurrences of type variables are given fresh names, in such a way that two occurrences
receive the same name if and only if they belong to the same class in id.

Proposition 4.9 If Pα accepts M with output (id, needs), then raise(α, id, needs) is the
principal type of M .

Proof. This is a direct consequence of the construction of the principal type for M in the
proof of Proposition 4.3 in [8]. This principal type is obtained from α and is precisely type
raise(α, id, needs). 2

Corollary 4.10 M is a principal long normal inhabitant of α if and only if Pα accepts M
with some output (id, ∅) such that id contains one class for each type variable in α, each class
containing exactly the identifiers of all occurrences of that type variable.

Example 4.11 The run of M in Example 4.6 is accepting with output ({5 = 3, 1 = 2 = 4}, ∅),
where {5 = 3, 1 = 2 = 4} represents the partition {{0}, {3, 5}, {1, 2, 4}}. We conclude that the
principal type of M is raise(α, {5 = 3, 1 = 2 = 4}, ∅) = ((o→ o′)→ o′ → o′′)→ o′ → o′′.

The unique run of M4 = λxy.y from Example 2.2 is

((q10, [∅9, ∅4, ∅0]); ∅; {9})
 〈λ,x〉 ((q8, [{x}9, ∅4, ∅0]); ∅; {9})
 〈λ,y〉 ((q5, [{x}9, {y}4, ∅0]); ∅; {9})
 〈var,x〉 (ε; {5 = 4}; {9})

Thus, raise(α, {{0}, {1}, {2}, {3}, {4, 5}}, {9}) = o′ → o→ o is the principal type of M4.

The run of M3 = λxy.x(λz.z)(x(λu.y)y) is accepting with output (ε; {{0, 1, 2, 3, 4, 5}}; ∅). Since
raise(α, {{0, 1, 2, 3, 4, 5}}; ∅) = α, we conclude that M3 is a principal long inhabitant of α.

5. Conclusions

In this paper we define inhabitation machines, following the formalism of Schubert et al.,
that deal with terms in a deterministic way. We start by defining machines to recognise normal
inhabitants (depending on the pre-grammar that we use to build the machine, this will recognise
all normal inhabitants or only those in long normal form). We further develop the machines to
deal with the principal inhabitation problem and prove the correctness of our machines. Unlike

INHABITATION MACHINES: DETERMINISM AND PRINCIPALITY 13

Schubert et al., we do not prove any closure properties for the languages generated by our
machines. However, given that our machines are built from the notion of pre-grammar, and
that such closure properties were proved for the pre-grammars in [1], we believe that the same
properties hold for the machines in this paper and leave the details of such results for future
work.

Another topic that is left for further development in an extended version of this paper, is the
complexity of the principal inhabitation problem. Schubert et al. proved that the emptiness
problem is PSPACE-complete for one operation machines, which are single assignment machines
that at each step either read or write the registers. This is not exactly the case for our machines
that deal with principal inhabitants. The rules for variables both read and write, but they only
write in the global registers id and needs an amount of information that is at most polynomial
with respect to the type. Therefore, we are convinced that a PSPACE bound can also be
obtained for the principal type problem, using the inhabitation machines defined in this paper.

Acknowledgment

This work is partially funded by the ERDF through the COMPETE 2020 Programme within
project POCI-01-0145-FEDER-006961, and by National Funds through the FCT as part of
project UID/EEA/50014/2013; and by CMUP (UID/MAT/00144/2013), which is funded by
FCT (Portugal) with national (MEC) and european structural funds through the programs
FEDER, under the partnership agreement PT2020.

References

[1] S. ALVES, S. BRODA, M. RAMOS, Context Free Grammars, Pushdown Automata and Type
Inhabitation. submitted (2017).

[2] T. AOTO, Uniqueness of Normal Proofs in Implicational Intuitionistic Logic. J. of Logic, Lang.
and Inf. 8 (1999) 2, 217–242.

[3] A. BABAEV, S. SOLOV’EV, A coherence theorem for canonical morphisms in cartesian closed
categories. Journal of Mathematical Sciences 20 (1982), 2263–2279.

[4] H. BARENDREGT, Lambda Calculi with Types. In: Handbook of Logic in Computer Science.
2, Clarendon Press, Oxford, 1992, 117–309.

[5] C. BEN-YELLES, Type Assignment in the Lambda-Calculus: Syntax and Semantics. Ph.D. thesis,
University College of Swansea, 1979.

[6] S. BRODA, L. DAMAS, On the structure of normal λ-terms having a certain type. In: Proc. 7th
WoLLIC’2000 . 2000, 33–43.

[7] S. BRODA, L. DAMAS, Counting a Type’s (Principal) Inhabitants. Fundam. Inform. 45 (2001)
1-2, 33–51.

14 Sandra Alves, Sabine Broda

[8] S. BRODA, L. DAMAS, On Long Normal Inhabitants of a Type. J. Log. and Comput. 15 (2005),
353–390.

[9] M. BUNDER, Proof finding algorithms for implicational logics. Theoretical Computer Science
232 (2000) 12, 165 – 186.

[10] J. HINDLEY, Basic Simple Type Theory . Cambridge Tracts in Theoretical Computer Science 42,
Cambridge University Press, 1997.

[11] S. HIROKAWA, Infiniteness of proof (α) is polynomial-space complete. Theor. Comput. Sci. 206
(1998) 1-2, 331–339.

[12] W. HOWARD, The formulas-as-types notion of construction. In: J. SELDIN, J. HINDLEY
(eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Aca-
demic Press, 1980, 479–490.

[13] Y. KOMORI, S. HIROKAWA, The Number of Proofs for a BCK-Formula. J. Symb. Log. 58
(1993) 2, 626–628.

[14] G. MINTS, Closed categories and the theory of proofs. Journal of Mathematical Sciences 15
(1981), 45–62.

[15] D. PRAWITZ, Natural deduction: a proof-theoretical study . Ph.D. thesis, Almqvist & Wiksell,
1965.

[16] A. SCHUBERT, W. DEKKERS, H. P. BARENDREGT, Automata Theoretic Account of Proof
Search. In: CSL 2015 . 2015, 128–143.

[17] R. STATMAN, Intuitionistic Propositional Logic is Polynomial-Space Complete. Theor. Comput.
Sci. 9 (1979), 67–72.

[18] M. TAKAHASHI, Y. AKAMA, S. HIROKAWA, Normal Proofs and Their Grammar. Informa-
tion and Computation 125 (1996) 2, 144–153.

	1 Introduction
	2 Preliminaries
	2.1 Simply Typed Lambda Calculus and Inhabitation Machines
	2.2 Pre-grammars

	3 Inhabitation
	4 Principal Inhabitants
	5 Conclusions
	References

